1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

#![allow(rustdoc::private_intra_doc_links)] // doc(hidden) module

//! # Byte Perfect Hash Function Internals
//!
//! This module contains a perfect hash function (PHF) designed for a fast, compact perfect
//! hash over 1 to 256 nodes (bytes).
//!
//! The PHF uses the following variables:
//!
//! 1. A single parameter `p`, which is 0 in about 98% of cases.
//! 2. A list of `N` parameters `q_t`, one per _bucket_
//! 3. The `N` keys in an arbitrary order determined by the PHF
//!
//! Reading a `key` from the PHF uses the following algorithm:
//!
//! 1. Let `t`, the bucket index, be `f1(key, p)`.
//! 2. Let `i`, the key index, be `f2(key, q_t)`.
//! 3. If `key == k_i`, return `Some(i)`; else return `None`.
//!
//! The functions [`f1`] and [`f2`] are internal to the PHF but should remain stable across
//! serialization versions of `ZeroTrie`. They are very fast, constant-time operations as long
//! as `p` <= [`P_FAST_MAX`] and `q` <= [`Q_FAST_MAX`]. In practice, nearly 100% of parameter
//! values are in the fast range.
//!
//! ```
//! use zerotrie::_internal::PerfectByteHashMap;
//!
//! let phf_example_bytes = [
//!     // `p` parameter
//!     1, // `q` parameters, one for each of the N buckets
//!     0, 0, 1, 1, // Exact keys to be compared with the input
//!     b'e', b'a', b'c', b'g',
//! ];
//!
//! let phf = PerfectByteHashMap::from_bytes(&phf_example_bytes);
//!
//! // The PHF returns the index of the key or `None` if not found.
//! assert_eq!(phf.get(b'a'), Some(1));
//! assert_eq!(phf.get(b'b'), None);
//! assert_eq!(phf.get(b'c'), Some(2));
//! assert_eq!(phf.get(b'd'), None);
//! assert_eq!(phf.get(b'e'), Some(0));
//! assert_eq!(phf.get(b'f'), None);
//! assert_eq!(phf.get(b'g'), Some(3));
//! ```

use crate::helpers::*;

#[cfg(feature = "alloc")]
mod builder;
#[cfg(feature = "alloc")]
mod cached_owned;

#[cfg(feature = "alloc")]
pub use cached_owned::PerfectByteHashMapCacheOwned;

/// The cutoff for the fast version of [`f1`].
#[cfg(feature = "alloc")] // used in the builder code
const P_FAST_MAX: u8 = 95;

/// The cutoff for the fast version of [`f2`].
const Q_FAST_MAX: u8 = 95;

/// The maximum allowable value of `p`. This could be raised if found to be necessary.
/// Values exceeding P_FAST_MAX could use a different `p` algorithm by modifying [`f1`].
#[cfg(feature = "alloc")] // used in the builder code
const P_REAL_MAX: u8 = P_FAST_MAX;

/// The maximum allowable value of `q`. This could be raised if found to be necessary.
#[cfg(feature = "alloc")] // used in the builder code
const Q_REAL_MAX: u8 = 127;

/// Calculates the function `f1` for the PHF. For the exact formula, please read the code.
///
/// When `p == 0`, the operation is a simple modulus.
///
/// The argument `n` is used only for taking the modulus so that the return value is
/// in the range `[0, n)`.
///
/// Invariant: n > 0
///
/// # Examples
///
/// ```
/// use zerotrie::_internal::f1;
/// const N: usize = 10;
///
/// // With p = 0:
/// assert_eq!(0, f1(0, 0, N));
/// assert_eq!(1, f1(1, 0, N));
/// assert_eq!(2, f1(2, 0, N));
/// assert_eq!(9, f1(9, 0, N));
/// assert_eq!(0, f1(10, 0, N));
/// assert_eq!(1, f1(11, 0, N));
/// assert_eq!(2, f1(12, 0, N));
/// assert_eq!(9, f1(19, 0, N));
///
/// // With p = 1:
/// assert_eq!(1, f1(0, 1, N));
/// assert_eq!(0, f1(1, 1, N));
/// assert_eq!(2, f1(2, 1, N));
/// assert_eq!(2, f1(9, 1, N));
/// assert_eq!(4, f1(10, 1, N));
/// assert_eq!(5, f1(11, 1, N));
/// assert_eq!(1, f1(12, 1, N));
/// assert_eq!(7, f1(19, 1, N));
/// ```
#[inline]
pub fn f1(byte: u8, p: u8, n: usize) -> usize {
    let n = if n > 0 {
        n
    } else {
        debug_assert!(false, "unreachable by invariant");
        1
    };
    if p == 0 {
        byte as usize % n
    } else {
        // `p` always uses the below constant-time operation. If needed, we
        // could add some other operation here with `p > P_FAST_MAX` to solve
        // difficult cases if the need arises.
        let result = byte ^ p ^ byte.wrapping_shr(p as u32);
        result as usize % n
    }
}

/// Calculates the function `f2` for the PHF. For the exact formula, please read the code.
///
/// When `q == 0`, the operation is a simple modulus.
///
/// The argument `n` is used only for taking the modulus so that the return value is
/// in the range `[0, n)`.
///
/// Invariant: n > 0
///
/// # Examples
///
/// ```
/// use zerotrie::_internal::f2;
/// const N: usize = 10;
///
/// // With q = 0:
/// assert_eq!(0, f2(0, 0, N));
/// assert_eq!(1, f2(1, 0, N));
/// assert_eq!(2, f2(2, 0, N));
/// assert_eq!(9, f2(9, 0, N));
/// assert_eq!(0, f2(10, 0, N));
/// assert_eq!(1, f2(11, 0, N));
/// assert_eq!(2, f2(12, 0, N));
/// assert_eq!(9, f2(19, 0, N));
///
/// // With q = 1:
/// assert_eq!(1, f2(0, 1, N));
/// assert_eq!(0, f2(1, 1, N));
/// assert_eq!(3, f2(2, 1, N));
/// assert_eq!(8, f2(9, 1, N));
/// assert_eq!(1, f2(10, 1, N));
/// assert_eq!(0, f2(11, 1, N));
/// assert_eq!(3, f2(12, 1, N));
/// assert_eq!(8, f2(19, 1, N));
/// ```
#[inline]
pub fn f2(byte: u8, q: u8, n: usize) -> usize {
    let n = if n > 0 {
        n
    } else {
        debug_assert!(false, "unreachable by invariant");
        1
    };
    let mut result = byte ^ q;
    // In almost all cases, the PHF works with the above constant-time operation.
    // However, to crack a few difficult cases, we fall back to the linear-time
    // operation shown below.
    for _ in Q_FAST_MAX..q {
        result = result ^ (result << 1) ^ (result >> 1);
    }
    result as usize % n
}

/// A constant-time map from bytes to unique indices.
///
/// Uses a perfect hash function (see module-level documentation). Does not support mutation.
///
/// Standard layout: P, N bytes of Q, N bytes of expected keys
#[derive(Debug, PartialEq, Eq)]
#[repr(transparent)]
pub struct PerfectByteHashMap<Store: ?Sized>(Store);

impl<Store> PerfectByteHashMap<Store> {
    /// Creates an instance from a pre-existing store. See [`Self::as_bytes`].
    #[inline]
    pub fn from_store(store: Store) -> Self {
        Self(store)
    }
}

impl<Store> PerfectByteHashMap<Store>
where
    Store: AsRef<[u8]> + ?Sized,
{
    /// Gets the usize for the given byte, or `None` if it is not in the map.
    pub fn get(&self, key: u8) -> Option<usize> {
        let (p, buffer) = self.0.as_ref().split_first()?;
        // Note: there are N buckets followed by N keys
        let n = buffer.len() / 2;
        if n == 0 {
            return None;
        }
        let (qq, eks) = buffer.debug_split_at(n);
        debug_assert_eq!(qq.len(), eks.len());
        let q = debug_unwrap!(qq.get(f1(key, *p, n)), return None);
        let l2 = f2(key, *q, n);
        let ek = debug_unwrap!(eks.get(l2), return None);
        if *ek == key {
            Some(l2)
        } else {
            None
        }
    }
    /// This is called `num_items` because `len` is ambiguous: it could refer
    /// to the number of items or the number of bytes.
    pub fn num_items(&self) -> usize {
        self.0.as_ref().len() / 2
    }
    /// Get an iterator over the keys in the order in which they are stored in the map.
    pub fn keys(&self) -> &[u8] {
        let n = self.num_items();
        self.0.as_ref().debug_split_at(1 + n).1
    }
    /// Diagnostic function that returns `p` and the maximum value of `q`
    #[cfg(test)]
    pub fn p_qmax(&self) -> Option<(u8, u8)> {
        let (p, buffer) = self.0.as_ref().split_first()?;
        let n = buffer.len() / 2;
        if n == 0 {
            return None;
        }
        let (qq, _) = buffer.debug_split_at(n);
        Some((*p, *qq.iter().max().unwrap()))
    }
    /// Returns the map as bytes. The map can be recovered with [`Self::from_store`]
    /// or [`Self::from_bytes`].
    pub fn as_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
    #[cfg(all(feature = "alloc", test))]
    pub fn check(&self) -> Result<(), (&'static str, u8)> {
        use alloc::vec;
        let len = self.num_items();
        let mut seen = vec![false; len];
        for b in 0..=255u8 {
            let get_result = self.get(b);
            if self.keys().contains(&b) {
                let i = get_result.ok_or(("expected to find", b))?;
                if seen[i] {
                    return Err(("seen", b));
                }
                seen[i] = true;
            } else if get_result.is_some() {
                return Err(("did not expect to find", b));
            }
        }
        Ok(())
    }
}

impl PerfectByteHashMap<[u8]> {
    /// Creates an instance from pre-existing bytes. See [`Self::as_bytes`].
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> &Self {
        // Safety: Self is repr(transparent) over [u8]
        unsafe { core::mem::transmute(bytes) }
    }
}

impl<Store> PerfectByteHashMap<Store>
where
    Store: AsRef<[u8]> + ?Sized,
{
    /// Converts from `PerfectByteHashMap<AsRef<[u8]>>` to `&PerfectByteHashMap<[u8]>`
    #[inline]
    pub fn as_borrowed(&self) -> &PerfectByteHashMap<[u8]> {
        PerfectByteHashMap::from_bytes(self.0.as_ref())
    }
}

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use super::*;
    use alloc::vec::Vec;
    extern crate std;

    fn random_alphanums(seed: u64, len: usize) -> Vec<u8> {
        use rand::seq::SliceRandom;
        use rand::SeedableRng;
        const BYTES: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
        let mut rng = rand_pcg::Lcg64Xsh32::seed_from_u64(seed);
        BYTES.choose_multiple(&mut rng, len).copied().collect()
    }

    #[test]
    fn test_smaller() {
        let mut count_by_p = [0; 256];
        let mut count_by_qmax = [0; 256];
        for len in 1..16 {
            for seed in 0..150 {
                let keys = random_alphanums(seed, len);
                let keys_str = core::str::from_utf8(&keys).unwrap();
                let computed = PerfectByteHashMap::try_new(&keys).expect(keys_str);
                computed
                    .check()
                    .unwrap_or_else(|_| panic!("{}", std::str::from_utf8(&keys).expect(keys_str)));
                let (p, qmax) = computed.p_qmax().unwrap();
                count_by_p[p as usize] += 1;
                count_by_qmax[qmax as usize] += 1;
            }
        }
        std::println!("count_by_p (smaller): {count_by_p:?}");
        std::println!("count_by_qmax (smaller): {count_by_qmax:?}");
        let count_fastq = count_by_qmax[0..=Q_FAST_MAX as usize].iter().sum::<usize>();
        let count_slowq = count_by_qmax[Q_FAST_MAX as usize + 1..]
            .iter()
            .sum::<usize>();
        std::println!("fastq/slowq: {count_fastq}/{count_slowq}");
        // Assert that 99% of cases resolve to the fast hash
        assert!(count_fastq >= count_slowq * 100);
    }

    #[test]
    fn test_larger() {
        let mut count_by_p = [0; 256];
        let mut count_by_qmax = [0; 256];
        for len in 16..60 {
            for seed in 0..75 {
                let keys = random_alphanums(seed, len);
                let keys_str = core::str::from_utf8(&keys).unwrap();
                let computed = PerfectByteHashMap::try_new(&keys).expect(keys_str);
                computed
                    .check()
                    .unwrap_or_else(|_| panic!("{}", std::str::from_utf8(&keys).expect(keys_str)));
                let (p, qmax) = computed.p_qmax().unwrap();
                count_by_p[p as usize] += 1;
                count_by_qmax[qmax as usize] += 1;
            }
        }
        std::println!("count_by_p (larger): {count_by_p:?}");
        std::println!("count_by_qmax (larger): {count_by_qmax:?}");
        let count_fastq = count_by_qmax[0..=Q_FAST_MAX as usize].iter().sum::<usize>();
        let count_slowq = count_by_qmax[Q_FAST_MAX as usize + 1..]
            .iter()
            .sum::<usize>();
        std::println!("fastq/slowq: {count_fastq}/{count_slowq}");
        // Assert that 99% of cases resolve to the fast hash
        assert!(count_fastq >= count_slowq * 100);
    }

    #[test]
    fn test_hard_cases() {
        let keys = [
            0u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
            24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
            46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
            68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
            90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
            109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
            126, 195, 196,
        ];

        let computed = PerfectByteHashMap::try_new(&keys).unwrap();
        let (p, qmax) = computed.p_qmax().unwrap();
        assert_eq!(p, 69);
        assert_eq!(qmax, 67);
    }

    #[test]
    fn test_build_read_small() {
        #[derive(Debug)]
        struct TestCase<'a> {
            keys: &'a str,
            expected: &'a [u8],
            reordered_keys: &'a str,
        }
        let cases = [
            TestCase {
                keys: "ab",
                expected: &[0, 0, 0, b'b', b'a'],
                reordered_keys: "ba",
            },
            TestCase {
                keys: "abc",
                expected: &[0, 0, 0, 0, b'c', b'a', b'b'],
                reordered_keys: "cab",
            },
            TestCase {
                // Note: splitting "a" and "c" into different buckets requires the heavier hash
                // function because the difference between "a" and "c" is the period (2).
                keys: "ac",
                expected: &[1, 0, 1, b'c', b'a'],
                reordered_keys: "ca",
            },
            TestCase {
                keys: "aceg",
                expected: &[1, 0, 0, 1, 1, b'e', b'a', b'c', b'g'],
                reordered_keys: "eacg",
            },
            TestCase {
                keys: "abd",
                expected: &[0, 0, 1, 3, b'a', b'b', b'd'],
                reordered_keys: "abd",
            },
            TestCase {
                keys: "def",
                expected: &[0, 0, 0, 0, b'f', b'd', b'e'],
                reordered_keys: "fde",
            },
            TestCase {
                keys: "fi",
                expected: &[0, 0, 0, b'f', b'i'],
                reordered_keys: "fi",
            },
            TestCase {
                keys: "gh",
                expected: &[0, 0, 0, b'h', b'g'],
                reordered_keys: "hg",
            },
            TestCase {
                keys: "lm",
                expected: &[0, 0, 0, b'l', b'm'],
                reordered_keys: "lm",
            },
            TestCase {
                // Note: "a" and "q" (0x61 and 0x71) are very hard to split; only a handful of
                // hash function crates can get them into separate buckets.
                keys: "aq",
                expected: &[4, 0, 1, b'a', b'q'],
                reordered_keys: "aq",
            },
            TestCase {
                keys: "xy",
                expected: &[0, 0, 0, b'x', b'y'],
                reordered_keys: "xy",
            },
            TestCase {
                keys: "xyz",
                expected: &[0, 0, 0, 0, b'x', b'y', b'z'],
                reordered_keys: "xyz",
            },
            TestCase {
                keys: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
                expected: &[
                    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 10, 12, 16, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 16,
                    16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                    2, 0, 7, 104, 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 68, 69,
                    70, 113, 114, 65, 66, 67, 120, 121, 122, 115, 72, 73, 74, 71, 80, 81, 82, 83,
                    84, 85, 86, 87, 88, 89, 90, 75, 76, 77, 78, 79, 103, 97, 98, 99, 116, 100, 102,
                    101,
                ],
                reordered_keys: "hijklmnopuvwDEFqrABCxyzsHIJGPQRSTUVWXYZKLMNOgabctdfe",
            },
            TestCase {
                keys: "abcdefghij",
                expected: &[
                    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 101, 102, 103, 104, 105, 106, 97, 98, 99,
                ],
                reordered_keys: "defghijabc",
            },
            TestCase {
                // This is a small case that resolves to the slow hasher
                keys: "Jbej",
                expected: &[2, 0, 0, 102, 0, b'j', b'e', b'b', b'J'],
                reordered_keys: "jebJ",
            },
            TestCase {
                // This is another small case that resolves to the slow hasher
                keys: "JFNv",
                expected: &[1, 98, 0, 2, 0, b'J', b'F', b'N', b'v'],
                reordered_keys: "JFNv",
            },
        ];
        for cas in cases {
            let computed = PerfectByteHashMap::try_new(cas.keys.as_bytes()).expect(cas.keys);
            assert_eq!(computed.as_bytes(), cas.expected, "{:?}", cas);
            assert_eq!(computed.keys(), cas.reordered_keys.as_bytes(), "{:?}", cas);
            computed.check().expect(cas.keys);
        }
    }
}