1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
#![allow(rustdoc::private_intra_doc_links)] // doc(hidden) module
//! # Byte Perfect Hash Function Internals
//!
//! This module contains a perfect hash function (PHF) designed for a fast, compact perfect
//! hash over 1 to 256 nodes (bytes).
//!
//! The PHF uses the following variables:
//!
//! 1. A single parameter `p`, which is 0 in about 98% of cases.
//! 2. A list of `N` parameters `q_t`, one per _bucket_
//! 3. The `N` keys in an arbitrary order determined by the PHF
//!
//! Reading a `key` from the PHF uses the following algorithm:
//!
//! 1. Let `t`, the bucket index, be `f1(key, p)`.
//! 2. Let `i`, the key index, be `f2(key, q_t)`.
//! 3. If `key == k_i`, return `Some(i)`; else return `None`.
//!
//! The functions [`f1`] and [`f2`] are internal to the PHF but should remain stable across
//! serialization versions of `ZeroTrie`. They are very fast, constant-time operations as long
//! as `p` <= [`P_FAST_MAX`] and `q` <= [`Q_FAST_MAX`]. In practice, nearly 100% of parameter
//! values are in the fast range.
//!
//! ```
//! use zerotrie::_internal::PerfectByteHashMap;
//!
//! let phf_example_bytes = [
//! // `p` parameter
//! 1, // `q` parameters, one for each of the N buckets
//! 0, 0, 1, 1, // Exact keys to be compared with the input
//! b'e', b'a', b'c', b'g',
//! ];
//!
//! let phf = PerfectByteHashMap::from_bytes(&phf_example_bytes);
//!
//! // The PHF returns the index of the key or `None` if not found.
//! assert_eq!(phf.get(b'a'), Some(1));
//! assert_eq!(phf.get(b'b'), None);
//! assert_eq!(phf.get(b'c'), Some(2));
//! assert_eq!(phf.get(b'd'), None);
//! assert_eq!(phf.get(b'e'), Some(0));
//! assert_eq!(phf.get(b'f'), None);
//! assert_eq!(phf.get(b'g'), Some(3));
//! ```
use crate::helpers::*;
#[cfg(feature = "alloc")]
mod builder;
#[cfg(feature = "alloc")]
mod cached_owned;
#[cfg(feature = "alloc")]
pub use cached_owned::PerfectByteHashMapCacheOwned;
/// The cutoff for the fast version of [`f1`].
#[cfg(feature = "alloc")] // used in the builder code
const P_FAST_MAX: u8 = 95;
/// The cutoff for the fast version of [`f2`].
const Q_FAST_MAX: u8 = 95;
/// The maximum allowable value of `p`. This could be raised if found to be necessary.
/// Values exceeding P_FAST_MAX could use a different `p` algorithm by modifying [`f1`].
#[cfg(feature = "alloc")] // used in the builder code
const P_REAL_MAX: u8 = P_FAST_MAX;
/// The maximum allowable value of `q`. This could be raised if found to be necessary.
#[cfg(feature = "alloc")] // used in the builder code
const Q_REAL_MAX: u8 = 127;
/// Calculates the function `f1` for the PHF. For the exact formula, please read the code.
///
/// When `p == 0`, the operation is a simple modulus.
///
/// The argument `n` is used only for taking the modulus so that the return value is
/// in the range `[0, n)`.
///
/// Invariant: n > 0
///
/// # Examples
///
/// ```
/// use zerotrie::_internal::f1;
/// const N: usize = 10;
///
/// // With p = 0:
/// assert_eq!(0, f1(0, 0, N));
/// assert_eq!(1, f1(1, 0, N));
/// assert_eq!(2, f1(2, 0, N));
/// assert_eq!(9, f1(9, 0, N));
/// assert_eq!(0, f1(10, 0, N));
/// assert_eq!(1, f1(11, 0, N));
/// assert_eq!(2, f1(12, 0, N));
/// assert_eq!(9, f1(19, 0, N));
///
/// // With p = 1:
/// assert_eq!(1, f1(0, 1, N));
/// assert_eq!(0, f1(1, 1, N));
/// assert_eq!(2, f1(2, 1, N));
/// assert_eq!(2, f1(9, 1, N));
/// assert_eq!(4, f1(10, 1, N));
/// assert_eq!(5, f1(11, 1, N));
/// assert_eq!(1, f1(12, 1, N));
/// assert_eq!(7, f1(19, 1, N));
/// ```
#[inline]
pub fn f1(byte: u8, p: u8, n: usize) -> usize {
let n = if n > 0 {
n
} else {
debug_assert!(false, "unreachable by invariant");
1
};
if p == 0 {
byte as usize % n
} else {
// `p` always uses the below constant-time operation. If needed, we
// could add some other operation here with `p > P_FAST_MAX` to solve
// difficult cases if the need arises.
let result = byte ^ p ^ byte.wrapping_shr(p as u32);
result as usize % n
}
}
/// Calculates the function `f2` for the PHF. For the exact formula, please read the code.
///
/// When `q == 0`, the operation is a simple modulus.
///
/// The argument `n` is used only for taking the modulus so that the return value is
/// in the range `[0, n)`.
///
/// Invariant: n > 0
///
/// # Examples
///
/// ```
/// use zerotrie::_internal::f2;
/// const N: usize = 10;
///
/// // With q = 0:
/// assert_eq!(0, f2(0, 0, N));
/// assert_eq!(1, f2(1, 0, N));
/// assert_eq!(2, f2(2, 0, N));
/// assert_eq!(9, f2(9, 0, N));
/// assert_eq!(0, f2(10, 0, N));
/// assert_eq!(1, f2(11, 0, N));
/// assert_eq!(2, f2(12, 0, N));
/// assert_eq!(9, f2(19, 0, N));
///
/// // With q = 1:
/// assert_eq!(1, f2(0, 1, N));
/// assert_eq!(0, f2(1, 1, N));
/// assert_eq!(3, f2(2, 1, N));
/// assert_eq!(8, f2(9, 1, N));
/// assert_eq!(1, f2(10, 1, N));
/// assert_eq!(0, f2(11, 1, N));
/// assert_eq!(3, f2(12, 1, N));
/// assert_eq!(8, f2(19, 1, N));
/// ```
#[inline]
pub fn f2(byte: u8, q: u8, n: usize) -> usize {
let n = if n > 0 {
n
} else {
debug_assert!(false, "unreachable by invariant");
1
};
let mut result = byte ^ q;
// In almost all cases, the PHF works with the above constant-time operation.
// However, to crack a few difficult cases, we fall back to the linear-time
// operation shown below.
for _ in Q_FAST_MAX..q {
result = result ^ (result << 1) ^ (result >> 1);
}
result as usize % n
}
/// A constant-time map from bytes to unique indices.
///
/// Uses a perfect hash function (see module-level documentation). Does not support mutation.
///
/// Standard layout: P, N bytes of Q, N bytes of expected keys
#[derive(Debug, PartialEq, Eq)]
#[repr(transparent)]
pub struct PerfectByteHashMap<Store: ?Sized>(Store);
impl<Store> PerfectByteHashMap<Store> {
/// Creates an instance from a pre-existing store. See [`Self::as_bytes`].
#[inline]
pub fn from_store(store: Store) -> Self {
Self(store)
}
}
impl<Store> PerfectByteHashMap<Store>
where
Store: AsRef<[u8]> + ?Sized,
{
/// Gets the usize for the given byte, or `None` if it is not in the map.
pub fn get(&self, key: u8) -> Option<usize> {
let (p, buffer) = self.0.as_ref().split_first()?;
// Note: there are N buckets followed by N keys
let n = buffer.len() / 2;
if n == 0 {
return None;
}
let (qq, eks) = buffer.debug_split_at(n);
debug_assert_eq!(qq.len(), eks.len());
let q = debug_unwrap!(qq.get(f1(key, *p, n)), return None);
let l2 = f2(key, *q, n);
let ek = debug_unwrap!(eks.get(l2), return None);
if *ek == key {
Some(l2)
} else {
None
}
}
/// This is called `num_items` because `len` is ambiguous: it could refer
/// to the number of items or the number of bytes.
pub fn num_items(&self) -> usize {
self.0.as_ref().len() / 2
}
/// Get an iterator over the keys in the order in which they are stored in the map.
pub fn keys(&self) -> &[u8] {
let n = self.num_items();
self.0.as_ref().debug_split_at(1 + n).1
}
/// Diagnostic function that returns `p` and the maximum value of `q`
#[cfg(test)]
pub fn p_qmax(&self) -> Option<(u8, u8)> {
let (p, buffer) = self.0.as_ref().split_first()?;
let n = buffer.len() / 2;
if n == 0 {
return None;
}
let (qq, _) = buffer.debug_split_at(n);
Some((*p, *qq.iter().max().unwrap()))
}
/// Returns the map as bytes. The map can be recovered with [`Self::from_store`]
/// or [`Self::from_bytes`].
pub fn as_bytes(&self) -> &[u8] {
self.0.as_ref()
}
#[cfg(all(feature = "alloc", test))]
pub fn check(&self) -> Result<(), (&'static str, u8)> {
use alloc::vec;
let len = self.num_items();
let mut seen = vec![false; len];
for b in 0..=255u8 {
let get_result = self.get(b);
if self.keys().contains(&b) {
let i = get_result.ok_or(("expected to find", b))?;
if seen[i] {
return Err(("seen", b));
}
seen[i] = true;
} else if get_result.is_some() {
return Err(("did not expect to find", b));
}
}
Ok(())
}
}
impl PerfectByteHashMap<[u8]> {
/// Creates an instance from pre-existing bytes. See [`Self::as_bytes`].
#[inline]
pub fn from_bytes(bytes: &[u8]) -> &Self {
// Safety: Self is repr(transparent) over [u8]
unsafe { core::mem::transmute(bytes) }
}
}
impl<Store> PerfectByteHashMap<Store>
where
Store: AsRef<[u8]> + ?Sized,
{
/// Converts from `PerfectByteHashMap<AsRef<[u8]>>` to `&PerfectByteHashMap<[u8]>`
#[inline]
pub fn as_borrowed(&self) -> &PerfectByteHashMap<[u8]> {
PerfectByteHashMap::from_bytes(self.0.as_ref())
}
}
#[cfg(all(test, feature = "alloc"))]
mod tests {
use super::*;
use alloc::vec::Vec;
extern crate std;
fn random_alphanums(seed: u64, len: usize) -> Vec<u8> {
use rand::seq::SliceRandom;
use rand::SeedableRng;
const BYTES: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
let mut rng = rand_pcg::Lcg64Xsh32::seed_from_u64(seed);
BYTES.choose_multiple(&mut rng, len).copied().collect()
}
#[test]
fn test_smaller() {
let mut count_by_p = [0; 256];
let mut count_by_qmax = [0; 256];
for len in 1..16 {
for seed in 0..150 {
let keys = random_alphanums(seed, len);
let keys_str = core::str::from_utf8(&keys).unwrap();
let computed = PerfectByteHashMap::try_new(&keys).expect(keys_str);
computed
.check()
.unwrap_or_else(|_| panic!("{}", std::str::from_utf8(&keys).expect(keys_str)));
let (p, qmax) = computed.p_qmax().unwrap();
count_by_p[p as usize] += 1;
count_by_qmax[qmax as usize] += 1;
}
}
std::println!("count_by_p (smaller): {count_by_p:?}");
std::println!("count_by_qmax (smaller): {count_by_qmax:?}");
let count_fastq = count_by_qmax[0..=Q_FAST_MAX as usize].iter().sum::<usize>();
let count_slowq = count_by_qmax[Q_FAST_MAX as usize + 1..]
.iter()
.sum::<usize>();
std::println!("fastq/slowq: {count_fastq}/{count_slowq}");
// Assert that 99% of cases resolve to the fast hash
assert!(count_fastq >= count_slowq * 100);
}
#[test]
fn test_larger() {
let mut count_by_p = [0; 256];
let mut count_by_qmax = [0; 256];
for len in 16..60 {
for seed in 0..75 {
let keys = random_alphanums(seed, len);
let keys_str = core::str::from_utf8(&keys).unwrap();
let computed = PerfectByteHashMap::try_new(&keys).expect(keys_str);
computed
.check()
.unwrap_or_else(|_| panic!("{}", std::str::from_utf8(&keys).expect(keys_str)));
let (p, qmax) = computed.p_qmax().unwrap();
count_by_p[p as usize] += 1;
count_by_qmax[qmax as usize] += 1;
}
}
std::println!("count_by_p (larger): {count_by_p:?}");
std::println!("count_by_qmax (larger): {count_by_qmax:?}");
let count_fastq = count_by_qmax[0..=Q_FAST_MAX as usize].iter().sum::<usize>();
let count_slowq = count_by_qmax[Q_FAST_MAX as usize + 1..]
.iter()
.sum::<usize>();
std::println!("fastq/slowq: {count_fastq}/{count_slowq}");
// Assert that 99% of cases resolve to the fast hash
assert!(count_fastq >= count_slowq * 100);
}
#[test]
fn test_hard_cases() {
let keys = [
0u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 195, 196,
];
let computed = PerfectByteHashMap::try_new(&keys).unwrap();
let (p, qmax) = computed.p_qmax().unwrap();
assert_eq!(p, 69);
assert_eq!(qmax, 67);
}
#[test]
fn test_build_read_small() {
#[derive(Debug)]
struct TestCase<'a> {
keys: &'a str,
expected: &'a [u8],
reordered_keys: &'a str,
}
let cases = [
TestCase {
keys: "ab",
expected: &[0, 0, 0, b'b', b'a'],
reordered_keys: "ba",
},
TestCase {
keys: "abc",
expected: &[0, 0, 0, 0, b'c', b'a', b'b'],
reordered_keys: "cab",
},
TestCase {
// Note: splitting "a" and "c" into different buckets requires the heavier hash
// function because the difference between "a" and "c" is the period (2).
keys: "ac",
expected: &[1, 0, 1, b'c', b'a'],
reordered_keys: "ca",
},
TestCase {
keys: "aceg",
expected: &[1, 0, 0, 1, 1, b'e', b'a', b'c', b'g'],
reordered_keys: "eacg",
},
TestCase {
keys: "abd",
expected: &[0, 0, 1, 3, b'a', b'b', b'd'],
reordered_keys: "abd",
},
TestCase {
keys: "def",
expected: &[0, 0, 0, 0, b'f', b'd', b'e'],
reordered_keys: "fde",
},
TestCase {
keys: "fi",
expected: &[0, 0, 0, b'f', b'i'],
reordered_keys: "fi",
},
TestCase {
keys: "gh",
expected: &[0, 0, 0, b'h', b'g'],
reordered_keys: "hg",
},
TestCase {
keys: "lm",
expected: &[0, 0, 0, b'l', b'm'],
reordered_keys: "lm",
},
TestCase {
// Note: "a" and "q" (0x61 and 0x71) are very hard to split; only a handful of
// hash function crates can get them into separate buckets.
keys: "aq",
expected: &[4, 0, 1, b'a', b'q'],
reordered_keys: "aq",
},
TestCase {
keys: "xy",
expected: &[0, 0, 0, b'x', b'y'],
reordered_keys: "xy",
},
TestCase {
keys: "xyz",
expected: &[0, 0, 0, 0, b'x', b'y', b'z'],
reordered_keys: "xyz",
},
TestCase {
keys: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
expected: &[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 10, 12, 16, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 16,
16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
2, 0, 7, 104, 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 68, 69,
70, 113, 114, 65, 66, 67, 120, 121, 122, 115, 72, 73, 74, 71, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 75, 76, 77, 78, 79, 103, 97, 98, 99, 116, 100, 102,
101,
],
reordered_keys: "hijklmnopuvwDEFqrABCxyzsHIJGPQRSTUVWXYZKLMNOgabctdfe",
},
TestCase {
keys: "abcdefghij",
expected: &[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 101, 102, 103, 104, 105, 106, 97, 98, 99,
],
reordered_keys: "defghijabc",
},
TestCase {
// This is a small case that resolves to the slow hasher
keys: "Jbej",
expected: &[2, 0, 0, 102, 0, b'j', b'e', b'b', b'J'],
reordered_keys: "jebJ",
},
TestCase {
// This is another small case that resolves to the slow hasher
keys: "JFNv",
expected: &[1, 98, 0, 2, 0, b'J', b'F', b'N', b'v'],
reordered_keys: "JFNv",
},
];
for cas in cases {
let computed = PerfectByteHashMap::try_new(cas.keys.as_bytes()).expect(cas.keys);
assert_eq!(computed.as_bytes(), cas.expected, "{:?}", cas);
assert_eq!(computed.keys(), cas.reordered_keys.as_bytes(), "{:?}", cas);
computed.check().expect(cas.keys);
}
}
}