1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! This module contains the render task graph.
//!
//! Code associated with creating specific render tasks is in the render_task
//! module.
use api::units::*;
use api::ImageFormat;
use crate::gpu_cache::{GpuCache, GpuCacheAddress};
use crate::internal_types::{TextureSource, CacheTextureId, FastHashMap, FastHashSet, FrameId};
use crate::render_task::{StaticRenderTaskSurface, RenderTaskLocation, RenderTask};
use crate::render_target::RenderTargetKind;
use crate::render_task::{RenderTaskData, RenderTaskKind};
use crate::resource_cache::ResourceCache;
use crate::texture_pack::GuillotineAllocator;
use crate::prim_store::DeferredResolve;
use crate::image_source::{resolve_image, resolve_cached_render_task};
use crate::util::VecHelper;
use smallvec::SmallVec;
use std::mem;
use topological_sort::TopologicalSort;
use crate::render_target::{RenderTargetList, ColorRenderTarget};
use crate::render_target::{PictureCacheTarget, TextureCacheRenderTarget, AlphaRenderTarget};
use crate::util::Allocation;
use std::{usize, f32};
/// If we ever need a larger texture than the ideal, we better round it up to a
/// reasonable number in order to have a bit of leeway in case the size of this
/// this target is changing each frame.
const TEXTURE_DIMENSION_MASK: i32 = 0xFF;
/// Allows initializing a render task directly into the render task buffer.
///
/// See utils::VecHelpers. RenderTask is fairly large so avoiding the move when
/// pushing into the vector can save a lot of expensive memcpys on pages with many
/// render tasks.
pub struct RenderTaskAllocation<'a> {
pub alloc: Allocation<'a, RenderTask>,
}
impl<'l> RenderTaskAllocation<'l> {
#[inline(always)]
pub fn init(self, value: RenderTask) -> RenderTaskId {
RenderTaskId {
index: self.alloc.init(value) as u32,
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[derive(MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTaskId {
pub index: u32,
}
impl RenderTaskId {
pub const INVALID: RenderTaskId = RenderTaskId {
index: u32::MAX,
};
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct PassId(usize);
impl PassId {
pub const MIN: PassId = PassId(0);
pub const MAX: PassId = PassId(!0 - 1);
pub const INVALID: PassId = PassId(!0 - 2);
}
/// An internal representation of a dynamic surface that tasks can be
/// allocated into. Maintains some extra metadata about each surface
/// during the graph build.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Surface {
/// Whether this is a color or alpha render target
kind: RenderTargetKind,
/// Allocator for this surface texture
allocator: GuillotineAllocator,
/// We can only allocate into this for reuse if it's a shared surface
is_shared: bool,
/// The pass that we can free this surface after (guaranteed
/// to be the same for all tasks assigned to this surface)
free_after: PassId,
}
impl Surface {
/// Allocate a rect within a shared surfce. Returns None if the
/// format doesn't match, or allocation fails.
fn alloc_rect(
&mut self,
size: DeviceIntSize,
kind: RenderTargetKind,
is_shared: bool,
free_after: PassId,
) -> Option<DeviceIntPoint> {
if self.kind == kind && self.is_shared == is_shared && self.free_after == free_after {
self.allocator
.allocate(&size)
.map(|(_slice, origin)| origin)
} else {
None
}
}
}
/// A sub-pass can draw to either a dynamic (temporary render target) surface,
/// or a persistent surface (texture or picture cache).
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug)]
pub enum SubPassSurface {
/// A temporary (intermediate) surface.
Dynamic {
/// The renderer texture id
texture_id: CacheTextureId,
/// Color / alpha render target
target_kind: RenderTargetKind,
/// The rectangle occupied by tasks in this surface. Used as a clear
/// optimization on some GPUs.
used_rect: DeviceIntRect,
},
Persistent {
/// Reference to the texture or picture cache surface being drawn to.
surface: StaticRenderTaskSurface,
},
}
/// A subpass is a specific render target, and a list of tasks to draw to it.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SubPass {
/// The surface this subpass draws to
pub surface: SubPassSurface,
/// The tasks assigned to this subpass.
pub task_ids: Vec<RenderTaskId>,
}
/// A pass expresses dependencies between tasks. Each pass consists of a number
/// of subpasses.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct Pass {
/// The tasks assigned to this render pass
pub task_ids: Vec<RenderTaskId>,
/// The subpasses that make up this dependency pass
pub sub_passes: Vec<SubPass>,
/// A list of intermediate surfaces that can be invalidated after
/// this pass completes.
pub textures_to_invalidate: Vec<CacheTextureId>,
}
/// The RenderTaskGraph is the immutable representation of the render task graph. It is
/// built by the RenderTaskGraphBuilder, and is constructed once per frame.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTaskGraph {
/// List of tasks added to the graph
pub tasks: Vec<RenderTask>,
/// The passes that were created, based on dependencies between tasks
pub passes: Vec<Pass>,
/// Current frame id, used for debug validation
frame_id: FrameId,
/// GPU specific data for each task that is made available to shaders
pub task_data: Vec<RenderTaskData>,
/// Total number of intermediate surfaces that will be drawn to, used for test validation.
#[cfg(test)]
surface_count: usize,
/// Total number of real allocated textures that will be drawn to, used for test validation.
#[cfg(test)]
unique_surfaces: FastHashSet<CacheTextureId>,
}
/// The persistent interface that is used during frame building to construct the
/// frame graph.
pub struct RenderTaskGraphBuilder {
/// List of tasks added to the builder
tasks: Vec<RenderTask>,
/// List of task roots
roots: FastHashSet<RenderTaskId>,
/// Current frame id, used for debug validation
frame_id: FrameId,
/// A list of texture surfaces that can be freed at the end of a pass. Retained
/// here to reduce heap allocations.
textures_to_free: FastHashSet<CacheTextureId>,
// Keep a map of `texture_id` to metadata about surfaces that are currently
// borrowed from the render target pool.
active_surfaces: FastHashMap<CacheTextureId, Surface>,
}
impl RenderTaskGraphBuilder {
/// Construct a new graph builder. Typically constructed once and maintained
/// over many frames, to avoid extra heap allocations where possible.
pub fn new() -> Self {
RenderTaskGraphBuilder {
tasks: Vec::new(),
roots: FastHashSet::default(),
frame_id: FrameId::INVALID,
textures_to_free: FastHashSet::default(),
active_surfaces: FastHashMap::default(),
}
}
pub fn frame_id(&self) -> FrameId {
self.frame_id
}
/// Begin a new frame
pub fn begin_frame(&mut self, frame_id: FrameId) {
self.frame_id = frame_id;
self.roots.clear();
}
/// Get immutable access to a task
// TODO(gw): There's only a couple of places that existing code needs to access
// a task during the building step. Perhaps we can remove this?
pub fn get_task(
&self,
task_id: RenderTaskId,
) -> &RenderTask {
&self.tasks[task_id.index as usize]
}
/// Get mutable access to a task
// TODO(gw): There's only a couple of places that existing code needs to access
// a task during the building step. Perhaps we can remove this?
pub fn get_task_mut(
&mut self,
task_id: RenderTaskId,
) -> &mut RenderTask {
&mut self.tasks[task_id.index as usize]
}
/// Add a new task to the graph.
pub fn add(&mut self) -> RenderTaskAllocation {
// Assume every task is a root to start with
self.roots.insert(
RenderTaskId { index: self.tasks.len() as u32 }
);
RenderTaskAllocation {
alloc: self.tasks.alloc(),
}
}
/// Express a dependency, such that `task_id` depends on `input` as a texture source.
pub fn add_dependency(
&mut self,
task_id: RenderTaskId,
input: RenderTaskId,
) {
self.tasks[task_id.index as usize].children.push(input);
// Once a task is an input, it's no longer a root
self.roots.remove(&input);
}
/// End the graph building phase and produce the immutable task graph for this frame
pub fn end_frame(
&mut self,
resource_cache: &mut ResourceCache,
gpu_cache: &mut GpuCache,
deferred_resolves: &mut Vec<DeferredResolve>,
max_shared_surface_size: i32,
) -> RenderTaskGraph {
// Copy the render tasks over to the immutable graph output
let task_count = self.tasks.len();
let tasks = mem::replace(
&mut self.tasks,
Vec::with_capacity(task_count),
);
let mut graph = RenderTaskGraph {
tasks,
passes: Vec::new(),
task_data: Vec::with_capacity(task_count),
frame_id: self.frame_id,
#[cfg(test)]
surface_count: 0,
#[cfg(test)]
unique_surfaces: FastHashSet::default(),
};
// First, use a topological sort of the dependency graph to split the task set in to
// a list of passes. This is necessary because when we have a complex graph (e.g. due
// to a large number of sibling backdrop-filter primitives) traversing it via a simple
// recursion can be too slow. The second pass determines when the last time a render task
// is used as an input, and assigns what pass the surface backing that render task can
// be freed (the surface is then returned to the render target pool and may be aliased
// or reused during subsequent passes).
let mut pass_count = 0;
let mut passes = Vec::new();
let mut task_sorter = TopologicalSort::<RenderTaskId>::new();
// Iterate the task list, and add all the dependencies to the topo sort
for (parent_id, task) in graph.tasks.iter().enumerate() {
let parent_id = RenderTaskId { index: parent_id as u32 };
for child_id in &task.children {
task_sorter.add_dependency(
parent_id,
*child_id,
);
}
}
// Pop the sorted passes off the topological sort
loop {
// Get the next set of tasks that can be drawn
let tasks = task_sorter.pop_all();
// If there are no tasks left, we're done
if tasks.is_empty() {
// If the task sorter itself isn't empty but we couldn't pop off any
// tasks, that implies a circular dependency in the task graph
assert!(task_sorter.is_empty());
break;
} else {
// Assign the `render_on` field to the task
for task_id in &tasks {
graph.tasks[task_id.index as usize].render_on = PassId(pass_count);
}
// Store the task list for this pass, used later for `assign_free_pass`.
passes.push(tasks);
pass_count += 1;
}
}
// Always create at least one pass for root tasks
pass_count = pass_count.max(1);
// Determine which pass each task can be freed on, which depends on which is
// the last task that has this as an input. This must be done in top-down
// pass order to ensure that RenderTaskLocation::Existing references are
// visited in the correct order
for pass in passes {
for task_id in pass {
assign_free_pass(
task_id,
&mut graph,
);
}
}
// Construct passes array for tasks to be assigned to below
for _ in 0 .. pass_count {
graph.passes.push(Pass {
task_ids: Vec::new(),
sub_passes: Vec::new(),
textures_to_invalidate: Vec::new(),
});
}
// Assign tasks to each pass based on their `render_on` attribute
for (index, task) in graph.tasks.iter().enumerate() {
if task.kind.is_a_rendering_operation() {
let id = RenderTaskId { index: index as u32 };
graph.passes[task.render_on.0].task_ids.push(id);
}
}
// At this point, tasks are assigned to each dependency pass. Now we
// can go through each pass and create sub-passes, assigning each task
// to a target and destination rect.
assert!(self.active_surfaces.is_empty());
for (pass_id, pass) in graph.passes.iter_mut().enumerate().rev() {
assert!(self.textures_to_free.is_empty());
for task_id in &pass.task_ids {
let task_location = graph.tasks[task_id.index as usize].location.clone();
match task_location {
RenderTaskLocation::Unallocated { size } => {
let task = &mut graph.tasks[task_id.index as usize];
let mut location = None;
let kind = task.kind.target_kind();
// If a task is used as part of an existing-chain then we can't
// safely share it (nor would we want to).
let can_use_shared_surface =
task.kind.can_use_shared_surface() &&
task.free_after != PassId::INVALID;
if can_use_shared_surface {
// If we can use a shared surface, step through the existing shared
// surfaces for this subpass, and see if we can allocate the task
// to one of these targets.
for sub_pass in &mut pass.sub_passes {
if let SubPassSurface::Dynamic { texture_id, ref mut used_rect, .. } = sub_pass.surface {
let surface = self.active_surfaces.get_mut(&texture_id).unwrap();
if let Some(p) = surface.alloc_rect(size, kind, true, task.free_after) {
location = Some((texture_id, p));
*used_rect = used_rect.union(&DeviceIntRect::from_origin_and_size(p, size));
sub_pass.task_ids.push(*task_id);
break;
}
}
}
}
if location.is_none() {
// If it wasn't possible to allocate the task to a shared surface, get a new
// render target from the resource cache pool/
// If this is a really large task, don't bother allocating it as a potential
// shared surface for other tasks.
let can_use_shared_surface = can_use_shared_surface &&
size.width <= max_shared_surface_size &&
size.height <= max_shared_surface_size;
let surface_size = if can_use_shared_surface {
DeviceIntSize::new(
max_shared_surface_size,
max_shared_surface_size,
)
} else {
// Round up size here to avoid constant re-allocs during resizing
DeviceIntSize::new(
(size.width + TEXTURE_DIMENSION_MASK) & !TEXTURE_DIMENSION_MASK,
(size.height + TEXTURE_DIMENSION_MASK) & !TEXTURE_DIMENSION_MASK,
)
};
if surface_size.is_empty() {
// We would panic in the guillotine allocator. Instead, panic here
// with some context.
let task_name = graph.tasks[task_id.index as usize].kind.as_str();
panic!("{} render task has invalid size {:?}", task_name, surface_size);
}
let format = match kind {
RenderTargetKind::Color => ImageFormat::RGBA8,
RenderTargetKind::Alpha => ImageFormat::R8,
};
// Get render target of appropriate size and format from resource cache
let texture_id = resource_cache.get_or_create_render_target_from_pool(
surface_size,
format,
);
// Allocate metadata we need about this surface while it's active
let mut surface = Surface {
kind,
allocator: GuillotineAllocator::new(Some(surface_size)),
is_shared: can_use_shared_surface,
free_after: task.free_after,
};
// Allocation of the task must fit in this new surface!
let p = surface.alloc_rect(
size,
kind,
can_use_shared_surface,
task.free_after,
).expect("bug: alloc must succeed!");
location = Some((texture_id, p));
// Store the metadata about this newly active surface. We should never
// get a target surface with the same texture_id as a currently active surface.
let _prev_surface = self.active_surfaces.insert(texture_id, surface);
assert!(_prev_surface.is_none());
// Store some information about surface allocations if in test mode
#[cfg(test)]
{
graph.surface_count += 1;
graph.unique_surfaces.insert(texture_id);
}
// Add the target as a new subpass for this render pass.
pass.sub_passes.push(SubPass {
surface: SubPassSurface::Dynamic {
texture_id,
target_kind: kind,
used_rect: DeviceIntRect::from_origin_and_size(p, size),
},
task_ids: vec![*task_id],
});
}
// By now, we must have allocated a surface and rect for this task, so assign it!
assert!(location.is_some());
task.location = RenderTaskLocation::Dynamic {
texture_id: location.unwrap().0,
rect: DeviceIntRect::from_origin_and_size(location.unwrap().1, size),
};
}
RenderTaskLocation::Existing { parent_task_id, size: existing_size, .. } => {
let parent_task_location = graph.tasks[parent_task_id.index as usize].location.clone();
match parent_task_location {
RenderTaskLocation::Unallocated { .. } |
RenderTaskLocation::CacheRequest { .. } |
RenderTaskLocation::Existing { .. } => {
panic!("bug: reference to existing task must be allocated by now");
}
RenderTaskLocation::Dynamic { texture_id, rect, .. } => {
assert_eq!(existing_size, rect.size());
let kind = graph.tasks[parent_task_id.index as usize].kind.target_kind();
// A sub-pass is always created in this case, as existing tasks by definition can't be shared.
pass.sub_passes.push(SubPass {
surface: SubPassSurface::Dynamic {
texture_id,
target_kind: kind,
used_rect: rect, // clear will be skipped due to no-op check anyway
},
task_ids: vec![*task_id],
});
let task = &mut graph.tasks[task_id.index as usize];
task.location = parent_task_location;
}
RenderTaskLocation::Static { .. } => {
unreachable!("bug: not possible since we don't dup static locations");
}
}
}
RenderTaskLocation::Static { ref surface, .. } => {
// No need to allocate for this surface, since it's a persistent
// target. Instead, just create a new sub-pass for it.
pass.sub_passes.push(SubPass {
surface: SubPassSurface::Persistent {
surface: surface.clone(),
},
task_ids: vec![*task_id],
});
}
RenderTaskLocation::CacheRequest { .. } => {
// No need to allocate nor to create a sub-path for read-only locations.
}
RenderTaskLocation::Dynamic { .. } => {
// Dynamic tasks shouldn't be allocated by this point
panic!("bug: encountered an already allocated task");
}
}
// Return the shared surfaces from this pass
let task = &graph.tasks[task_id.index as usize];
for child_id in &task.children {
let child_task = &graph.tasks[child_id.index as usize];
match child_task.location {
RenderTaskLocation::Unallocated { .. } |
RenderTaskLocation::Existing { .. } => panic!("bug: must be allocated"),
RenderTaskLocation::Dynamic { texture_id, .. } => {
// If this task can be freed after this pass, include it in the
// unique set of textures to be returned to the render target pool below.
if child_task.free_after == PassId(pass_id) {
self.textures_to_free.insert(texture_id);
}
}
RenderTaskLocation::Static { .. } => {}
RenderTaskLocation::CacheRequest { .. } => {}
}
}
}
// Return no longer used textures to the pool, so that they can be reused / aliased
// by later passes.
for texture_id in self.textures_to_free.drain() {
resource_cache.return_render_target_to_pool(texture_id);
self.active_surfaces.remove(&texture_id).unwrap();
pass.textures_to_invalidate.push(texture_id);
}
}
if !self.active_surfaces.is_empty() {
graph.print();
// By now, all surfaces that were borrowed from the render target pool must
// be returned to the resource cache, or we are leaking intermediate surfaces!
assert!(self.active_surfaces.is_empty());
}
// Each task is now allocated to a surface and target rect. Write that to the
// GPU blocks and task_data. After this point, the graph is returned and is
// considered to be immutable for the rest of the frame building process.
for task in &mut graph.tasks {
// First check whether the render task texture and uv rects are managed
// externally. This is the case for image tasks and cached tasks. In both
// cases it results in a finding the information in the texture cache.
let cache_item = if let Some(ref cache_handle) = task.cache_handle {
Some(resolve_cached_render_task(
cache_handle,
resource_cache,
))
} else if let RenderTaskKind::Image(request) = &task.kind {
Some(resolve_image(
*request,
resource_cache,
gpu_cache,
deferred_resolves,
))
} else {
// General case (non-cached non-image tasks).
None
};
if let Some(cache_item) = cache_item {
// Update the render task even if the item is invalid.
// We'll handle it later and it's easier to not have to
// deal with unexpected location variants like
// RenderTaskLocation::CacheRequest when we do.
let source = cache_item.texture_id;
task.uv_rect_handle = cache_item.uv_rect_handle;
task.location = RenderTaskLocation::Static {
surface: StaticRenderTaskSurface::ReadOnly { source },
rect: cache_item.uv_rect,
};
}
// Give the render task an opportunity to add any
// information to the GPU cache, if appropriate.
let target_rect = task.get_target_rect();
task.write_gpu_blocks(
target_rect,
gpu_cache,
);
graph.task_data.push(
task.kind.write_task_data(target_rect)
);
}
graph
}
}
impl RenderTaskGraph {
/// Print the render task graph to console
#[allow(dead_code)]
pub fn print(
&self,
) {
print!("-- RenderTaskGraph --\n");
for (i, task) in self.tasks.iter().enumerate() {
print!("Task {} [{}]: render_on={} free_after={} children={:?} target_size={:?}\n",
i,
task.kind.as_str(),
task.render_on.0,
task.free_after.0,
task.children,
task.get_target_size(),
);
}
for (p, pass) in self.passes.iter().enumerate() {
print!("Pass {}:\n", p);
for (s, sub_pass) in pass.sub_passes.iter().enumerate() {
print!("\tSubPass {}: {:?}\n",
s,
sub_pass.surface,
);
for task_id in &sub_pass.task_ids {
print!("\t\tTask {:?}\n", task_id.index);
}
}
}
}
pub fn resolve_texture(
&self,
task_id: impl Into<Option<RenderTaskId>>,
) -> Option<TextureSource> {
let task_id = task_id.into()?;
let task = &self[task_id];
match task.get_texture_source() {
TextureSource::Invalid => None,
source => Some(source),
}
}
pub fn resolve_location(
&self,
task_id: impl Into<Option<RenderTaskId>>,
gpu_cache: &GpuCache,
) -> Option<(GpuCacheAddress, TextureSource)> {
self.resolve_impl(task_id.into()?, gpu_cache)
}
fn resolve_impl(
&self,
task_id: RenderTaskId,
gpu_cache: &GpuCache,
) -> Option<(GpuCacheAddress, TextureSource)> {
let task = &self[task_id];
let texture_source = task.get_texture_source();
if let TextureSource::Invalid = texture_source {
return None;
}
let uv_address = task.get_texture_address(gpu_cache);
Some((uv_address, texture_source))
}
#[cfg(test)]
pub fn new_for_testing() -> Self {
RenderTaskGraph {
tasks: Vec::new(),
passes: Vec::new(),
frame_id: FrameId::INVALID,
task_data: Vec::new(),
surface_count: 0,
unique_surfaces: FastHashSet::default(),
}
}
/// Return the surface and texture counts, used for testing
#[cfg(test)]
pub fn surface_counts(&self) -> (usize, usize) {
(self.surface_count, self.unique_surfaces.len())
}
/// Return current frame id, used for validation
#[cfg(debug_assertions)]
pub fn frame_id(&self) -> FrameId {
self.frame_id
}
}
/// Batching uses index access to read information about tasks
impl std::ops::Index<RenderTaskId> for RenderTaskGraph {
type Output = RenderTask;
fn index(&self, id: RenderTaskId) -> &RenderTask {
&self.tasks[id.index as usize]
}
}
fn assign_free_pass(
id: RenderTaskId,
graph: &mut RenderTaskGraph,
) {
let task = &mut graph.tasks[id.index as usize];
let render_on = task.render_on;
let mut child_task_ids: SmallVec<[RenderTaskId; 8]> = SmallVec::new();
child_task_ids.extend_from_slice(&task.children);
for child_id in child_task_ids {
let child_location = graph.tasks[child_id.index as usize].location.clone();
// Each dynamic child task can free its backing surface after the last
// task that references it as an input. Using min here ensures the
// safe time to free this surface in the presence of multiple paths
// to this task from the root(s).
match child_location {
RenderTaskLocation::CacheRequest { .. } => {}
RenderTaskLocation::Static { .. } => {
// never get freed anyway, so can leave untouched
// (could validate that they remain at PassId::MIN)
}
RenderTaskLocation::Dynamic { .. } => {
panic!("bug: should not be allocated yet");
}
RenderTaskLocation::Unallocated { .. } => {
let child_task = &mut graph.tasks[child_id.index as usize];
if child_task.free_after != PassId::INVALID {
child_task.free_after = child_task.free_after.min(render_on);
}
}
RenderTaskLocation::Existing { parent_task_id, .. } => {
let parent_task = &mut graph.tasks[parent_task_id.index as usize];
parent_task.free_after = PassId::INVALID;
let child_task = &mut graph.tasks[child_id.index as usize];
if child_task.free_after != PassId::INVALID {
child_task.free_after = child_task.free_after.min(render_on);
}
}
}
}
}
/// A render pass represents a set of rendering operations that don't depend on one
/// another.
///
/// A render pass can have several render targets if there wasn't enough space in one
/// target to do all of the rendering for that pass. See `RenderTargetList`.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderPass {
/// The subpasses that describe targets being rendered to in this pass
pub alpha: RenderTargetList<AlphaRenderTarget>,
pub color: RenderTargetList<ColorRenderTarget>,
pub texture_cache: FastHashMap<CacheTextureId, TextureCacheRenderTarget>,
pub picture_cache: Vec<PictureCacheTarget>,
pub textures_to_invalidate: Vec<CacheTextureId>,
}
impl RenderPass {
/// Creates an intermediate off-screen pass.
pub fn new(src: &Pass) -> Self {
RenderPass {
color: RenderTargetList::new(),
alpha: RenderTargetList::new(),
texture_cache: FastHashMap::default(),
picture_cache: Vec::new(),
textures_to_invalidate: src.textures_to_invalidate.clone(),
}
}
}
// Dump an SVG visualization of the render graph for debugging purposes
#[cfg(feature = "capture")]
pub fn dump_render_tasks_as_svg(
render_tasks: &RenderTaskGraph,
output: &mut dyn std::io::Write,
) -> std::io::Result<()> {
use svg_fmt::*;
let node_width = 80.0;
let node_height = 30.0;
let vertical_spacing = 8.0;
let horizontal_spacing = 20.0;
let margin = 10.0;
let text_size = 10.0;
let mut pass_rects = Vec::new();
let mut nodes = vec![None; render_tasks.tasks.len()];
let mut x = margin;
let mut max_y: f32 = 0.0;
#[derive(Clone)]
struct Node {
rect: Rectangle,
label: Text,
size: Text,
}
for pass in render_tasks.passes.iter().rev() {
let mut layout = VerticalLayout::new(x, margin, node_width);
for task_id in &pass.task_ids {
let task_index = task_id.index as usize;
let task = &render_tasks.tasks[task_index];
let rect = layout.push_rectangle(node_height);
let tx = rect.x + rect.w / 2.0;
let ty = rect.y + 10.0;
let label = text(tx, ty, format!("{}", task.kind.as_str()));
let size = text(tx, ty + 12.0, format!("{:?}", task.location.size()));
nodes[task_index] = Some(Node { rect, label, size });
layout.advance(vertical_spacing);
}
pass_rects.push(layout.total_rectangle());
x += node_width + horizontal_spacing;
max_y = max_y.max(layout.y + margin);
}
let mut links = Vec::new();
for node_index in 0..nodes.len() {
if nodes[node_index].is_none() {
continue;
}
let task = &render_tasks.tasks[node_index];
for dep in &task.children {
let dep_index = dep.index as usize;
if let (&Some(ref node), &Some(ref dep_node)) = (&nodes[node_index], &nodes[dep_index]) {
links.push((
dep_node.rect.x + dep_node.rect.w,
dep_node.rect.y + dep_node.rect.h / 2.0,
node.rect.x,
node.rect.y + node.rect.h / 2.0,
));
}
}
}
let svg_w = x + margin;
let svg_h = max_y + margin;
writeln!(output, "{}", BeginSvg { w: svg_w, h: svg_h })?;
// Background.
writeln!(output,
" {}",
rectangle(0.0, 0.0, svg_w, svg_h)
.inflate(1.0, 1.0)
.fill(rgb(50, 50, 50))
)?;
// Passes.
for rect in pass_rects {
writeln!(output,
" {}",
rect.inflate(3.0, 3.0)
.border_radius(4.0)
.opacity(0.4)
.fill(black())
)?;
}
// Links.
for (x1, y1, x2, y2) in links {
dump_task_dependency_link(output, x1, y1, x2, y2);
}
// Tasks.
for node in &nodes {
if let Some(node) = node {
writeln!(output,
" {}",
node.rect
.clone()
.fill(black())
.border_radius(3.0)
.opacity(0.5)
.offset(0.0, 2.0)
)?;
writeln!(output,
" {}",
node.rect
.clone()
.fill(rgb(200, 200, 200))
.border_radius(3.0)
.opacity(0.8)
)?;
writeln!(output,
" {}",
node.label
.clone()
.size(text_size)
.align(Align::Center)
.color(rgb(50, 50, 50))
)?;
writeln!(output,
" {}",
node.size
.clone()
.size(text_size * 0.7)
.align(Align::Center)
.color(rgb(50, 50, 50))
)?;
}
}
writeln!(output, "{}", EndSvg)
}
#[allow(dead_code)]
fn dump_task_dependency_link(
output: &mut dyn std::io::Write,
x1: f32, y1: f32,
x2: f32, y2: f32,
) {
use svg_fmt::*;
// If the link is a straight horizontal line and spans over multiple passes, it
// is likely to go straight though unrelated nodes in a way that makes it look like
// they are connected, so we bend the line upward a bit to avoid that.
let simple_path = (y1 - y2).abs() > 1.0 || (x2 - x1) < 45.0;
let mid_x = (x1 + x2) / 2.0;
if simple_path {
write!(output, " {}",
path().move_to(x1, y1)
.cubic_bezier_to(mid_x, y1, mid_x, y2, x2, y2)
.fill(Fill::None)
.stroke(Stroke::Color(rgb(100, 100, 100), 3.0))
).unwrap();
} else {
let ctrl1_x = (mid_x + x1) / 2.0;
let ctrl2_x = (mid_x + x2) / 2.0;
let ctrl_y = y1 - 25.0;
write!(output, " {}",
path().move_to(x1, y1)
.cubic_bezier_to(ctrl1_x, y1, ctrl1_x, ctrl_y, mid_x, ctrl_y)
.cubic_bezier_to(ctrl2_x, ctrl_y, ctrl2_x, y2, x2, y2)
.fill(Fill::None)
.stroke(Stroke::Color(rgb(100, 100, 100), 3.0))
).unwrap();
}
}
/// Construct a picture cache render task location for testing
#[cfg(test)]
fn pc_target(
surface_id: u64,
tile_x: i32,
tile_y: i32,
) -> RenderTaskLocation {
use crate::{
composite::{NativeSurfaceId, NativeTileId},
picture::ResolvedSurfaceTexture,
};
let width = 512;
let height = 512;
RenderTaskLocation::Static {
surface: StaticRenderTaskSurface::PictureCache {
surface: ResolvedSurfaceTexture::Native {
id: NativeTileId {
surface_id: NativeSurfaceId(surface_id),
x: tile_x,
y: tile_y,
},
size: DeviceIntSize::new(width, height),
},
},
rect: DeviceIntSize::new(width, height).into(),
}
}
#[cfg(test)]
impl RenderTaskGraphBuilder {
fn test_expect(
mut self,
pass_count: usize,
total_surface_count: usize,
unique_surfaces: &[(i32, i32, ImageFormat)],
) {
use crate::internal_types::FrameStamp;
use api::{DocumentId, IdNamespace};
let mut rc = ResourceCache::new_for_testing();
let mut gc = GpuCache::new();
let mut frame_stamp = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
frame_stamp.advance();
gc.prepare_for_frames();
gc.begin_frame(frame_stamp);
let g = self.end_frame(&mut rc, &mut gc, &mut Vec::new(), 2048);
g.print();
assert_eq!(g.passes.len(), pass_count);
assert_eq!(g.surface_counts(), (total_surface_count, unique_surfaces.len()));
rc.validate_surfaces(unique_surfaces);
}
}
/// Construct a testing render task with given location
#[cfg(test)]
fn task_location(location: RenderTaskLocation) -> RenderTask {
RenderTask::new_test(
location,
RenderTargetKind::Color,
)
}
/// Construct a dynamic render task location for testing
#[cfg(test)]
fn task_dynamic(size: i32) -> RenderTask {
RenderTask::new_test(
RenderTaskLocation::Unallocated { size: DeviceIntSize::new(size, size) },
RenderTargetKind::Color,
)
}
#[test]
fn fg_test_1() {
// Test that a root target can be used as an input for readbacks
// This functionality isn't currently used, but will be in future.
let mut gb = RenderTaskGraphBuilder::new();
let root_target = pc_target(0, 0, 0);
let root = gb.add().init(task_location(root_target.clone()));
let readback = gb.add().init(task_dynamic(100));
gb.add_dependency(readback, root);
let mix_blend_content = gb.add().init(task_dynamic(50));
let content = gb.add().init(task_location(root_target));
gb.add_dependency(content, readback);
gb.add_dependency(content, mix_blend_content);
gb.test_expect(3, 1, &[
(2048, 2048, ImageFormat::RGBA8),
]);
}
#[test]
fn fg_test_3() {
// Test that small targets are allocated in a shared surface, and that large
// tasks are allocated in a rounded up texture size.
let mut gb = RenderTaskGraphBuilder::new();
let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));
let child_pic_0 = gb.add().init(task_dynamic(128));
let child_pic_1 = gb.add().init(task_dynamic(3000));
gb.add_dependency(pc_root, child_pic_0);
gb.add_dependency(pc_root, child_pic_1);
gb.test_expect(2, 2, &[
(2048, 2048, ImageFormat::RGBA8),
(3072, 3072, ImageFormat::RGBA8),
]);
}
#[test]
fn fg_test_4() {
// Test that for a simple dependency chain of tasks, that render
// target surfaces are aliased and reused between passes where possible.
let mut gb = RenderTaskGraphBuilder::new();
let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));
let child_pic_0 = gb.add().init(task_dynamic(128));
let child_pic_1 = gb.add().init(task_dynamic(128));
let child_pic_2 = gb.add().init(task_dynamic(128));
gb.add_dependency(pc_root, child_pic_0);
gb.add_dependency(child_pic_0, child_pic_1);
gb.add_dependency(child_pic_1, child_pic_2);
gb.test_expect(4, 3, &[
(2048, 2048, ImageFormat::RGBA8),
(2048, 2048, ImageFormat::RGBA8),
]);
}
#[test]
fn fg_test_5() {
// Test that a task that is used as an input by direct parent and also
// distance ancestor are scheduled correctly, and allocates the correct
// number of passes, taking advantage of surface reuse / aliasing where feasible.
let mut gb = RenderTaskGraphBuilder::new();
let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));
let child_pic_0 = gb.add().init(task_dynamic(128));
let child_pic_1 = gb.add().init(task_dynamic(64));
let child_pic_2 = gb.add().init(task_dynamic(32));
let child_pic_3 = gb.add().init(task_dynamic(16));
gb.add_dependency(pc_root, child_pic_0);
gb.add_dependency(child_pic_0, child_pic_1);
gb.add_dependency(child_pic_1, child_pic_2);
gb.add_dependency(child_pic_2, child_pic_3);
gb.add_dependency(pc_root, child_pic_3);
gb.test_expect(5, 4, &[
(2048, 2048, ImageFormat::RGBA8),
(2048, 2048, ImageFormat::RGBA8),
(2048, 2048, ImageFormat::RGBA8),
]);
}
#[test]
fn fg_test_6() {
// Test that a task that is used as an input dependency by two parent
// tasks is correctly allocated and freed.
let mut gb = RenderTaskGraphBuilder::new();
let pc_root_1 = gb.add().init(task_location(pc_target(0, 0, 0)));
let pc_root_2 = gb.add().init(task_location(pc_target(0, 1, 0)));
let child_pic = gb.add().init(task_dynamic(128));
gb.add_dependency(pc_root_1, child_pic);
gb.add_dependency(pc_root_2, child_pic);
gb.test_expect(2, 1, &[
(2048, 2048, ImageFormat::RGBA8),
]);
}
#[test]
fn fg_test_7() {
// Test that a standalone surface is not incorrectly used to
// allocate subsequent shared task rects.
let mut gb = RenderTaskGraphBuilder::new();
let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));
let child0 = gb.add().init(task_dynamic(16));
let child1 = gb.add().init(task_dynamic(16));
let child2 = gb.add().init(task_dynamic(16));
let child3 = gb.add().init(task_dynamic(16));
gb.add_dependency(pc_root, child0);
gb.add_dependency(child0, child1);
gb.add_dependency(pc_root, child1);
gb.add_dependency(pc_root, child2);
gb.add_dependency(child2, child3);
gb.test_expect(3, 3, &[
(2048, 2048, ImageFormat::RGBA8),
(2048, 2048, ImageFormat::RGBA8),
(2048, 2048, ImageFormat::RGBA8),
]);
}