1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! <https://drafts.csswg.org/css-flexbox/#box-model>

use serde::Serialize;
use style::properties::longhands::flex_direction::computed_value::T as FlexDirection;

use crate::geom::{LogicalRect, LogicalSides, LogicalVec2};

#[derive(Clone, Copy, Debug, Default)]
pub(super) struct FlexRelativeVec2<T> {
    pub main: T,
    pub cross: T,
}

#[derive(Clone, Copy, Debug)]
pub(super) struct FlexRelativeSides<T> {
    pub cross_start: T,
    pub main_start: T,
    pub cross_end: T,
    pub main_end: T,
}

pub(super) struct FlexRelativeRect<T> {
    pub start_corner: FlexRelativeVec2<T>,
    pub size: FlexRelativeVec2<T>,
}

impl<T> std::ops::Add for FlexRelativeVec2<T>
where
    T: std::ops::Add,
{
    type Output = FlexRelativeVec2<T::Output>;
    fn add(self, rhs: Self) -> Self::Output {
        FlexRelativeVec2 {
            main: self.main + rhs.main,
            cross: self.cross + rhs.cross,
        }
    }
}

impl<T> std::ops::Sub for FlexRelativeVec2<T>
where
    T: std::ops::Sub,
{
    type Output = FlexRelativeVec2<T::Output>;
    fn sub(self, rhs: Self) -> Self::Output {
        FlexRelativeVec2 {
            main: self.main - rhs.main,
            cross: self.cross - rhs.cross,
        }
    }
}

impl<T> FlexRelativeSides<T> {
    pub fn sum_by_axis(self) -> FlexRelativeVec2<T::Output>
    where
        T: std::ops::Add,
    {
        FlexRelativeVec2 {
            main: self.main_start + self.main_end,
            cross: self.cross_start + self.cross_end,
        }
    }
}

/// One of the two bits set by the `flex-direction` property
/// (The other is "forward" v.s. reverse.)
#[derive(Clone, Copy, Debug, PartialEq, Serialize)]
pub(super) enum FlexAxis {
    /// The main axis is the inline axis of the container (not necessarily of flex items!),
    /// cross is block.
    Row,
    /// The main axis is the block axis, cross is inline.
    Column,
}

/// Which flow-relative sides map to the main-start and cross-start sides, respectively.
/// See <https://drafts.csswg.org/css-flexbox/#box-model>
#[derive(Clone, Copy, Debug, Serialize)]
pub(super) enum MainStartCrossStart {
    InlineStartBlockStart,
    InlineStartBlockEnd,
    BlockStartInlineStart,
    BlockStartInlineEnd,
    InlineEndBlockStart,
    InlineEndBlockEnd,
    BlockEndInlineStart,
    BlockEndInlineEnd,
}

impl FlexAxis {
    pub fn from(flex_direction: FlexDirection) -> Self {
        match flex_direction {
            FlexDirection::Row | FlexDirection::RowReverse => FlexAxis::Row,
            FlexDirection::Column | FlexDirection::ColumnReverse => FlexAxis::Column,
        }
    }

    pub fn vec2_to_flex_relative<T>(self, flow_relative: LogicalVec2<T>) -> FlexRelativeVec2<T> {
        let LogicalVec2 { inline, block } = flow_relative;
        match self {
            FlexAxis::Row => FlexRelativeVec2 {
                main: inline,
                cross: block,
            },
            FlexAxis::Column => FlexRelativeVec2 {
                main: block,
                cross: inline,
            },
        }
    }

    pub fn vec2_to_flow_relative<T>(self, flex_relative: FlexRelativeVec2<T>) -> LogicalVec2<T> {
        let FlexRelativeVec2 { main, cross } = flex_relative;
        match self {
            FlexAxis::Row => LogicalVec2 {
                inline: main,
                block: cross,
            },
            FlexAxis::Column => LogicalVec2 {
                block: main,
                inline: cross,
            },
        }
    }
}

macro_rules! sides_mapping_methods {
    (
        $(
            $variant: path => {
                $( $flex_relative_side: ident <=> $flow_relative_side: ident, )+
            },
        )+
    ) => {
        pub fn sides_to_flex_relative<T>(self, flow_relative: LogicalSides<T>) -> FlexRelativeSides<T> {
            match self {
                $(
                    $variant => FlexRelativeSides {
                        $( $flex_relative_side: flow_relative.$flow_relative_side, )+
                    },
                )+
            }
        }

        pub fn sides_to_flow_relative<T>(self, flex_relative: FlexRelativeSides<T>) -> LogicalSides<T> {
            match self {
                $(
                    $variant => LogicalSides {
                        $( $flow_relative_side: flex_relative.$flex_relative_side, )+
                    },
                )+
            }
        }
    }
}

impl MainStartCrossStart {
    pub fn from(flex_direction: FlexDirection, flex_wrap_reverse: bool) -> Self {
        match (flex_direction, flex_wrap_reverse) {
            // See definition of each keyword in
            // https://drafts.csswg.org/css-flexbox/#flex-direction-property and
            // https://drafts.csswg.org/css-flexbox/#flex-wrap-property,
            // or the tables (though they map to physical rather than flow-relative) at
            // https://drafts.csswg.org/css-flexbox/#axis-mapping
            (FlexDirection::Row, true) => MainStartCrossStart::InlineStartBlockEnd,
            (FlexDirection::Row, false) => MainStartCrossStart::InlineStartBlockStart,
            (FlexDirection::Column, true) => MainStartCrossStart::BlockStartInlineEnd,
            (FlexDirection::Column, false) => MainStartCrossStart::BlockStartInlineStart,
            (FlexDirection::RowReverse, true) => MainStartCrossStart::InlineEndBlockEnd,
            (FlexDirection::RowReverse, false) => MainStartCrossStart::InlineEndBlockStart,
            (FlexDirection::ColumnReverse, true) => MainStartCrossStart::BlockEndInlineEnd,
            (FlexDirection::ColumnReverse, false) => MainStartCrossStart::BlockEndInlineStart,
        }
    }

    sides_mapping_methods! {
        MainStartCrossStart::InlineStartBlockStart => {
            main_start <=> inline_start,
            cross_start <=> block_start,
            main_end <=> inline_end,
            cross_end <=> block_end,
        },
        MainStartCrossStart::InlineStartBlockEnd => {
            main_start <=> inline_start,
            cross_start <=> block_end,
            main_end <=> inline_end,
            cross_end <=> block_start,
        },
        MainStartCrossStart::BlockStartInlineStart => {
            main_start <=> block_start,
            cross_start <=> inline_start,
            main_end <=> block_end,
            cross_end <=> inline_end,
        },
        MainStartCrossStart::BlockStartInlineEnd => {
            main_start <=> block_start,
            cross_start <=> inline_end,
            main_end <=> block_end,
            cross_end <=> inline_start,
        },
        MainStartCrossStart::InlineEndBlockStart => {
            main_start <=> inline_end,
            cross_start <=> block_start,
            main_end <=> inline_start,
            cross_end <=> block_end,
        },
        MainStartCrossStart::InlineEndBlockEnd => {
            main_start <=> inline_end,
            cross_start <=> block_end,
            main_end <=> inline_start,
            cross_end <=> block_start,
        },
        MainStartCrossStart::BlockEndInlineStart => {
            main_start <=> block_end,
            cross_start <=> inline_start,
            main_end <=> block_start,
            cross_end <=> inline_end,
        },
        MainStartCrossStart::BlockEndInlineEnd => {
            main_start <=> block_end,
            cross_start <=> inline_end,
            main_end <=> block_start,
            cross_end <=> inline_start,
        },
    }
}

/// The start corner coordinates in both the input rectangle and output rectangle
/// are relative to some “base rectangle” whose size is passed here.
pub(super) fn rect_to_flow_relative<T>(
    flex_axis: FlexAxis,
    main_start_cross_start_sides_are: MainStartCrossStart,
    base_rect_size: FlexRelativeVec2<T>,
    rect: FlexRelativeRect<T>,
) -> LogicalRect<T>
where
    T: Copy + std::ops::Add<Output = T> + std::ops::Sub<Output = T>,
{
    // First, convert from (start corner, size) to offsets from the edges of the base rectangle

    let end_corner_position = rect.start_corner + rect.size;
    let end_corner_offsets = base_rect_size - end_corner_position;
    // No-ops, but hopefully clarifies to human readers:
    let start_corner_position = rect.start_corner;
    let start_corner_offsets = start_corner_position;

    // Then, convert to flow-relative using methods above
    let flow_relative_offsets =
        main_start_cross_start_sides_are.sides_to_flow_relative(FlexRelativeSides {
            main_start: start_corner_offsets.main,
            cross_start: start_corner_offsets.cross,
            main_end: end_corner_offsets.main,
            cross_end: end_corner_offsets.cross,
        });
    let flow_relative_base_rect_size = flex_axis.vec2_to_flow_relative(base_rect_size);

    // Finally, convert back to (start corner, size)
    let start_corner = LogicalVec2 {
        inline: flow_relative_offsets.inline_start,
        block: flow_relative_offsets.block_start,
    };
    let end_corner_position = LogicalVec2 {
        inline: flow_relative_base_rect_size.inline - flow_relative_offsets.inline_end,
        block: flow_relative_base_rect_size.block - flow_relative_offsets.block_end,
    };
    let size = end_corner_position - start_corner;
    LogicalRect { start_corner, size }
}