1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#[cfg(any(feature = "std", feature = "alloc"))]
use alloc::{vec, vec::Vec};
use core::convert::TryFrom;
#[cfg(feature = "std")]
use std::io::Write;

use bytemuck::Pod;

use crate::consts::{QOI_HEADER_SIZE, QOI_OP_INDEX, QOI_OP_RUN, QOI_PADDING, QOI_PADDING_SIZE};
use crate::error::{Error, Result};
use crate::header::Header;
use crate::pixel::{Pixel, SupportedChannels};
use crate::types::{Channels, ColorSpace};
#[cfg(feature = "std")]
use crate::utils::GenericWriter;
use crate::utils::{unlikely, BytesMut, Writer};

#[allow(clippy::cast_possible_truncation, unused_assignments, unused_variables)]
fn encode_impl<W: Writer, const N: usize>(mut buf: W, data: &[u8]) -> Result<usize>
where
    Pixel<N>: SupportedChannels,
    [u8; N]: Pod,
{
    let cap = buf.capacity();

    let mut index = [Pixel::new(); 256];
    let mut px_prev = Pixel::new().with_a(0xff);
    let mut hash_prev = px_prev.hash_index();
    let mut run = 0_u8;
    let mut px = Pixel::<N>::new().with_a(0xff);
    let mut index_allowed = false;

    let n_pixels = data.len() / N;

    for (i, chunk) in data.chunks_exact(N).enumerate() {
        px.read(chunk);
        if px == px_prev {
            run += 1;
            if run == 62 || unlikely(i == n_pixels - 1) {
                buf = buf.write_one(QOI_OP_RUN | (run - 1))?;
                run = 0;
            }
        } else {
            if run != 0 {
                #[cfg(not(feature = "reference"))]
                {
                    // credits for the original idea: @zakarumych (had to be fixed though)
                    buf = buf.write_one(if run == 1 && index_allowed {
                        QOI_OP_INDEX | hash_prev
                    } else {
                        QOI_OP_RUN | (run - 1)
                    })?;
                }
                #[cfg(feature = "reference")]
                {
                    buf = buf.write_one(QOI_OP_RUN | (run - 1))?;
                }
                run = 0;
            }
            index_allowed = true;
            let px_rgba = px.as_rgba(0xff);
            hash_prev = px_rgba.hash_index();
            let index_px = &mut index[hash_prev as usize];
            if *index_px == px_rgba {
                buf = buf.write_one(QOI_OP_INDEX | hash_prev)?;
            } else {
                *index_px = px_rgba;
                buf = px.encode_into(px_prev, buf)?;
            }
            px_prev = px;
        }
    }

    buf = buf.write_many(&QOI_PADDING)?;
    Ok(cap.saturating_sub(buf.capacity()))
}

#[inline]
fn encode_impl_all<W: Writer>(out: W, data: &[u8], channels: Channels) -> Result<usize> {
    match channels {
        Channels::Rgb => encode_impl::<_, 3>(out, data),
        Channels::Rgba => encode_impl::<_, 4>(out, data),
    }
}

/// The maximum number of bytes the encoded image will take.
///
/// Can be used to pre-allocate the buffer to encode the image into.
#[inline]
pub fn encode_max_len(width: u32, height: u32, channels: impl Into<u8>) -> usize {
    let (width, height) = (width as usize, height as usize);
    let n_pixels = width.saturating_mul(height);
    QOI_HEADER_SIZE
        + n_pixels.saturating_mul(channels.into() as usize)
        + n_pixels
        + QOI_PADDING_SIZE
}

/// Encode the image into a pre-allocated buffer.
///
/// Returns the total number of bytes written.
#[inline]
pub fn encode_to_buf(
    buf: impl AsMut<[u8]>, data: impl AsRef<[u8]>, width: u32, height: u32,
) -> Result<usize> {
    Encoder::new(&data, width, height)?.encode_to_buf(buf)
}

/// Encode the image into a newly allocated vector.
#[cfg(any(feature = "alloc", feature = "std"))]
#[inline]
pub fn encode_to_vec(data: impl AsRef<[u8]>, width: u32, height: u32) -> Result<Vec<u8>> {
    Encoder::new(&data, width, height)?.encode_to_vec()
}

/// Encode QOI images into buffers or into streams.
pub struct Encoder<'a> {
    data: &'a [u8],
    header: Header,
}

impl<'a> Encoder<'a> {
    /// Creates a new encoder from a given array of pixel data and image dimensions.
    ///
    /// The number of channels will be inferred automatically (the valid values
    /// are 3 or 4). The color space will be set to sRGB by default.
    #[inline]
    #[allow(clippy::cast_possible_truncation)]
    pub fn new(data: &'a (impl AsRef<[u8]> + ?Sized), width: u32, height: u32) -> Result<Self> {
        let data = data.as_ref();
        let mut header =
            Header::try_new(width, height, Channels::default(), ColorSpace::default())?;
        let size = data.len();
        let n_channels = size / header.n_pixels();
        if header.n_pixels() * n_channels != size {
            return Err(Error::InvalidImageLength { size, width, height });
        }
        header.channels = Channels::try_from(n_channels.min(0xff) as u8)?;
        Ok(Self { data, header })
    }

    /// Returns a new encoder with modified color space.
    ///
    /// Note: the color space doesn't affect encoding or decoding in any way, it's
    /// a purely informative field that's stored in the image header.
    #[inline]
    pub const fn with_colorspace(mut self, colorspace: ColorSpace) -> Self {
        self.header = self.header.with_colorspace(colorspace);
        self
    }

    /// Returns the inferred number of channels.
    #[inline]
    pub const fn channels(&self) -> Channels {
        self.header.channels
    }

    /// Returns the header that will be stored in the encoded image.
    #[inline]
    pub const fn header(&self) -> &Header {
        &self.header
    }

    /// The maximum number of bytes the encoded image will take.
    ///
    /// Can be used to pre-allocate the buffer to encode the image into.
    #[inline]
    pub fn required_buf_len(&self) -> usize {
        self.header.encode_max_len()
    }

    /// Encodes the image to a pre-allocated buffer and returns the number of bytes written.
    ///
    /// The minimum size of the buffer can be found via [`Encoder::required_buf_len`].
    #[inline]
    pub fn encode_to_buf(&self, mut buf: impl AsMut<[u8]>) -> Result<usize> {
        let buf = buf.as_mut();
        let size_required = self.required_buf_len();
        if unlikely(buf.len() < size_required) {
            return Err(Error::OutputBufferTooSmall { size: buf.len(), required: size_required });
        }
        let (head, tail) = buf.split_at_mut(QOI_HEADER_SIZE); // can't panic
        head.copy_from_slice(&self.header.encode());
        let n_written = encode_impl_all(BytesMut::new(tail), self.data, self.header.channels)?;
        Ok(QOI_HEADER_SIZE + n_written)
    }

    /// Encodes the image into a newly allocated vector of bytes and returns it.
    #[cfg(any(feature = "alloc", feature = "std"))]
    #[inline]
    pub fn encode_to_vec(&self) -> Result<Vec<u8>> {
        let mut out = vec![0_u8; self.required_buf_len()];
        let size = self.encode_to_buf(&mut out)?;
        out.truncate(size);
        Ok(out)
    }

    /// Encodes the image directly to a generic writer that implements [`Write`](std::io::Write).
    ///
    /// Note: while it's possible to pass a `&mut [u8]` slice here since it implements `Write`,
    /// it would more effficient to use a specialized method instead: [`Encoder::encode_to_buf`].
    #[cfg(feature = "std")]
    #[inline]
    pub fn encode_to_stream<W: Write>(&self, writer: &mut W) -> Result<usize> {
        writer.write_all(&self.header.encode())?;
        let n_written =
            encode_impl_all(GenericWriter::new(writer), self.data, self.header.channels)?;
        Ok(n_written + QOI_HEADER_SIZE)
    }
}