1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use api::{BlobImageRequest, RasterizedBlobImage, ImageFormat, ImageDescriptorFlags};
use api::{DebugFlags, FontInstanceKey, FontKey, FontTemplate, GlyphIndex};
use api::{ExternalImageData, ExternalImageType, ExternalImageId, BlobImageResult};
use api::{DirtyRect, GlyphDimensions, IdNamespace, DEFAULT_TILE_SIZE};
use api::{ColorF, ImageData, ImageDescriptor, ImageKey, ImageRendering, TileSize};
use api::{BlobImageHandler, BlobImageKey, VoidPtrToSizeFn};
use api::units::*;
use euclid::size2;
use crate::{render_api::{ClearCache, AddFont, ResourceUpdate, MemoryReport}, util::WeakTable};
use crate::image_tiling::{compute_tile_size, compute_tile_range};
#[cfg(feature = "capture")]
use crate::capture::ExternalCaptureImage;
#[cfg(feature = "replay")]
use crate::capture::PlainExternalImage;
#[cfg(any(feature = "replay", feature = "png", feature="capture"))]
use crate::capture::CaptureConfig;
use crate::composite::{NativeSurfaceId, NativeSurfaceOperation, NativeTileId, NativeSurfaceOperationDetails};
use crate::device::TextureFilter;
use crate::glyph_cache::{GlyphCache, CachedGlyphInfo};
use crate::glyph_cache::GlyphCacheEntry;
use glyph_rasterizer::{GLYPH_FLASHING, FontInstance, GlyphFormat, GlyphKey, GlyphRasterizer, GlyphRasterJob};
use glyph_rasterizer::{SharedFontResources, BaseFontInstance};
use crate::gpu_cache::{GpuCache, GpuCacheAddress, GpuCacheHandle};
use crate::gpu_types::UvRectKind;
use crate::internal_types::{
    CacheTextureId, FastHashMap, FastHashSet, TextureSource, ResourceUpdateList,
    FrameId, FrameStamp,
};
use crate::profiler::{self, TransactionProfile, bytes_to_mb};
use crate::render_task_graph::{RenderTaskId, RenderTaskGraphBuilder};
use crate::render_task_cache::{RenderTaskCache, RenderTaskCacheKey, RenderTaskParent};
use crate::render_task_cache::{RenderTaskCacheEntry, RenderTaskCacheEntryHandle};
use crate::renderer::GpuBufferBuilderF;
use crate::surface::SurfaceBuilder;
use euclid::point2;
use smallvec::SmallVec;
use std::collections::hash_map::Entry::{self, Occupied, Vacant};
use std::collections::hash_map::{Iter, IterMut};
use std::collections::VecDeque;
use std::{cmp, mem};
use std::fmt::Debug;
use std::hash::Hash;
use std::os::raw::c_void;
#[cfg(any(feature = "capture", feature = "replay"))]
use std::path::PathBuf;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::u32;
use crate::texture_cache::{TextureCache, TextureCacheHandle, Eviction, TargetShader};
use crate::picture_textures::PictureTextures;
use peek_poke::PeekPoke;

// Counter for generating unique native surface ids
static NEXT_NATIVE_SURFACE_ID: AtomicUsize = AtomicUsize::new(0);

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GlyphFetchResult {
    pub index_in_text_run: i32,
    pub uv_rect_address: GpuCacheAddress,
    pub offset: DevicePoint,
    pub size: DeviceIntSize,
    pub scale: f32,
}

// These coordinates are always in texels.
// They are converted to normalized ST
// values in the vertex shader. The reason
// for this is that the texture may change
// dimensions (e.g. the pages in a texture
// atlas can grow). When this happens, by
// storing the coordinates as texel values
// we don't need to go through and update
// various CPU-side structures.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CacheItem {
    pub texture_id: TextureSource,
    pub uv_rect_handle: GpuCacheHandle,
    pub uv_rect: DeviceIntRect,
    pub user_data: [f32; 4],
}

impl CacheItem {
    pub fn invalid() -> Self {
        CacheItem {
            texture_id: TextureSource::Invalid,
            uv_rect_handle: GpuCacheHandle::new(),
            uv_rect: DeviceIntRect::zero(),
            user_data: [0.0; 4],
        }
    }

    pub fn is_valid(&self) -> bool {
        self.texture_id != TextureSource::Invalid
    }
}

/// Represents the backing store of an image in the cache.
/// This storage can take several forms.
#[derive(Clone, Debug)]
pub enum CachedImageData {
    /// A simple series of bytes, provided by the embedding and owned by WebRender.
    /// The format is stored out-of-band, currently in ImageDescriptor.
    Raw(Arc<Vec<u8>>),
    /// An series of commands that can be rasterized into an image via an
    /// embedding-provided callback.
    ///
    /// The commands are stored elsewhere and this variant is used as a placeholder.
    Blob,
    /// An image owned by the embedding, and referenced by WebRender. This may
    /// take the form of a texture or a heap-allocated buffer.
    External(ExternalImageData),
}

impl From<ImageData> for CachedImageData {
    fn from(img_data: ImageData) -> Self {
        match img_data {
            ImageData::Raw(data) => CachedImageData::Raw(data),
            ImageData::External(data) => CachedImageData::External(data),
        }
    }
}

impl CachedImageData {
    /// Returns true if this represents a blob.
    #[inline]
    pub fn is_blob(&self) -> bool {
        match *self {
            CachedImageData::Blob => true,
            _ => false,
        }
    }

    /// Returns true if this variant of CachedImageData should go through the texture
    /// cache.
    #[inline]
    pub fn uses_texture_cache(&self) -> bool {
        match *self {
            CachedImageData::External(ref ext_data) => match ext_data.image_type {
                ExternalImageType::TextureHandle(_) => false,
                ExternalImageType::Buffer => true,
            },
            CachedImageData::Blob => true,
            CachedImageData::Raw(_) => true,
        }
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ImageProperties {
    pub descriptor: ImageDescriptor,
    pub external_image: Option<ExternalImageData>,
    pub tiling: Option<TileSize>,
    // Potentially a subset of the image's total rectangle. This rectangle is what
    // we map to the (layout space) display item bounds.
    pub visible_rect: DeviceIntRect,
}

#[derive(Debug, Copy, Clone, PartialEq)]
enum State {
    Idle,
    AddResources,
    QueryResources,
}

/// Post scene building state.
type RasterizedBlob = FastHashMap<TileOffset, RasterizedBlobImage>;

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, PartialEq, PeekPoke, Default)]
pub struct ImageGeneration(pub u32);

impl ImageGeneration {
    pub const INVALID: ImageGeneration = ImageGeneration(u32::MAX);
}

struct ImageResource {
    data: CachedImageData,
    descriptor: ImageDescriptor,
    tiling: Option<TileSize>,
    /// This is used to express images that are virtually very large
    /// but with only a visible sub-set that is valid at a given time.
    visible_rect: DeviceIntRect,
    generation: ImageGeneration,
}

#[derive(Clone, Debug)]
pub struct ImageTiling {
    pub image_size: DeviceIntSize,
    pub tile_size: TileSize,
}

#[derive(Default)]
struct ImageTemplates {
    images: FastHashMap<ImageKey, ImageResource>,
}

impl ImageTemplates {
    fn insert(&mut self, key: ImageKey, resource: ImageResource) {
        self.images.insert(key, resource);
    }

    fn remove(&mut self, key: ImageKey) -> Option<ImageResource> {
        self.images.remove(&key)
    }

    fn get(&self, key: ImageKey) -> Option<&ImageResource> {
        self.images.get(&key)
    }

    fn get_mut(&mut self, key: ImageKey) -> Option<&mut ImageResource> {
        self.images.get_mut(&key)
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct CachedImageInfo {
    texture_cache_handle: TextureCacheHandle,
    dirty_rect: ImageDirtyRect,
    manual_eviction: bool,
}

impl CachedImageInfo {
    fn mark_unused(&mut self, texture_cache: &mut TextureCache) {
        texture_cache.evict_handle(&self.texture_cache_handle);
        self.manual_eviction = false;
    }
}

#[cfg(debug_assertions)]
impl Drop for CachedImageInfo {
    fn drop(&mut self) {
        debug_assert!(!self.manual_eviction, "Manual eviction requires cleanup");
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ResourceClassCache<K: Hash + Eq, V, U: Default> {
    resources: FastHashMap<K, V>,
    pub user_data: U,
}

impl<K, V, U> ResourceClassCache<K, V, U>
where
    K: Clone + Hash + Eq + Debug,
    U: Default,
{
    pub fn new() -> Self {
        ResourceClassCache {
            resources: FastHashMap::default(),
            user_data: Default::default(),
        }
    }

    pub fn get(&self, key: &K) -> &V {
        self.resources.get(key)
            .expect("Didn't find a cached resource with that ID!")
    }

    pub fn try_get(&self, key: &K) -> Option<&V> {
        self.resources.get(key)
    }

    pub fn insert(&mut self, key: K, value: V) {
        self.resources.insert(key, value);
    }

    pub fn remove(&mut self, key: &K) -> Option<V> {
        self.resources.remove(key)
    }

    pub fn get_mut(&mut self, key: &K) -> &mut V {
        self.resources.get_mut(key)
            .expect("Didn't find a cached resource with that ID!")
    }

    pub fn try_get_mut(&mut self, key: &K) -> Option<&mut V> {
        self.resources.get_mut(key)
    }

    pub fn entry(&mut self, key: K) -> Entry<K, V> {
        self.resources.entry(key)
    }

    pub fn iter(&self) -> Iter<K, V> {
        self.resources.iter()
    }

    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        self.resources.iter_mut()
    }

    pub fn is_empty(&mut self) -> bool {
        self.resources.is_empty()
    }

    pub fn clear(&mut self) {
        self.resources.clear();
    }

    pub fn retain<F>(&mut self, f: F)
    where
        F: FnMut(&K, &mut V) -> bool,
    {
        self.resources.retain(f);
    }
}

#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct CachedImageKey {
    pub rendering: ImageRendering,
    pub tile: Option<TileOffset>,
}

#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ImageRequest {
    pub key: ImageKey,
    pub rendering: ImageRendering,
    pub tile: Option<TileOffset>,
}

impl ImageRequest {
    pub fn with_tile(&self, offset: TileOffset) -> Self {
        ImageRequest {
            key: self.key,
            rendering: self.rendering,
            tile: Some(offset),
        }
    }

    pub fn is_untiled_auto(&self) -> bool {
        self.tile.is_none() && self.rendering == ImageRendering::Auto
    }
}

impl Into<BlobImageRequest> for ImageRequest {
    fn into(self) -> BlobImageRequest {
        BlobImageRequest {
            key: BlobImageKey(self.key),
            tile: self.tile.unwrap(),
        }
    }
}

impl Into<CachedImageKey> for ImageRequest {
    fn into(self) -> CachedImageKey {
        CachedImageKey {
            rendering: self.rendering,
            tile: self.tile,
        }
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Clone, Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ImageCacheError {
    OverLimitSize,
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
enum ImageResult {
    UntiledAuto(CachedImageInfo),
    Multi(ResourceClassCache<CachedImageKey, CachedImageInfo, ()>),
    Err(ImageCacheError),
}

impl ImageResult {
    /// Releases any texture cache entries held alive by this ImageResult.
    fn drop_from_cache(&mut self, texture_cache: &mut TextureCache) {
        match *self {
            ImageResult::UntiledAuto(ref mut entry) => {
                entry.mark_unused(texture_cache);
            },
            ImageResult::Multi(ref mut entries) => {
                for entry in entries.resources.values_mut() {
                    entry.mark_unused(texture_cache);
                }
            },
            ImageResult::Err(_) => {},
        }
    }
}

type ImageCache = ResourceClassCache<ImageKey, ImageResult, ()>;

struct Resources {
    fonts: SharedFontResources,
    image_templates: ImageTemplates,
    // We keep a set of Weak references to the fonts so that we're able to include them in memory
    // reports even if only the OS is holding on to the Vec<u8>. PtrWeakHashSet will periodically
    // drop any references that have gone dead.
    weak_fonts: WeakTable
}

// We only use this to report glyph dimensions to the user of the API, so using
// the font instance key should be enough. If we start using it to cache dimensions
// for internal font instances we should change the hash key accordingly.
pub type GlyphDimensionsCache = FastHashMap<(FontInstanceKey, GlyphIndex), Option<GlyphDimensions>>;

#[derive(Clone, Copy, Debug, PartialEq)]
pub struct BlobImageRasterizerEpoch(usize);

/// Internal information about allocated render targets in the pool
struct RenderTarget {
    size: DeviceIntSize,
    format: ImageFormat,
    texture_id: CacheTextureId,
    /// If true, this is currently leant out, and not available to other passes
    is_active: bool,
    last_frame_used: FrameId,
}

impl RenderTarget {
    fn size_in_bytes(&self) -> usize {
        let bpp = self.format.bytes_per_pixel() as usize;
        (self.size.width * self.size.height) as usize * bpp
    }

    /// Returns true if this texture was used within `threshold` frames of
    /// the current frame.
    pub fn used_recently(&self, current_frame_id: FrameId, threshold: u64) -> bool {
        self.last_frame_used + threshold >= current_frame_id
    }
}

/// High-level container for resources managed by the `RenderBackend`.
///
/// This includes a variety of things, including images, fonts, and glyphs,
/// which may be stored as memory buffers, GPU textures, or handles to resources
/// managed by the OS or other parts of WebRender.
pub struct ResourceCache {
    cached_glyphs: GlyphCache,
    cached_images: ImageCache,
    cached_render_tasks: RenderTaskCache,

    resources: Resources,
    state: State,
    current_frame_id: FrameId,

    #[cfg(feature = "capture")]
    /// Used for capture sequences. If the resource cache is updated, then we
    /// mark it as dirty. When the next frame is captured in the sequence, we
    /// dump the state of the resource cache.
    capture_dirty: bool,

    pub texture_cache: TextureCache,
    pub picture_textures: PictureTextures,

    /// TODO(gw): We should expire (parts of) this cache semi-regularly!
    cached_glyph_dimensions: GlyphDimensionsCache,
    glyph_rasterizer: GlyphRasterizer,

    /// The set of images that aren't present or valid in the texture cache,
    /// and need to be rasterized and/or uploaded this frame. This includes
    /// both blobs and regular images.
    pending_image_requests: FastHashSet<ImageRequest>,

    rasterized_blob_images: FastHashMap<BlobImageKey, RasterizedBlob>,

    /// A log of the last three frames worth of deleted image keys kept
    /// for debugging purposes.
    deleted_blob_keys: VecDeque<Vec<BlobImageKey>>,

    /// We keep one around to be able to call clear_namespace
    /// after the api object is deleted. For most purposes the
    /// api object's blob handler should be used instead.
    blob_image_handler: Option<Box<dyn BlobImageHandler>>,

    /// A list of queued compositor surface updates to apply next frame.
    pending_native_surface_updates: Vec<NativeSurfaceOperation>,

    image_templates_memory: usize,
    font_templates_memory: usize,

    /// A pool of render targets for use by the render task graph
    render_target_pool: Vec<RenderTarget>,
}

impl ResourceCache {
    pub fn new(
        texture_cache: TextureCache,
        picture_textures: PictureTextures,
        glyph_rasterizer: GlyphRasterizer,
        cached_glyphs: GlyphCache,
        fonts: SharedFontResources,
        blob_image_handler: Option<Box<dyn BlobImageHandler>>,
    ) -> Self {
        ResourceCache {
            cached_glyphs,
            cached_images: ResourceClassCache::new(),
            cached_render_tasks: RenderTaskCache::new(),
            resources: Resources {
                fonts,
                image_templates: ImageTemplates::default(),
                weak_fonts: WeakTable::new(),
            },
            cached_glyph_dimensions: FastHashMap::default(),
            texture_cache,
            picture_textures,
            state: State::Idle,
            current_frame_id: FrameId::INVALID,
            pending_image_requests: FastHashSet::default(),
            glyph_rasterizer,
            rasterized_blob_images: FastHashMap::default(),
            // We want to keep three frames worth of delete blob keys
            deleted_blob_keys: vec![Vec::new(), Vec::new(), Vec::new()].into(),
            blob_image_handler,
            pending_native_surface_updates: Vec::new(),
            #[cfg(feature = "capture")]
            capture_dirty: true,
            image_templates_memory: 0,
            font_templates_memory: 0,
            render_target_pool: Vec::new(),
        }
    }

    /// Construct a resource cache for use in unit tests.
    #[cfg(test)]
    pub fn new_for_testing() -> Self {
        use rayon::ThreadPoolBuilder;

        let texture_cache = TextureCache::new_for_testing(
            4096,
            ImageFormat::RGBA8,
        );
        let workers = Arc::new(ThreadPoolBuilder::new().build().unwrap());
        let glyph_rasterizer = GlyphRasterizer::new(workers, true);
        let cached_glyphs = GlyphCache::new();
        let fonts = SharedFontResources::new(IdNamespace(0));
        let picture_textures = PictureTextures::new(
            crate::picture::TILE_SIZE_DEFAULT,
            TextureFilter::Nearest,
        );

        ResourceCache::new(
            texture_cache,
            picture_textures,
            glyph_rasterizer,
            cached_glyphs,
            fonts,
            None,
        )
    }

    pub fn max_texture_size(&self) -> i32 {
        self.texture_cache.max_texture_size()
    }

    /// Maximum texture size before we consider it preferrable to break the texture
    /// into tiles.
    pub fn tiling_threshold(&self) -> i32 {
        self.texture_cache.tiling_threshold()
    }

    pub fn enable_multithreading(&mut self, enable: bool) {
        self.glyph_rasterizer.enable_multithreading(enable);
    }

    fn should_tile(limit: i32, descriptor: &ImageDescriptor, data: &CachedImageData) -> bool {
        let size_check = descriptor.size.width > limit || descriptor.size.height > limit;
        match *data {
            CachedImageData::Raw(_) | CachedImageData::Blob => size_check,
            CachedImageData::External(info) => {
                // External handles already represent existing textures so it does
                // not make sense to tile them into smaller ones.
                info.image_type == ExternalImageType::Buffer && size_check
            }
        }
    }

    // Request the texture cache item for a cacheable render
    // task. If the item is already cached, the texture cache
    // handle will be returned. Otherwise, the user supplied
    // closure will be invoked to generate the render task
    // chain that is required to draw this task.
    pub fn request_render_task<F>(
        &mut self,
        key: RenderTaskCacheKey,
        gpu_cache: &mut GpuCache,
        gpu_buffer_builder: &mut GpuBufferBuilderF,
        rg_builder: &mut RenderTaskGraphBuilder,
        user_data: Option<[f32; 4]>,
        is_opaque: bool,
        parent: RenderTaskParent,
        surface_builder: &mut SurfaceBuilder,
        f: F,
    ) -> RenderTaskId
    where
        F: FnOnce(&mut RenderTaskGraphBuilder, &mut GpuBufferBuilderF) -> RenderTaskId,
    {
        self.cached_render_tasks.request_render_task(
            key,
            &mut self.texture_cache,
            gpu_cache,
            gpu_buffer_builder,
            rg_builder,
            user_data,
            is_opaque,
            parent,
            surface_builder,
            |render_graph, gpu_buffer_builder| Ok(f(render_graph, gpu_buffer_builder))
        ).expect("Failed to request a render task from the resource cache!")
    }

    pub fn post_scene_building_update(
        &mut self,
        updates: Vec<ResourceUpdate>,
        profile: &mut TransactionProfile,
    ) {
        // TODO, there is potential for optimization here, by processing updates in
        // bulk rather than one by one (for example by sorting allocations by size or
        // in a way that reduces fragmentation in the atlas).
        #[cfg(feature = "capture")]
        match updates.is_empty() {
            false => self.capture_dirty = true,
            _ => {},
        }

        for update in updates {
            match update {
                ResourceUpdate::AddImage(img) => {
                    if let ImageData::Raw(ref bytes) = img.data {
                        self.image_templates_memory += bytes.len();
                        profile.set(profiler::IMAGE_TEMPLATES_MEM, bytes_to_mb(self.image_templates_memory));
                    }
                    self.add_image_template(
                        img.key,
                        img.descriptor,
                        img.data.into(),
                        &img.descriptor.size.into(),
                        img.tiling,
                    );
                    profile.set(profiler::IMAGE_TEMPLATES, self.resources.image_templates.images.len());
                }
                ResourceUpdate::UpdateImage(img) => {
                    self.update_image_template(img.key, img.descriptor, img.data.into(), &img.dirty_rect);
                }
                ResourceUpdate::AddBlobImage(img) => {
                    self.add_image_template(
                        img.key.as_image(),
                        img.descriptor,
                        CachedImageData::Blob,
                        &img.visible_rect,
                        Some(img.tile_size),
                    );
                }
                ResourceUpdate::UpdateBlobImage(img) => {
                    self.update_image_template(
                        img.key.as_image(),
                        img.descriptor,
                        CachedImageData::Blob,
                        &to_image_dirty_rect(
                            &img.dirty_rect
                        ),
                    );
                    self.discard_tiles_outside_visible_area(img.key, &img.visible_rect); // TODO: remove?
                    self.set_image_visible_rect(img.key.as_image(), &img.visible_rect);
                }
                ResourceUpdate::DeleteImage(img) => {
                    self.delete_image_template(img);
                    profile.set(profiler::IMAGE_TEMPLATES, self.resources.image_templates.images.len());
                    profile.set(profiler::IMAGE_TEMPLATES_MEM, bytes_to_mb(self.image_templates_memory));
                }
                ResourceUpdate::DeleteBlobImage(img) => {
                    self.delete_image_template(img.as_image());
                }
                ResourceUpdate::DeleteFont(font) => {
                    if let Some(shared_key) = self.resources.fonts.font_keys.delete_key(&font) {
                        self.delete_font_template(shared_key);
                        if let Some(ref mut handler) = &mut self.blob_image_handler {
                            handler.delete_font(shared_key);
                        }
                        profile.set(profiler::FONT_TEMPLATES, self.resources.fonts.templates.len());
                        profile.set(profiler::FONT_TEMPLATES_MEM, bytes_to_mb(self.font_templates_memory));
                    }
                }
                ResourceUpdate::DeleteFontInstance(font) => {
                    if let Some(shared_key) = self.resources.fonts.instance_keys.delete_key(&font) {
                        self.delete_font_instance(shared_key);
                    }
                    if let Some(ref mut handler) = &mut self.blob_image_handler {
                        handler.delete_font_instance(font);
                    }
                }
                ResourceUpdate::SetBlobImageVisibleArea(key, area) => {
                    self.discard_tiles_outside_visible_area(key, &area);
                    self.set_image_visible_rect(key.as_image(), &area);
                }
                ResourceUpdate::AddFont(font) => {
                    // The shared key was already added in ApiResources, but the first time it is
                    // seen on the backend we still need to do some extra initialization here.
                    let (key, template) = match font {
                        AddFont::Raw(key, bytes, index) => {
                            (key, FontTemplate::Raw(bytes, index))
                        }
                        AddFont::Native(key, native_font_handle) => {
                            (key, FontTemplate::Native(native_font_handle))
                        }
                    };
                    let shared_key = self.resources.fonts.font_keys.map_key(&key);
                    if !self.glyph_rasterizer.has_font(shared_key) {
                        self.add_font_template(shared_key, template);
                        profile.set(profiler::FONT_TEMPLATES, self.resources.fonts.templates.len());
                        profile.set(profiler::FONT_TEMPLATES_MEM, bytes_to_mb(self.font_templates_memory));
                    }
                }
                ResourceUpdate::AddFontInstance(..) => {
                    // Already added in ApiResources.
                }
            }
        }
    }

    pub fn add_rasterized_blob_images(
        &mut self,
        images: Vec<(BlobImageRequest, BlobImageResult)>,
        profile: &mut TransactionProfile,
    ) {
        for (request, result) in images {
            let data = match result {
                Ok(data) => data,
                Err(..) => {
                    warn!("Failed to rasterize a blob image");
                    continue;
                }
            };

            profile.add(profiler::RASTERIZED_BLOBS_PX, data.rasterized_rect.area());

            // First make sure we have an entry for this key (using a placeholder
            // if need be).
            let tiles = self.rasterized_blob_images.entry(request.key).or_insert_with(
                || { RasterizedBlob::default() }
            );

            tiles.insert(request.tile, data);

            match self.cached_images.try_get_mut(&request.key.as_image()) {
                Some(&mut ImageResult::Multi(ref mut entries)) => {
                    let cached_key = CachedImageKey {
                        rendering: ImageRendering::Auto, // TODO(nical)
                        tile: Some(request.tile),
                    };
                    if let Some(entry) = entries.try_get_mut(&cached_key) {
                        entry.dirty_rect = DirtyRect::All;
                    }
                }
                _ => {}
            }
        }
    }

    pub fn add_font_template(&mut self, font_key: FontKey, template: FontTemplate) {
        // Push the new font to the font renderer, and also store
        // it locally for glyph metric requests.
        if let FontTemplate::Raw(ref data, _) = template {
            self.resources.weak_fonts.insert(Arc::downgrade(data));
            self.font_templates_memory += data.len();
        }
        self.glyph_rasterizer.add_font(font_key, template.clone());
        self.resources.fonts.templates.add_font(font_key, template);
    }

    pub fn delete_font_template(&mut self, font_key: FontKey) {
        self.glyph_rasterizer.delete_font(font_key);
        if let Some(FontTemplate::Raw(data, _)) = self.resources.fonts.templates.delete_font(&font_key) {
            self.font_templates_memory -= data.len();
        }
        self.cached_glyphs.delete_fonts(&[font_key]);
    }

    pub fn delete_font_instance(&mut self, instance_key: FontInstanceKey) {
        self.resources.fonts.instances.delete_font_instance(instance_key);
    }

    pub fn get_font_instance(&self, instance_key: FontInstanceKey) -> Option<Arc<BaseFontInstance>> {
        self.resources.fonts.instances.get_font_instance(instance_key)
    }

    pub fn get_fonts(&self) -> SharedFontResources {
        self.resources.fonts.clone()
    }

    pub fn add_image_template(
        &mut self,
        image_key: ImageKey,
        descriptor: ImageDescriptor,
        data: CachedImageData,
        visible_rect: &DeviceIntRect,
        mut tiling: Option<TileSize>,
    ) {
        if let Some(ref mut tile_size) = tiling {
            // Sanitize the value since it can be set by a pref.
            *tile_size = (*tile_size).max(16).min(2048);
        }

        if tiling.is_none() && Self::should_tile(self.tiling_threshold(), &descriptor, &data) {
            // We aren't going to be able to upload a texture this big, so tile it, even
            // if tiling was not requested.
            tiling = Some(DEFAULT_TILE_SIZE);
        }

        let resource = ImageResource {
            descriptor,
            data,
            tiling,
            visible_rect: *visible_rect,
            generation: ImageGeneration(0),
        };

        self.resources.image_templates.insert(image_key, resource);
    }

    pub fn update_image_template(
        &mut self,
        image_key: ImageKey,
        descriptor: ImageDescriptor,
        data: CachedImageData,
        dirty_rect: &ImageDirtyRect,
    ) {
        let tiling_threshold = self.tiling_threshold();
        let image = match self.resources.image_templates.get_mut(image_key) {
            Some(res) => res,
            None => panic!("Attempt to update non-existent image"),
        };

        let mut tiling = image.tiling;
        if tiling.is_none() && Self::should_tile(tiling_threshold, &descriptor, &data) {
            tiling = Some(DEFAULT_TILE_SIZE);
        }

        // Each cache entry stores its own copy of the image's dirty rect. This allows them to be
        // updated independently.
        match self.cached_images.try_get_mut(&image_key) {
            Some(&mut ImageResult::UntiledAuto(ref mut entry)) => {
                entry.dirty_rect = entry.dirty_rect.union(dirty_rect);
            }
            Some(&mut ImageResult::Multi(ref mut entries)) => {
                for (key, entry) in entries.iter_mut() {
                    // We want the dirty rect relative to the tile and not the whole image.
                    let local_dirty_rect = match (tiling, key.tile) {
                        (Some(tile_size), Some(tile)) => {
                            dirty_rect.map(|mut rect|{
                                let tile_offset = DeviceIntPoint::new(
                                    tile.x as i32,
                                    tile.y as i32,
                                ) * tile_size as i32;
                                rect = rect.translate(-tile_offset.to_vector());

                                let tile_rect = compute_tile_size(
                                    &descriptor.size.into(),
                                    tile_size,
                                    tile,
                                ).into();

                                rect.intersection(&tile_rect).unwrap_or_else(DeviceIntRect::zero)
                            })
                        }
                        (None, Some(..)) => DirtyRect::All,
                        _ => *dirty_rect,
                    };
                    entry.dirty_rect = entry.dirty_rect.union(&local_dirty_rect);
                }
            }
            _ => {}
        }

        if image.descriptor.format != descriptor.format {
            // could be a stronger warning/error?
            trace!("Format change {:?} -> {:?}", image.descriptor.format, descriptor.format);
        }
        *image = ImageResource {
            descriptor,
            data,
            tiling,
            visible_rect: descriptor.size.into(),
            generation: ImageGeneration(image.generation.0 + 1),
        };
    }

    pub fn delete_image_template(&mut self, image_key: ImageKey) {
        // Remove the template.
        let value = self.resources.image_templates.remove(image_key);

        // Release the corresponding texture cache entry, if any.
        if let Some(mut cached) = self.cached_images.remove(&image_key) {
            cached.drop_from_cache(&mut self.texture_cache);
        }

        match value {
            Some(image) => if image.data.is_blob() {
                if let CachedImageData::Raw(data) = image.data {
                    self.image_templates_memory -= data.len();
                }

                let blob_key = BlobImageKey(image_key);
                self.deleted_blob_keys.back_mut().unwrap().push(blob_key);
                self.rasterized_blob_images.remove(&blob_key);
            },
            None => {
                warn!("Delete the non-exist key");
                debug!("key={:?}", image_key);
            }
        }
    }

    /// Return the current generation of an image template
    pub fn get_image_generation(&self, key: ImageKey) -> ImageGeneration {
        self.resources
            .image_templates
            .get(key)
            .map_or(ImageGeneration::INVALID, |template| template.generation)
    }

    /// Requests an image to ensure that it will be in the texture cache this frame.
    ///
    /// returns the size in device pixel of the image or tile.
    pub fn request_image(
        &mut self,
        request: ImageRequest,
        gpu_cache: &mut GpuCache,
    ) -> DeviceIntSize {
        debug_assert_eq!(self.state, State::AddResources);

        let template = match self.resources.image_templates.get(request.key) {
            Some(template) => template,
            None => {
                warn!("ERROR: Trying to render deleted / non-existent key");
                debug!("key={:?}", request.key);
                return DeviceIntSize::zero();
            }
        };

        let size = match request.tile {
            Some(tile) => compute_tile_size(&template.visible_rect, template.tiling.unwrap(), tile),
            None => template.descriptor.size,
        };

        // Images that don't use the texture cache can early out.
        if !template.data.uses_texture_cache() {
            return size;
        }

        let side_size =
            template.tiling.map_or(cmp::max(template.descriptor.size.width, template.descriptor.size.height),
                                   |tile_size| tile_size as i32);
        if side_size > self.texture_cache.max_texture_size() {
            // The image or tiling size is too big for hardware texture size.
            warn!("Dropping image, image:(w:{},h:{}, tile:{}) is too big for hardware!",
                  template.descriptor.size.width, template.descriptor.size.height, template.tiling.unwrap_or(0));
            self.cached_images.insert(request.key, ImageResult::Err(ImageCacheError::OverLimitSize));
            return DeviceIntSize::zero();
        }

        let storage = match self.cached_images.entry(request.key) {
            Occupied(e) => {
                // We might have an existing untiled entry, and need to insert
                // a second entry. In such cases we need to move the old entry
                // out first, replacing it with a dummy entry, and then creating
                // the tiled/multi-entry variant.
                let entry = e.into_mut();
                if !request.is_untiled_auto() {
                    let untiled_entry = match entry {
                        &mut ImageResult::UntiledAuto(ref mut entry) => {
                            Some(mem::replace(entry, CachedImageInfo {
                                texture_cache_handle: TextureCacheHandle::invalid(),
                                dirty_rect: DirtyRect::All,
                                manual_eviction: false,
                            }))
                        }
                        _ => None
                    };

                    if let Some(untiled_entry) = untiled_entry {
                        let mut entries = ResourceClassCache::new();
                        let untiled_key = CachedImageKey {
                            rendering: ImageRendering::Auto,
                            tile: None,
                        };
                        entries.insert(untiled_key, untiled_entry);
                        *entry = ImageResult::Multi(entries);
                    }
                }
                entry
            }
            Vacant(entry) => {
                entry.insert(if request.is_untiled_auto() {
                    ImageResult::UntiledAuto(CachedImageInfo {
                        texture_cache_handle: TextureCacheHandle::invalid(),
                        dirty_rect: DirtyRect::All,
                        manual_eviction: false,
                    })
                } else {
                    ImageResult::Multi(ResourceClassCache::new())
                })
            }
        };

        // If this image exists in the texture cache, *and* the dirty rect
        // in the cache is empty, then it is valid to use as-is.
        let entry = match *storage {
            ImageResult::UntiledAuto(ref mut entry) => entry,
            ImageResult::Multi(ref mut entries) => {
                entries.entry(request.into())
                    .or_insert(CachedImageInfo {
                        texture_cache_handle: TextureCacheHandle::invalid(),
                        dirty_rect: DirtyRect::All,
                        manual_eviction: false,
                    })
            },
            ImageResult::Err(_) => panic!("Errors should already have been handled"),
        };

        let needs_upload = self.texture_cache.request(&entry.texture_cache_handle, gpu_cache);

        if !needs_upload && entry.dirty_rect.is_empty() {
            return size;
        }

        if !self.pending_image_requests.insert(request) {
            return size;
        }

        if template.data.is_blob() {
            let request: BlobImageRequest = request.into();
            let missing = match self.rasterized_blob_images.get(&request.key) {
                Some(tiles) => !tiles.contains_key(&request.tile),
                _ => true,
            };

            assert!(!missing);
        }

        size
    }

    fn discard_tiles_outside_visible_area(
        &mut self,
        key: BlobImageKey,
        area: &DeviceIntRect
    ) {
        let tile_size = match self.resources.image_templates.get(key.as_image()) {
            Some(template) => template.tiling.unwrap(),
            None => {
                //debug!("Missing image template (key={:?})!", key);
                return;
            }
        };

        let tiles = match self.rasterized_blob_images.get_mut(&key) {
            Some(tiles) => tiles,
            _ => { return; }
        };

        let tile_range = compute_tile_range(
            &area,
            tile_size,
        );

        tiles.retain(|tile, _| { tile_range.contains(*tile) });

        let texture_cache = &mut self.texture_cache;
        match self.cached_images.try_get_mut(&key.as_image()) {
            Some(&mut ImageResult::Multi(ref mut entries)) => {
                entries.retain(|key, entry| {
                    if key.tile.is_none() || tile_range.contains(key.tile.unwrap()) {
                        return true;
                    }
                    entry.mark_unused(texture_cache);
                    return false;
                });
            }
            _ => {}
        }
    }

    fn set_image_visible_rect(&mut self, key: ImageKey, rect: &DeviceIntRect) {
        if let Some(image) = self.resources.image_templates.get_mut(key) {
            image.visible_rect = *rect;
            image.descriptor.size = rect.size();
        }
    }

    pub fn request_glyphs(
        &mut self,
        mut font: FontInstance,
        glyph_keys: &[GlyphKey],
        gpu_cache: &mut GpuCache,
    ) {
        debug_assert_eq!(self.state, State::AddResources);

        self.glyph_rasterizer.prepare_font(&mut font);
        let glyph_key_cache = self.cached_glyphs.insert_glyph_key_cache_for_font(&font);
        let texture_cache = &mut self.texture_cache;
        self.glyph_rasterizer.request_glyphs(
            font,
            glyph_keys,
            |key| {
                if let Some(entry) = glyph_key_cache.try_get(key) {
                    match entry {
                        GlyphCacheEntry::Cached(ref glyph) => {
                            // Skip the glyph if it is already has a valid texture cache handle.
                            if !texture_cache.request(&glyph.texture_cache_handle, gpu_cache) {
                                return false;
                            }
                            // This case gets hit when we already rasterized the glyph, but the
                            // glyph has been evicted from the texture cache. Just force it to
                            // pending so it gets rematerialized.
                        }
                        // Otherwise, skip the entry if it is blank or pending.
                        GlyphCacheEntry::Blank | GlyphCacheEntry::Pending => return false,
                    }
                };

                glyph_key_cache.add_glyph(*key, GlyphCacheEntry::Pending);

                true
            }
        );
    }

    pub fn pending_updates(&mut self) -> ResourceUpdateList {
        ResourceUpdateList {
            texture_updates: self.texture_cache.pending_updates(),
            native_surface_updates: mem::replace(&mut self.pending_native_surface_updates, Vec::new()),
        }
    }

    pub fn fetch_glyphs<F>(
        &self,
        mut font: FontInstance,
        glyph_keys: &[GlyphKey],
        fetch_buffer: &mut Vec<GlyphFetchResult>,
        gpu_cache: &mut GpuCache,
        mut f: F,
    ) where
        F: FnMut(TextureSource, GlyphFormat, &[GlyphFetchResult]),
    {
        debug_assert_eq!(self.state, State::QueryResources);

        self.glyph_rasterizer.prepare_font(&mut font);
        let glyph_key_cache = self.cached_glyphs.get_glyph_key_cache_for_font(&font);

        let mut current_texture_id = TextureSource::Invalid;
        let mut current_glyph_format = GlyphFormat::Subpixel;
        debug_assert!(fetch_buffer.is_empty());

        for (loop_index, key) in glyph_keys.iter().enumerate() {
            let (cache_item, glyph_format) = match *glyph_key_cache.get(key) {
                GlyphCacheEntry::Cached(ref glyph) => {
                    (self.texture_cache.get(&glyph.texture_cache_handle), glyph.format)
                }
                GlyphCacheEntry::Blank | GlyphCacheEntry::Pending => continue,
            };
            if current_texture_id != cache_item.texture_id ||
                current_glyph_format != glyph_format {
                if !fetch_buffer.is_empty() {
                    f(current_texture_id, current_glyph_format, fetch_buffer);
                    fetch_buffer.clear();
                }
                current_texture_id = cache_item.texture_id;
                current_glyph_format = glyph_format;
            }
            fetch_buffer.push(GlyphFetchResult {
                index_in_text_run: loop_index as i32,
                uv_rect_address: gpu_cache.get_address(&cache_item.uv_rect_handle),
                offset: DevicePoint::new(cache_item.user_data[0], cache_item.user_data[1]),
                size: cache_item.uv_rect.size(),
                scale: cache_item.user_data[2],
            });
        }

        if !fetch_buffer.is_empty() {
            f(current_texture_id, current_glyph_format, fetch_buffer);
            fetch_buffer.clear();
        }
    }

    pub fn map_font_key(&self, key: FontKey) -> FontKey {
        self.resources.fonts.font_keys.map_key(&key)
    }

    pub fn map_font_instance_key(&self, key: FontInstanceKey) -> FontInstanceKey {
        self.resources.fonts.instance_keys.map_key(&key)
    }

    pub fn get_glyph_dimensions(
        &mut self,
        font: &FontInstance,
        glyph_index: GlyphIndex,
    ) -> Option<GlyphDimensions> {
        match self.cached_glyph_dimensions.entry((font.instance_key, glyph_index)) {
            Occupied(entry) => *entry.get(),
            Vacant(entry) => *entry.insert(
                self.glyph_rasterizer
                    .get_glyph_dimensions(font, glyph_index),
            ),
        }
    }

    pub fn get_glyph_index(&mut self, font_key: FontKey, ch: char) -> Option<u32> {
        self.glyph_rasterizer.get_glyph_index(font_key, ch)
    }

    #[inline]
    pub fn get_cached_image(&self, request: ImageRequest) -> Result<CacheItem, ()> {
        debug_assert_eq!(self.state, State::QueryResources);
        let image_info = self.get_image_info(request)?;
        Ok(self.get_texture_cache_item(&image_info.texture_cache_handle))
    }

    pub fn get_cached_render_task(
        &self,
        handle: &RenderTaskCacheEntryHandle,
    ) -> &RenderTaskCacheEntry {
        self.cached_render_tasks.get_cache_entry(handle)
    }

    #[inline]
    fn get_image_info(&self, request: ImageRequest) -> Result<&CachedImageInfo, ()> {
        // TODO(Jerry): add a debug option to visualize the corresponding area for
        // the Err() case of CacheItem.
        match *self.cached_images.get(&request.key) {
            ImageResult::UntiledAuto(ref image_info) => Ok(image_info),
            ImageResult::Multi(ref entries) => Ok(entries.get(&request.into())),
            ImageResult::Err(_) => Err(()),
        }
    }

    #[inline]
    pub fn get_texture_cache_item(&self, handle: &TextureCacheHandle) -> CacheItem {
        self.texture_cache.get(handle)
    }

    pub fn get_image_properties(&self, image_key: ImageKey) -> Option<ImageProperties> {
        let image_template = &self.resources.image_templates.get(image_key);

        image_template.map(|image_template| {
            let external_image = match image_template.data {
                CachedImageData::External(ext_image) => match ext_image.image_type {
                    ExternalImageType::TextureHandle(_) => Some(ext_image),
                    // external buffer uses resource_cache.
                    ExternalImageType::Buffer => None,
                },
                // raw and blob image are all using resource_cache.
                CachedImageData::Raw(..) | CachedImageData::Blob => None,
            };

            ImageProperties {
                descriptor: image_template.descriptor,
                external_image,
                tiling: image_template.tiling,
                visible_rect: image_template.visible_rect,
            }
        })
    }

    pub fn begin_frame(&mut self, stamp: FrameStamp, gpu_cache: &mut GpuCache, profile: &mut TransactionProfile) {
        profile_scope!("begin_frame");
        debug_assert_eq!(self.state, State::Idle);
        self.state = State::AddResources;
        self.texture_cache.begin_frame(stamp, profile);
        self.picture_textures.begin_frame(stamp, &mut self.texture_cache.pending_updates);

        self.cached_glyphs.begin_frame(
            stamp,
            &mut self.texture_cache,
            &mut self.glyph_rasterizer,
        );
        self.cached_render_tasks.begin_frame(&mut self.texture_cache);
        self.current_frame_id = stamp.frame_id();

        // pop the old frame and push a new one
        self.deleted_blob_keys.pop_front();
        self.deleted_blob_keys.push_back(Vec::new());

        self.texture_cache.run_compaction(gpu_cache);
    }

    pub fn block_until_all_resources_added(
        &mut self,
        gpu_cache: &mut GpuCache,
        profile: &mut TransactionProfile,
    ) {
        profile_scope!("block_until_all_resources_added");

        debug_assert_eq!(self.state, State::AddResources);
        self.state = State::QueryResources;

        let cached_glyphs = &mut self.cached_glyphs;
        let texture_cache = &mut self.texture_cache;

        self.glyph_rasterizer.resolve_glyphs(
            |job, can_use_r8_format| {
                let GlyphRasterJob { font, key, result } = job;
                let glyph_key_cache = cached_glyphs.get_glyph_key_cache_for_font_mut(&*font);
                let glyph_info = match result {
                    Err(_) => GlyphCacheEntry::Blank,
                    Ok(ref glyph) if glyph.width == 0 || glyph.height == 0 => {
                        GlyphCacheEntry::Blank
                    }
                    Ok(glyph) => {
                        let mut texture_cache_handle = TextureCacheHandle::invalid();
                        texture_cache.request(&texture_cache_handle, gpu_cache);
                        texture_cache.update(
                            &mut texture_cache_handle,
                            ImageDescriptor {
                                size: size2(glyph.width, glyph.height),
                                stride: None,
                                format: glyph.format.image_format(can_use_r8_format),
                                flags: ImageDescriptorFlags::empty(),
                                offset: 0,
                            },
                            TextureFilter::Linear,
                            Some(CachedImageData::Raw(Arc::new(glyph.bytes))),
                            [glyph.left, -glyph.top, glyph.scale, 0.0],
                            DirtyRect::All,
                            gpu_cache,
                            Some(glyph_key_cache.eviction_notice()),
                            UvRectKind::Rect,
                            Eviction::Auto,
                            TargetShader::Text,
                        );
                        GlyphCacheEntry::Cached(CachedGlyphInfo {
                            texture_cache_handle,
                            format: glyph.format,
                        })
                    }
                };
                glyph_key_cache.insert(key, glyph_info);
            },
            profile,
        );

        // Apply any updates of new / updated images (incl. blobs) to the texture cache.
        self.update_texture_cache(gpu_cache);
    }

    fn update_texture_cache(&mut self, gpu_cache: &mut GpuCache) {
        profile_scope!("update_texture_cache");
        for request in self.pending_image_requests.drain() {
            let image_template = self.resources.image_templates.get_mut(request.key).unwrap();
            debug_assert!(image_template.data.uses_texture_cache());

            let mut updates: SmallVec<[(CachedImageData, Option<DeviceIntRect>); 1]> = SmallVec::new();

            match image_template.data {
                CachedImageData::Raw(..) | CachedImageData::External(..) => {
                    // Safe to clone here since the Raw image data is an
                    // Arc, and the external image data is small.
                    updates.push((image_template.data.clone(), None));
                }
                CachedImageData::Blob => {
                    let blob_image = self.rasterized_blob_images.get_mut(&BlobImageKey(request.key)).unwrap();
                    let img = &blob_image[&request.tile.unwrap()];
                    updates.push((
                        CachedImageData::Raw(Arc::clone(&img.data)),
                        Some(img.rasterized_rect)
                    ));
                }
            };

            for (image_data, blob_rasterized_rect) in updates {
                let entry = match *self.cached_images.get_mut(&request.key) {
                    ImageResult::UntiledAuto(ref mut entry) => entry,
                    ImageResult::Multi(ref mut entries) => entries.get_mut(&request.into()),
                    ImageResult::Err(_) => panic!("Update requested for invalid entry")
                };

                let mut descriptor = image_template.descriptor.clone();
                let mut dirty_rect = entry.dirty_rect.replace_with_empty();

                if let Some(tile) = request.tile {
                    let tile_size = image_template.tiling.unwrap();
                    let clipped_tile_size = compute_tile_size(&image_template.visible_rect, tile_size, tile);
                    // The tiled image could be stored on the CPU as one large image or be
                    // already broken up into tiles. This affects the way we compute the stride
                    // and offset.
                    let tiled_on_cpu = image_template.data.is_blob();
                    if !tiled_on_cpu {
                        // we don't expect to have partial tiles at the top and left of non-blob
                        // images.
                        debug_assert_eq!(image_template.visible_rect.min, point2(0, 0));
                        let bpp = descriptor.format.bytes_per_pixel();
                        let stride = descriptor.compute_stride();
                        descriptor.stride = Some(stride);
                        descriptor.offset +=
                            tile.y as i32 * tile_size as i32 * stride +
                            tile.x as i32 * tile_size as i32 * bpp;
                    }

                    descriptor.size = clipped_tile_size;
                }

                // If we are uploading the dirty region of a blob image we might have several
                // rects to upload so we use each of these rasterized rects rather than the
                // overall dirty rect of the image.
                if let Some(rect) = blob_rasterized_rect {
                    dirty_rect = DirtyRect::Partial(rect);
                }

                let filter = match request.rendering {
                    ImageRendering::Pixelated => {
                        TextureFilter::Nearest
                    }
                    ImageRendering::Auto | ImageRendering::CrispEdges => {
                        // If the texture uses linear filtering, enable mipmaps and
                        // trilinear filtering, for better image quality. We only
                        // support this for now on textures that are not placed
                        // into the shared cache. This accounts for any image
                        // that is > 512 in either dimension, so it should cover
                        // the most important use cases. We may want to support
                        // mip-maps on shared cache items in the future.
                        if descriptor.allow_mipmaps() &&
                           descriptor.size.width > 512 &&
                           descriptor.size.height > 512 &&
                           !self.texture_cache.is_allowed_in_shared_cache(
                            TextureFilter::Linear,
                            &descriptor,
                        ) {
                            TextureFilter::Trilinear
                        } else {
                            TextureFilter::Linear
                        }
                    }
                };

                let eviction = if image_template.data.is_blob() {
                    entry.manual_eviction = true;
                    Eviction::Manual
                } else {
                    Eviction::Auto
                };

                //Note: at this point, the dirty rectangle is local to the descriptor space
                self.texture_cache.update(
                    &mut entry.texture_cache_handle,
                    descriptor,
                    filter,
                    Some(image_data),
                    [0.0; 4],
                    dirty_rect,
                    gpu_cache,
                    None,
                    UvRectKind::Rect,
                    eviction,
                    TargetShader::Default,
                );
            }
        }
    }

    pub fn create_compositor_backdrop_surface(
        &mut self,
        color: ColorF
    ) -> NativeSurfaceId {
        let id = NativeSurfaceId(NEXT_NATIVE_SURFACE_ID.fetch_add(1, Ordering::Relaxed) as u64);

        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::CreateBackdropSurface {
                    id,
                    color,
                },
            }
        );

        id
    }

    /// Queue up allocation of a new OS native compositor surface with the
    /// specified tile size.
    pub fn create_compositor_surface(
        &mut self,
        virtual_offset: DeviceIntPoint,
        tile_size: DeviceIntSize,
        is_opaque: bool,
    ) -> NativeSurfaceId {
        let id = NativeSurfaceId(NEXT_NATIVE_SURFACE_ID.fetch_add(1, Ordering::Relaxed) as u64);

        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::CreateSurface {
                    id,
                    virtual_offset,
                    tile_size,
                    is_opaque,
                },
            }
        );

        id
    }

    pub fn create_compositor_external_surface(
        &mut self,
        is_opaque: bool,
    ) -> NativeSurfaceId {
        let id = NativeSurfaceId(NEXT_NATIVE_SURFACE_ID.fetch_add(1, Ordering::Relaxed) as u64);

        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::CreateExternalSurface {
                    id,
                    is_opaque,
                },
            }
        );

        id
    }

    /// Queue up destruction of an existing native OS surface. This is used when
    /// a picture cache surface is dropped or resized.
    pub fn destroy_compositor_surface(
        &mut self,
        id: NativeSurfaceId,
    ) {
        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::DestroySurface {
                    id,
                }
            }
        );
    }

    /// Queue construction of a native compositor tile on a given surface.
    pub fn create_compositor_tile(
        &mut self,
        id: NativeTileId,
    ) {
        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::CreateTile {
                    id,
                },
            }
        );
    }

    /// Queue destruction of a native compositor tile.
    pub fn destroy_compositor_tile(
        &mut self,
        id: NativeTileId,
    ) {
        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::DestroyTile {
                    id,
                },
            }
        );
    }

    pub fn attach_compositor_external_image(
        &mut self,
        id: NativeSurfaceId,
        external_image: ExternalImageId,
    ) {
        self.pending_native_surface_updates.push(
            NativeSurfaceOperation {
                details: NativeSurfaceOperationDetails::AttachExternalImage {
                    id,
                    external_image,
                },
            }
        );
    }


    pub fn end_frame(&mut self, profile: &mut TransactionProfile) {
        debug_assert_eq!(self.state, State::QueryResources);
        profile_scope!("end_frame");
        self.state = State::Idle;

        // GC the render target pool, if it's currently > 64 MB in size.
        //
        // We use a simple scheme whereby we drop any texture that hasn't been used
        // in the last 60 frames, until we are below the size threshold. This should
        // generally prevent any sustained build-up of unused textures, unless we don't
        // generate frames for a long period. This can happen when the window is
        // minimized, and we probably want to flush all the WebRender caches in that case [1].
        // There is also a second "red line" memory threshold which prevents
        // memory exhaustion if many render targets are allocated within a small
        // number of frames. For now this is set at 320 MB (10x the normal memory threshold).
        //
        // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1494099
        self.gc_render_targets(
            64 * 1024 * 1024,
            32 * 1024 * 1024 * 10,
            60,
        );

        self.texture_cache.end_frame(profile);
        self.picture_textures.gc(
            &mut self.texture_cache.pending_updates,
        );

        self.picture_textures.update_profile(profile);
    }

    pub fn set_debug_flags(&mut self, flags: DebugFlags) {
        GLYPH_FLASHING.store(flags.contains(DebugFlags::GLYPH_FLASHING), std::sync::atomic::Ordering::Relaxed);
        self.texture_cache.set_debug_flags(flags);
        self.picture_textures.set_debug_flags(flags);
    }

    pub fn clear(&mut self, what: ClearCache) {
        if what.contains(ClearCache::IMAGES) {
            for (_key, mut cached) in self.cached_images.resources.drain() {
                cached.drop_from_cache(&mut self.texture_cache);
            }
        }
        if what.contains(ClearCache::GLYPHS) {
            self.cached_glyphs.clear();
        }
        if what.contains(ClearCache::GLYPH_DIMENSIONS) {
            self.cached_glyph_dimensions.clear();
        }
        if what.contains(ClearCache::RENDER_TASKS) {
            self.cached_render_tasks.clear();
        }
        if what.contains(ClearCache::TEXTURE_CACHE) {
            self.texture_cache.clear_all();
            self.picture_textures.clear(&mut self.texture_cache.pending_updates);
        }
        if what.contains(ClearCache::RENDER_TARGETS) {
            self.clear_render_target_pool();
        }
    }

    pub fn clear_namespace(&mut self, namespace: IdNamespace) {
        self.clear_images(|k| k.0 == namespace);

        // First clear out any non-shared resources associated with the namespace.
        self.resources.fonts.instances.clear_namespace(namespace);
        let deleted_keys = self.resources.fonts.templates.clear_namespace(namespace);
        self.glyph_rasterizer.delete_fonts(&deleted_keys);
        self.cached_glyphs.clear_namespace(namespace);
        if let Some(handler) = &mut self.blob_image_handler {
            handler.clear_namespace(namespace);
        }

        // Check for any shared instance keys that were remapped from the namespace.
        let shared_instance_keys = self.resources.fonts.instance_keys.clear_namespace(namespace);
        if !shared_instance_keys.is_empty() {
            self.resources.fonts.instances.delete_font_instances(&shared_instance_keys);
            self.cached_glyphs.delete_font_instances(&shared_instance_keys, &mut self.glyph_rasterizer);
            // Blob font instances are not shared across namespaces, so there is no
            // need to call the handler for them individually.
        }

        // Finally check for any shared font keys that were remapped from the namespace.
        let shared_keys = self.resources.fonts.font_keys.clear_namespace(namespace);
        if !shared_keys.is_empty() {
            self.glyph_rasterizer.delete_fonts(&shared_keys);
            self.resources.fonts.templates.delete_fonts(&shared_keys);
            self.cached_glyphs.delete_fonts(&shared_keys);
            if let Some(handler) = &mut self.blob_image_handler {
                for &key in &shared_keys {
                    handler.delete_font(key);
                }
            }
        }
    }

    /// Reports the CPU heap usage of this ResourceCache.
    ///
    /// NB: It would be much better to use the derive(MallocSizeOf) machinery
    /// here, but the Arcs complicate things. The two ways to handle that would
    /// be to either (a) Implement MallocSizeOf manually for the things that own
    /// them and manually avoid double-counting, or (b) Use the "seen this pointer
    /// yet" machinery from the proper malloc_size_of crate. We can do this if/when
    /// more accurate memory reporting on these resources becomes a priority.
    pub fn report_memory(&self, op: VoidPtrToSizeFn) -> MemoryReport {
        let mut report = MemoryReport::default();

        let mut seen_fonts = std::collections::HashSet::new();
        // Measure fonts. We only need the templates here, because the instances
        // don't have big buffers.
        for (_, font) in self.resources.fonts.templates.lock().iter() {
            if let FontTemplate::Raw(ref raw, _) = font {
                report.fonts += unsafe { op(raw.as_ptr() as *const c_void) };
                seen_fonts.insert(raw.as_ptr());
            }
        }

        for font in self.resources.weak_fonts.iter() {
            if !seen_fonts.contains(&font.as_ptr()) {
                report.weak_fonts += unsafe { op(font.as_ptr() as *const c_void) };
            }
        }

        // Measure images.
        for (_, image) in self.resources.image_templates.images.iter() {
            report.images += match image.data {
                CachedImageData::Raw(ref v) => unsafe { op(v.as_ptr() as *const c_void) },
                CachedImageData::Blob | CachedImageData::External(..) => 0,
            }
        }

        // Mesure rasterized blobs.
        // TODO(gw): Temporarily disabled while we roll back a crash. We can re-enable
        //           these when that crash is fixed.
        /*
        for (_, image) in self.rasterized_blob_images.iter() {
            let mut accumulate = |b: &RasterizedBlobImage| {
                report.rasterized_blobs += unsafe { op(b.data.as_ptr() as *const c_void) };
            };
            match image {
                RasterizedBlob::Tiled(map) => map.values().for_each(&mut accumulate),
                RasterizedBlob::NonTiled(vec) => vec.iter().for_each(&mut accumulate),
            };
        }
        */

        report
    }

    /// Properly deletes all images matching the predicate.
    fn clear_images<F: Fn(&ImageKey) -> bool>(&mut self, f: F) {
        let keys = self.resources.image_templates.images.keys().filter(|k| f(*k))
            .cloned().collect::<SmallVec<[ImageKey; 16]>>();

        for key in keys {
            self.delete_image_template(key);
        }

        #[cfg(features="leak_checks")]
        let check_leaks = true;
        #[cfg(not(features="leak_checks"))]
        let check_leaks = false;

        if check_leaks {
            let blob_f = |key: &BlobImageKey| { f(&key.as_image()) };
            assert!(!self.resources.image_templates.images.keys().any(&f));
            assert!(!self.cached_images.resources.keys().any(&f));
            assert!(!self.rasterized_blob_images.keys().any(&blob_f));
        }
    }

    /// Get a render target from the pool, or allocate a new one if none are
    /// currently available that match the requested parameters.
    pub fn get_or_create_render_target_from_pool(
        &mut self,
        size: DeviceIntSize,
        format: ImageFormat,
    ) -> CacheTextureId {
        for target in &mut self.render_target_pool {
            if target.size == size &&
               target.format == format &&
               !target.is_active {
                // Found a target that's not currently in use which matches. Update
                // the last_frame_used for GC purposes.
                target.is_active = true;
                target.last_frame_used = self.current_frame_id;
                return target.texture_id;
            }
        }

        // Need to create a new render target and add it to the pool

        let texture_id = self.texture_cache.alloc_render_target(
            size,
            format,
        );

        self.render_target_pool.push(RenderTarget {
            size,
            format,
            texture_id,
            is_active: true,
            last_frame_used: self.current_frame_id,
        });

        texture_id
    }

    /// Return a render target to the pool.
    pub fn return_render_target_to_pool(
        &mut self,
        id: CacheTextureId,
    ) {
        let target = self.render_target_pool
            .iter_mut()
            .find(|t| t.texture_id == id)
            .expect("bug: invalid render target id");

        assert!(target.is_active);
        target.is_active = false;
    }

    /// Clear all current render targets (e.g. on memory pressure)
    fn clear_render_target_pool(
        &mut self,
    ) {
        for target in self.render_target_pool.drain(..) {
            debug_assert!(!target.is_active);
            self.texture_cache.free_render_target(target.texture_id);
        }
    }

    /// Garbage collect and remove old render targets from the pool that haven't
    /// been used for some time.
    fn gc_render_targets(
        &mut self,
        total_bytes_threshold: usize,
        total_bytes_red_line_threshold: usize,
        frames_threshold: u64,
    ) {
        // Get the total GPU memory size used by the current render target pool
        let mut rt_pool_size_in_bytes: usize = self.render_target_pool
            .iter()
            .map(|t| t.size_in_bytes())
            .sum();

        // If the total size of the pool is less than the threshold, don't bother
        // trying to GC any targets
        if rt_pool_size_in_bytes <= total_bytes_threshold {
            return;
        }

        // Sort the current pool by age, so that we remove oldest textures first
        self.render_target_pool.sort_by_key(|t| t.last_frame_used);

        // We can't just use retain() because `RenderTarget` requires manual cleanup.
        let mut retained_targets = SmallVec::<[RenderTarget; 8]>::new();

        for target in self.render_target_pool.drain(..) {
            assert!(!target.is_active);

            // Drop oldest textures until we are under the allowed size threshold.
            // However, if it's been used in very recently, it is always kept around,
            // which ensures we don't thrash texture allocations on pages that do
            // require a very large render target pool and are regularly changing.
            let above_red_line = rt_pool_size_in_bytes > total_bytes_red_line_threshold;
            let above_threshold = rt_pool_size_in_bytes > total_bytes_threshold;
            let used_recently = target.used_recently(self.current_frame_id, frames_threshold);
            let used_this_frame = target.last_frame_used == self.current_frame_id;

            if !used_this_frame && (above_red_line || (above_threshold && !used_recently)) {
                rt_pool_size_in_bytes -= target.size_in_bytes();
                self.texture_cache.free_render_target(target.texture_id);
            } else {
                retained_targets.push(target);
            }
        }

        self.render_target_pool.extend(retained_targets);
    }

    #[cfg(test)]
    pub fn validate_surfaces(
        &self,
        expected_surfaces: &[(i32, i32, ImageFormat)],
    ) {
        assert_eq!(expected_surfaces.len(), self.render_target_pool.len());

        for (expected, surface) in expected_surfaces.iter().zip(self.render_target_pool.iter()) {
            assert_eq!(DeviceIntSize::new(expected.0, expected.1), surface.size);
            assert_eq!(expected.2, surface.format);
        }
    }
}

impl Drop for ResourceCache {
    fn drop(&mut self) {
        self.clear_images(|_| true);
    }
}

#[cfg(any(feature = "capture", feature = "replay"))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct PlainFontTemplate {
    data: String,
    index: u32,
}

#[cfg(any(feature = "capture", feature = "replay"))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct PlainImageTemplate {
    data: String,
    descriptor: ImageDescriptor,
    tiling: Option<TileSize>,
    generation: ImageGeneration,
}

#[cfg(any(feature = "capture", feature = "replay"))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PlainResources {
    font_templates: FastHashMap<FontKey, PlainFontTemplate>,
    font_instances: Vec<BaseFontInstance>,
    image_templates: FastHashMap<ImageKey, PlainImageTemplate>,
}

#[cfg(feature = "capture")]
#[derive(Serialize)]
pub struct PlainCacheRef<'a> {
    current_frame_id: FrameId,
    glyphs: &'a GlyphCache,
    glyph_dimensions: &'a GlyphDimensionsCache,
    images: &'a ImageCache,
    render_tasks: &'a RenderTaskCache,
    textures: &'a TextureCache,
    picture_textures: &'a PictureTextures,
}

#[cfg(feature = "replay")]
#[derive(Deserialize)]
pub struct PlainCacheOwn {
    current_frame_id: FrameId,
    glyphs: GlyphCache,
    glyph_dimensions: GlyphDimensionsCache,
    images: ImageCache,
    render_tasks: RenderTaskCache,
    textures: TextureCache,
    picture_textures: PictureTextures,
}

#[cfg(feature = "replay")]
const NATIVE_FONT: &'static [u8] = include_bytes!("../res/Proggy.ttf");

// This currently only casts the unit but will soon apply an offset
fn to_image_dirty_rect(blob_dirty_rect: &BlobDirtyRect) -> ImageDirtyRect {
    match *blob_dirty_rect {
        DirtyRect::Partial(rect) => DirtyRect::Partial(rect.cast_unit()),
        DirtyRect::All => DirtyRect::All,
    }
}

impl ResourceCache {
    #[cfg(feature = "capture")]
    pub fn save_capture(
        &mut self, root: &PathBuf
    ) -> (PlainResources, Vec<ExternalCaptureImage>) {
        use std::fs;
        use std::io::Write;

        info!("saving resource cache");
        let res = &self.resources;
        let path_fonts = root.join("fonts");
        if !path_fonts.is_dir() {
            fs::create_dir(&path_fonts).unwrap();
        }
        let path_images = root.join("images");
        if !path_images.is_dir() {
            fs::create_dir(&path_images).unwrap();
        }
        let path_blobs = root.join("blobs");
        if !path_blobs.is_dir() {
            fs::create_dir(&path_blobs).unwrap();
        }
        let path_externals = root.join("externals");
        if !path_externals.is_dir() {
            fs::create_dir(&path_externals).unwrap();
        }

        info!("\tfont templates");
        let mut font_paths = FastHashMap::default();
        for template in res.fonts.templates.lock().values() {
            let data: &[u8] = match *template {
                FontTemplate::Raw(ref arc, _) => arc,
                FontTemplate::Native(_) => continue,
            };
            let font_id = res.fonts.templates.len() + 1;
            let entry = match font_paths.entry(data.as_ptr()) {
                Entry::Occupied(_) => continue,
                Entry::Vacant(e) => e,
            };
            let file_name = format!("{}.raw", font_id);
            let short_path = format!("fonts/{}", file_name);
            fs::File::create(path_fonts.join(file_name))
                .expect(&format!("Unable to create {}", short_path))
                .write_all(data)
                .unwrap();
            entry.insert(short_path);
        }

        info!("\timage templates");
        let mut image_paths = FastHashMap::default();
        let mut other_paths = FastHashMap::default();
        let mut num_blobs = 0;
        let mut external_images = Vec::new();
        for (&key, template) in res.image_templates.images.iter() {
            let desc = &template.descriptor;
            match template.data {
                CachedImageData::Raw(ref arc) => {
                    let image_id = image_paths.len() + 1;
                    let entry = match image_paths.entry(arc.as_ptr()) {
                        Entry::Occupied(_) => continue,
                        Entry::Vacant(e) => e,
                    };

                    #[cfg(feature = "png")]
                    CaptureConfig::save_png(
                        root.join(format!("images/{}.png", image_id)),
                        desc.size,
                        desc.format,
                        desc.stride,
                        &arc,
                    );
                    let file_name = format!("{}.raw", image_id);
                    let short_path = format!("images/{}", file_name);
                    fs::File::create(path_images.join(file_name))
                        .expect(&format!("Unable to create {}", short_path))
                        .write_all(&*arc)
                        .unwrap();
                    entry.insert(short_path);
                }
                CachedImageData::Blob => {
                    warn!("Tiled blob images aren't supported yet");
                    let result = RasterizedBlobImage {
                        rasterized_rect: desc.size.into(),
                        data: Arc::new(vec![0; desc.compute_total_size() as usize])
                    };

                    assert_eq!(result.rasterized_rect.size(), desc.size);
                    assert_eq!(result.data.len(), desc.compute_total_size() as usize);

                    num_blobs += 1;
                    #[cfg(feature = "png")]
                    CaptureConfig::save_png(
                        root.join(format!("blobs/{}.png", num_blobs)),
                        desc.size,
                        desc.format,
                        desc.stride,
                        &result.data,
                    );
                    let file_name = format!("{}.raw", num_blobs);
                    let short_path = format!("blobs/{}", file_name);
                    let full_path = path_blobs.clone().join(&file_name);
                    fs::File::create(full_path)
                        .expect(&format!("Unable to create {}", short_path))
                        .write_all(&result.data)
                        .unwrap();
                    other_paths.insert(key, short_path);
                }
                CachedImageData::External(ref ext) => {
                    let short_path = format!("externals/{}", external_images.len() + 1);
                    other_paths.insert(key, short_path.clone());
                    external_images.push(ExternalCaptureImage {
                        short_path,
                        descriptor: desc.clone(),
                        external: ext.clone(),
                    });
                }
            }
        }

        let mut font_templates = FastHashMap::default();
        let mut font_remap = FastHashMap::default();
        // Generate a map from duplicate font keys to their template.
        for key in res.fonts.font_keys.keys() {
            let shared_key = res.fonts.font_keys.map_key(&key);
            let template = match res.fonts.templates.get_font(&shared_key) {
                Some(template) => template,
                None => {
                    debug!("Failed serializing font template {:?}", key);
                    continue;
                }
            };
            let plain_font = match template {
                FontTemplate::Raw(arc, index) => {
                    PlainFontTemplate {
                        data: font_paths[&arc.as_ptr()].clone(),
                        index,
                    }
                }
                #[cfg(not(any(target_os = "macos", target_os = "ios")))]
                FontTemplate::Native(native) => {
                    PlainFontTemplate {
                        data: native.path.to_string_lossy().to_string(),
                        index: native.index,
                    }
                }
                #[cfg(any(target_os = "macos", target_os = "ios"))]
                FontTemplate::Native(native) => {
                    PlainFontTemplate {
                        data: native.name,
                        index: 0,
                    }
                }
            };
            font_templates.insert(key, plain_font);
            // Generate a reverse map from a shared key to a representive key.
            font_remap.insert(shared_key, key);
        }
        let mut font_instances = Vec::new();
        // Build a list of duplicate instance keys.
        for instance_key in res.fonts.instance_keys.keys() {
            let shared_key = res.fonts.instance_keys.map_key(&instance_key);
            let instance = match res.fonts.instances.get_font_instance(shared_key) {
                Some(instance) => instance,
                None => {
                    debug!("Failed serializing font instance {:?}", instance_key);
                    continue;
                }
            };
            // Target the instance towards a representive duplicate font key. The font key will be
            // de-duplicated on load to an appropriate shared key.
            font_instances.push(BaseFontInstance {
                font_key: font_remap.get(&instance.font_key).cloned().unwrap_or(instance.font_key),
                instance_key,
                ..(*instance).clone()
            });
        }
        let resources = PlainResources {
            font_templates,
            font_instances,
            image_templates: res.image_templates.images
                .iter()
                .map(|(key, template)| {
                    (*key, PlainImageTemplate {
                        data: match template.data {
                            CachedImageData::Raw(ref arc) => image_paths[&arc.as_ptr()].clone(),
                            _ => other_paths[key].clone(),
                        },
                        descriptor: template.descriptor.clone(),
                        tiling: template.tiling,
                        generation: template.generation,
                    })
                })
                .collect(),
        };

        (resources, external_images)
    }

    #[cfg(feature = "capture")]
    pub fn save_caches(&self, _root: &PathBuf) -> PlainCacheRef {
        PlainCacheRef {
            current_frame_id: self.current_frame_id,
            glyphs: &self.cached_glyphs,
            glyph_dimensions: &self.cached_glyph_dimensions,
            images: &self.cached_images,
            render_tasks: &self.cached_render_tasks,
            textures: &self.texture_cache,
            picture_textures: &self.picture_textures,
        }
    }

    #[cfg(feature = "replay")]
    pub fn load_capture(
        &mut self,
        resources: PlainResources,
        caches: Option<PlainCacheOwn>,
        config: &CaptureConfig,
    ) -> Vec<PlainExternalImage> {
        use std::{fs, path::Path};
        use crate::texture_cache::TextureCacheConfig;

        info!("loading resource cache");
        //TODO: instead of filling the local path to Arc<data> map as we process
        // each of the resource types, we could go through all of the local paths
        // and fill out the map as the first step.
        let mut raw_map = FastHashMap::<String, Arc<Vec<u8>>>::default();

        self.clear(ClearCache::all());
        self.clear_images(|_| true);

        match caches {
            Some(cached) => {
                self.current_frame_id = cached.current_frame_id;
                self.cached_glyphs = cached.glyphs;
                self.cached_glyph_dimensions = cached.glyph_dimensions;
                self.cached_images = cached.images;
                self.cached_render_tasks = cached.render_tasks;
                self.texture_cache = cached.textures;
                self.picture_textures = cached.picture_textures;
            }
            None => {
                self.current_frame_id = FrameId::INVALID;
                self.texture_cache = TextureCache::new(
                    self.texture_cache.max_texture_size(),
                    self.texture_cache.tiling_threshold(),
                    self.texture_cache.color_formats(),
                    self.texture_cache.swizzle_settings(),
                    &TextureCacheConfig::DEFAULT,
                );
                self.picture_textures = PictureTextures::new(
                    self.picture_textures.default_tile_size(),
                    self.picture_textures.filter(),
                );
            }
        }

        self.glyph_rasterizer.reset();
        let res = &mut self.resources;
        res.fonts.templates.clear();
        res.fonts.instances.clear();
        res.image_templates.images.clear();

        info!("\tfont templates...");
        let root = config.resource_root();
        let native_font_replacement = Arc::new(NATIVE_FONT.to_vec());
        for (key, plain_template) in resources.font_templates {
            let arc = match raw_map.entry(plain_template.data) {
                Entry::Occupied(e) => {
                    e.get().clone()
                }
                Entry::Vacant(e) => {
                    let file_path = if Path::new(e.key()).is_absolute() {
                        PathBuf::from(e.key())
                    } else {
                        root.join(e.key())
                    };
                    let arc = match fs::read(file_path) {
                        Ok(buffer) => Arc::new(buffer),
                        Err(err) => {
                            error!("Unable to open font template {:?}: {:?}", e.key(), err);
                            Arc::clone(&native_font_replacement)
                        }
                    };
                    e.insert(arc).clone()
                }
            };

            let template = FontTemplate::Raw(arc, plain_template.index);
            // Only add the template if this is the first time it has been seen.
            if let Some(shared_key) = res.fonts.font_keys.add_key(&key, &template) {
                self.glyph_rasterizer.add_font(shared_key, template.clone());
                res.fonts.templates.add_font(shared_key, template);
            }
        }

        info!("\tfont instances...");
        for instance in resources.font_instances {
            // Target the instance to a shared font key.
            let base = BaseFontInstance {
                font_key: res.fonts.font_keys.map_key(&instance.font_key),
                ..instance
            };
            if let Some(shared_instance) = res.fonts.instance_keys.add_key(base) {
                res.fonts.instances.add_font_instance(shared_instance);
            }
        }

        info!("\timage templates...");
        let mut external_images = Vec::new();
        for (key, template) in resources.image_templates {
            let data = match config.deserialize_for_resource::<PlainExternalImage, _>(&template.data) {
                Some(plain) => {
                    let ext_data = plain.external;
                    external_images.push(plain);
                    CachedImageData::External(ext_data)
                }
                None => {
                    let arc = match raw_map.entry(template.data) {
                        Entry::Occupied(e) => {
                            e.get().clone()
                        }
                        Entry::Vacant(e) => {
                            let buffer = fs::read(root.join(e.key()))
                                .expect(&format!("Unable to open {}", e.key()));
                            e.insert(Arc::new(buffer))
                                .clone()
                        }
                    };
                    CachedImageData::Raw(arc)
                }
            };

            res.image_templates.images.insert(key, ImageResource {
                data,
                descriptor: template.descriptor,
                tiling: template.tiling,
                visible_rect: template.descriptor.size.into(),
                generation: template.generation,
            });
        }

        external_images
    }

    #[cfg(feature = "capture")]
    pub fn save_capture_sequence(&mut self, config: &mut CaptureConfig) -> Vec<ExternalCaptureImage> {
        if self.capture_dirty {
            self.capture_dirty = false;
            config.prepare_resource();
            let (resources, deferred) = self.save_capture(&config.resource_root());
            config.serialize_for_resource(&resources, "plain-resources.ron");
            deferred
        } else {
            Vec::new()
        }
    }
}