1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
#![no_std]
#![doc = include_str!("../README.md")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms)]
#[cfg(feature = "alloc")]
#[macro_use]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
mod error;
pub use error::{Error, Result};
use aes::cipher::{
generic_array::GenericArray,
typenum::{Unsigned, U16, U24, U32},
Block, BlockBackend, BlockCipher, BlockClosure, BlockDecrypt, BlockEncrypt, BlockSizeUser,
KeyInit,
};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Size of an AES "semiblock" in bytes.
///
/// From NIST SP 800-38F § 4.1:
///
/// > semiblock: given a block cipher, a bit string whose length is half of the
/// > block size.
pub const SEMIBLOCK_SIZE: usize = 8;
/// Maximum length of the AES-KWP input data (2^32 bytes).
pub const KWP_MAX_LEN: usize = u32::MAX as usize;
/// Size of an AES-KW and AES-KWP initialization vector in bytes.
pub const IV_LEN: usize = SEMIBLOCK_SIZE;
/// Default Initial Value for AES-KW as defined in RFC3394 § 2.2.3.1.
///
/// <https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1>
///
/// ```text
/// The default initial value (IV) is defined to be the hexadecimal
/// constant:
///
/// A[0] = IV = A6A6A6A6A6A6A6A6
///
/// The use of a constant as the IV supports a strong integrity check on
/// the key data during the period that it is wrapped. If unwrapping
/// produces A[0] = A6A6A6A6A6A6A6A6, then the chance that the key data
/// is corrupt is 2^-64. If unwrapping produces A[0] any other value,
/// then the unwrap must return an error and not return any key data.
/// ```
pub const IV: [u8; IV_LEN] = [0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6];
/// Alternative Initial Value constant prefix for AES-KWP as defined in
/// RFC3394 § 3.
///
/// <https://datatracker.ietf.org/doc/html/rfc5649#section-3>
///
/// ```text
/// The Alternative Initial Value (AIV) required by this specification is
// a 32-bit constant concatenated to a 32-bit MLI. The constant is (in
// hexadecimal) A65959A6 and occupies the high-order half of the AIV.
/// ```
pub const KWP_IV_PREFIX: [u8; IV_LEN / 2] = [0xA6, 0x59, 0x59, 0xA6];
/// A Key-Encrypting-Key (KEK) that can be used to wrap and unwrap other
/// keys.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Kek<Aes>
where
Aes: KeyInit + BlockCipher + BlockSizeUser<BlockSize = U16> + BlockEncrypt + BlockDecrypt,
{
/// Initialized cipher
cipher: Aes,
}
/// AES-128 KEK
pub type KekAes128 = Kek<aes::Aes128>;
/// AES-192 KEK
pub type KekAes192 = Kek<aes::Aes192>;
/// AES-256 KEK
pub type KekAes256 = Kek<aes::Aes256>;
impl From<GenericArray<u8, U16>> for KekAes128 {
fn from(kek: GenericArray<u8, U16>) -> Self {
Kek::new(&kek)
}
}
impl From<GenericArray<u8, U24>> for KekAes192 {
fn from(kek: GenericArray<u8, U24>) -> Self {
Kek::new(&kek)
}
}
impl From<GenericArray<u8, U32>> for KekAes256 {
fn from(kek: GenericArray<u8, U32>) -> Self {
Kek::new(&kek)
}
}
impl From<[u8; 16]> for KekAes128 {
fn from(kek: [u8; 16]) -> Self {
Kek::new(&kek.into())
}
}
impl From<[u8; 24]> for KekAes192 {
fn from(kek: [u8; 24]) -> Self {
Kek::new(&kek.into())
}
}
impl From<[u8; 32]> for KekAes256 {
fn from(kek: [u8; 32]) -> Self {
Kek::new(&kek.into())
}
}
impl<Aes> TryFrom<&[u8]> for Kek<Aes>
where
Aes: KeyInit + BlockCipher + BlockSizeUser<BlockSize = U16> + BlockEncrypt + BlockDecrypt,
{
type Error = Error;
fn try_from(value: &[u8]) -> Result<Self> {
if value.len() == Aes::KeySize::to_usize() {
Ok(Kek::new(GenericArray::from_slice(value)))
} else {
Err(Error::InvalidKekSize { size: value.len() })
}
}
}
impl<Aes> Kek<Aes>
where
Aes: KeyInit + BlockCipher + BlockSizeUser<BlockSize = U16> + BlockEncrypt + BlockDecrypt,
{
/// Constructs a new Kek based on the appropriate raw key material.
pub fn new(key: &GenericArray<u8, Aes::KeySize>) -> Self {
let cipher = Aes::new(key);
Kek { cipher }
}
/// AES Key Wrap, as defined in RFC 3394.
///
/// The `out` buffer will be overwritten, and must be exactly [`IV_LEN`]
/// bytes (i.e. 8 bytes) longer than the length of `data`.
pub fn wrap(&self, data: &[u8], out: &mut [u8]) -> Result<()> {
if data.len() % SEMIBLOCK_SIZE != 0 {
return Err(Error::InvalidDataSize);
}
if out.len() != data.len() + IV_LEN {
return Err(Error::InvalidOutputSize {
expected: data.len() + IV_LEN,
});
}
// 0) Prepare inputs
// number of 64 bit blocks in the input data
let n = data.len() / 8;
// 1) Initialize variables
// Set A to the IV
let block = &mut Block::<WCtx<'_>>::default();
block[..IV_LEN].copy_from_slice(&IV);
// 2) Calculate intermediate values
out[IV_LEN..].copy_from_slice(data);
self.cipher.encrypt_with_backend(WCtx { n, block, out });
// 3) Output the results
out[..IV_LEN].copy_from_slice(&block[..IV_LEN]);
Ok(())
}
/// Computes [`Self::wrap`], allocating a [`Vec`] for the return value.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn wrap_vec(&self, data: &[u8]) -> Result<Vec<u8>> {
let mut out = vec![0u8; data.len() + IV_LEN];
self.wrap(data, &mut out)?;
Ok(out)
}
/// AES Key Unwrap, as defined in RFC 3394.
///
/// The `out` buffer will be overwritten, and must be exactly [`IV_LEN`]
/// bytes (i.e. 8 bytes) shorter than the length of `data`.
pub fn unwrap(&self, data: &[u8], out: &mut [u8]) -> Result<()> {
if data.len() % SEMIBLOCK_SIZE != 0 {
return Err(Error::InvalidDataSize);
}
// 0) Prepare inputs
let n = (data.len() / SEMIBLOCK_SIZE)
.checked_sub(1)
.ok_or(Error::InvalidDataSize)?;
if out.len() != n * SEMIBLOCK_SIZE {
return Err(Error::InvalidOutputSize {
expected: n * SEMIBLOCK_SIZE,
});
}
// 1) Initialize variables
let block = &mut Block::<WInverseCtx<'_>>::default();
block[..IV_LEN].copy_from_slice(&data[..IV_LEN]);
// for i = 1 to n: R[i] = C[i]
out.copy_from_slice(&data[IV_LEN..]);
// 2) Calculate intermediate values
self.cipher
.decrypt_with_backend(WInverseCtx { n, block, out });
// 3) Output the results
if block[..IV_LEN] == IV[..] {
Ok(())
} else {
Err(Error::IntegrityCheckFailed)
}
}
/// Computes [`Self::unwrap`], allocating a [`Vec`] for the return value.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn unwrap_vec(&self, data: &[u8]) -> Result<Vec<u8>> {
let out_len = data
.len()
.checked_sub(IV_LEN)
.ok_or(Error::InvalidDataSize)?;
let mut out = vec![0u8; out_len];
self.unwrap(data, &mut out)?;
Ok(out)
}
/// AES Key Wrap with Padding, as defined in RFC 5649.
///
///
/// The `out` buffer will be overwritten, and must be the smallest
/// multiple of [`SEMIBLOCK_SIZE`] (i.e. 8) which is at least [`IV_LEN`]
/// bytes (i.e. 8 bytes) longer than the length of `data`.
pub fn wrap_with_padding(&self, data: &[u8], out: &mut [u8]) -> Result<()> {
if data.len() > KWP_MAX_LEN {
return Err(Error::InvalidDataSize);
}
// 0) Prepare inputs
// number of 64 bit blocks in the input data (padded)
let n = (data.len() + SEMIBLOCK_SIZE - 1) / SEMIBLOCK_SIZE;
if out.len() != n * SEMIBLOCK_SIZE + IV_LEN {
return Err(Error::InvalidOutputSize {
expected: n * SEMIBLOCK_SIZE + IV_LEN,
});
}
// 32-bit MLI equal to the number of bytes in the input data, big endian
let mli = (data.len() as u32).to_be_bytes();
// 2) Wrapping
// 2.1) Initialize variables
// Set A to the AIV
let block = &mut Block::<WCtx<'_>>::default();
block[..IV_LEN / 2].copy_from_slice(&KWP_IV_PREFIX);
block[IV_LEN / 2..IV_LEN].copy_from_slice(&mli);
// If n is 1, the plaintext is encrypted as a single AES block
if n == 1 {
// 1) Append padding
// GenericArrays should be zero by default, but zeroize again to be sure
for i in data.len()..n * SEMIBLOCK_SIZE {
block[IV_LEN + i] = 0;
}
block[IV_LEN..IV_LEN + data.len()].copy_from_slice(data);
self.cipher.encrypt_block(block);
out.copy_from_slice(block);
} else {
// 1) Append padding
// Don't trust the caller to provide a zeroized out buffer, zeroize again to be sure
for i in data.len()..n * SEMIBLOCK_SIZE {
out[IV_LEN + i] = 0;
}
// 2.2) Calculate intermediate values
out[IV_LEN..IV_LEN + data.len()].copy_from_slice(data);
self.cipher.encrypt_with_backend(WCtx { n, block, out });
// 2.3) Output the results
out[..IV_LEN].copy_from_slice(&block[..IV_LEN]);
}
Ok(())
}
/// Computes [`Self::wrap`], allocating a [`Vec`] for the return value.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn wrap_with_padding_vec(&self, data: &[u8]) -> Result<Vec<u8>> {
let n = (data.len() + SEMIBLOCK_SIZE - 1) / SEMIBLOCK_SIZE;
let mut out = vec![0u8; n * SEMIBLOCK_SIZE + IV_LEN];
self.wrap_with_padding(data, &mut out)?;
Ok(out)
}
/// AES Key Wrap with Padding, as defined in RFC 5649.
///
/// The `out` buffer will be overwritten, and must be exactly [`IV_LEN`]
/// bytes (i.e. 8 bytes) shorter than the length of `data`.
/// This method returns a slice of `out`, truncated to the appropriate
/// length by removing the padding.
pub fn unwrap_with_padding<'a>(&self, data: &[u8], out: &'a mut [u8]) -> Result<&'a [u8]> {
if data.len() % SEMIBLOCK_SIZE != 0 {
return Err(Error::InvalidDataSize);
}
// 0) Prepare inputs
let n = (data.len() / SEMIBLOCK_SIZE)
.checked_sub(1)
.ok_or(Error::InvalidDataSize)?;
if out.len() != n * SEMIBLOCK_SIZE {
return Err(Error::InvalidOutputSize {
expected: n * SEMIBLOCK_SIZE,
});
}
// 1) Key unwrapping
// 1.1) Initialize variables
let block = &mut Block::<WInverseCtx<'_>>::default();
// If n is 1, the plaintext is encrypted as a single AES block
if n == 1 {
block.copy_from_slice(data);
self.cipher.decrypt_block(block);
out.copy_from_slice(&block[IV_LEN..]);
} else {
block[..IV_LEN].copy_from_slice(&data[..IV_LEN]);
// for i = 1 to n: R[i] = C[i]
out.copy_from_slice(&data[IV_LEN..]);
// 1.2) Calculate intermediate values
self.cipher
.decrypt_with_backend(WInverseCtx { n, block, out });
}
// 2) AIV verification
// Checks as defined in RFC5649 § 3
if block[..IV_LEN / 2] != KWP_IV_PREFIX {
return Err(Error::IntegrityCheckFailed);
}
let mli = u32::from_be_bytes(block[IV_LEN / 2..IV_LEN].try_into().unwrap()) as usize;
if !(SEMIBLOCK_SIZE * (n - 1) < mli && mli <= SEMIBLOCK_SIZE * n) {
return Err(Error::IntegrityCheckFailed);
}
let b = SEMIBLOCK_SIZE * n - mli;
if !out.iter().rev().take(b).all(|&x| x == 0) {
return Err(Error::IntegrityCheckFailed);
}
// 3) Output the results
Ok(&out[..mli])
}
/// Computes [`Self::unwrap`], allocating a [`Vec`] for the return value.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn unwrap_with_padding_vec(&self, data: &[u8]) -> Result<Vec<u8>> {
let out_len = data
.len()
.checked_sub(IV_LEN)
.ok_or(Error::InvalidDataSize)?;
let mut out = vec![0u8; out_len];
let out_len = self.unwrap_with_padding(data, &mut out)?.len();
out.truncate(out_len);
Ok(out)
}
}
struct WCtx<'a> {
n: usize,
block: &'a mut Block<Self>,
out: &'a mut [u8],
}
impl<'a> BlockSizeUser for WCtx<'a> {
type BlockSize = U16;
}
/// Very similar to the W(S) function defined by NIST in SP 800-38F,
/// Section 6.1
impl<'a> BlockClosure for WCtx<'a> {
#[inline(always)]
fn call<B: BlockBackend<BlockSize = Self::BlockSize>>(self, backend: &mut B) {
for j in 0..=5 {
for (i, chunk) in self.out.chunks_mut(SEMIBLOCK_SIZE).skip(1).enumerate() {
// A | R[i]
self.block[IV_LEN..].copy_from_slice(chunk);
// B = AES(K, ..)
backend.proc_block(self.block.into());
// A = MSB(64, B) ^ t
let t = (self.n * j + (i + 1)) as u64;
for (ai, ti) in self.block[..IV_LEN].iter_mut().zip(&t.to_be_bytes()) {
*ai ^= ti;
}
// R[i] = LSB(64, B)
chunk.copy_from_slice(&self.block[IV_LEN..]);
}
}
}
}
struct WInverseCtx<'a> {
n: usize,
block: &'a mut Block<Self>,
out: &'a mut [u8],
}
impl<'a> BlockSizeUser for WInverseCtx<'a> {
type BlockSize = U16;
}
/// Very similar to the W^-1(S) function defined by NIST in SP 800-38F,
/// Section 6.1
impl<'a> BlockClosure for WInverseCtx<'a> {
#[inline(always)]
fn call<B: BlockBackend<BlockSize = Self::BlockSize>>(self, backend: &mut B) {
for j in (0..=5).rev() {
for (i, chunk) in self.out.chunks_mut(SEMIBLOCK_SIZE).enumerate().rev() {
// A ^ t
let t = (self.n * j + (i + 1)) as u64;
for (ai, ti) in self.block[..IV_LEN].iter_mut().zip(&t.to_be_bytes()) {
*ai ^= ti;
}
// (A ^ t) | R[i]
self.block[IV_LEN..].copy_from_slice(chunk);
// B = AES-1(K, ..)
backend.proc_block(self.block.into());
// A = MSB(64, B)
// already set
// R[i] = LSB(64, B)
chunk.copy_from_slice(&self.block[IV_LEN..]);
}
}
}
}