1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
//! Functions and filters for the sampling of pixels.

// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
// for some of the theory behind image scaling and convolution

use std::f32;

use num_traits::{NumCast, ToPrimitive, Zero};

use crate::image::{GenericImage, GenericImageView};
use crate::traits::{Enlargeable, Pixel, Primitive};
use crate::utils::clamp;
use crate::{ImageBuffer, Rgba32FImage};

/// Available Sampling Filters.
///
/// ## Examples
///
/// To test the different sampling filters on a real example, you can find two
/// examples called
/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
/// and
/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
/// in the `examples` directory of the crate source code.
///
/// Here is a 3.58 MiB
/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
/// that has been scaled down to 300x225 px:
///
/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
///   <div style="margin: 0 8px 8px 0;">
///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
///     Nearest Neighbor
///   </div>
///   <div style="margin: 0 8px 8px 0;">
///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
///     Linear: Triangle
///   </div>
///   <div style="margin: 0 8px 8px 0;">
///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
///     Cubic: Catmull-Rom
///   </div>
///   <div style="margin: 0 8px 8px 0;">
///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
///     Gaussian
///   </div>
///   <div style="margin: 0 8px 8px 0;">
///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
///     Lanczos with window 3
///   </div>
/// </div>
///
/// ## Speed
///
/// Time required to create each of the examples above, tested on an Intel
/// i7-4770 CPU with Rust 1.37 in release mode:
///
/// <table style="width: auto;">
///   <tr>
///     <th>Nearest</th>
///     <td>31 ms</td>
///   </tr>
///   <tr>
///     <th>Triangle</th>
///     <td>414 ms</td>
///   </tr>
///   <tr>
///     <th>CatmullRom</th>
///     <td>817 ms</td>
///   </tr>
///   <tr>
///     <th>Gaussian</th>
///     <td>1180 ms</td>
///   </tr>
///   <tr>
///     <th>Lanczos3</th>
///     <td>1170 ms</td>
///   </tr>
/// </table>
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum FilterType {
    /// Nearest Neighbor
    Nearest,

    /// Linear Filter
    Triangle,

    /// Cubic Filter
    CatmullRom,

    /// Gaussian Filter
    Gaussian,

    /// Lanczos with window 3
    Lanczos3,
}

/// A Representation of a separable filter.
pub(crate) struct Filter<'a> {
    /// The filter's filter function.
    pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,

    /// The window on which this filter operates.
    pub(crate) support: f32,
}

struct FloatNearest(f32);

// to_i64, to_u64, and to_f64 implicitly affect all other lower conversions.
// Note that to_f64 by default calls to_i64 and thus needs to be overridden.
impl ToPrimitive for FloatNearest {
    // to_{i,u}64 is required, to_{i,u}{8,16} are useful.
    // If a usecase for full 32 bits is found its trivial to add
    fn to_i8(&self) -> Option<i8> {
        self.0.round().to_i8()
    }
    fn to_i16(&self) -> Option<i16> {
        self.0.round().to_i16()
    }
    fn to_i64(&self) -> Option<i64> {
        self.0.round().to_i64()
    }
    fn to_u8(&self) -> Option<u8> {
        self.0.round().to_u8()
    }
    fn to_u16(&self) -> Option<u16> {
        self.0.round().to_u16()
    }
    fn to_u64(&self) -> Option<u64> {
        self.0.round().to_u64()
    }
    fn to_f64(&self) -> Option<f64> {
        self.0.to_f64()
    }
}

// sinc function: the ideal sampling filter.
fn sinc(t: f32) -> f32 {
    let a = t * f32::consts::PI;

    if t == 0.0 {
        1.0
    } else {
        a.sin() / a
    }
}

// lanczos kernel function. A windowed sinc function.
fn lanczos(x: f32, t: f32) -> f32 {
    if x.abs() < t {
        sinc(x) * sinc(x / t)
    } else {
        0.0
    }
}

// Calculate a splice based on the b and c parameters.
// from authors Mitchell and Netravali.
fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
    let a = x.abs();

    let k = if a < 1.0 {
        (12.0 - 9.0 * b - 6.0 * c) * a.powi(3)
            + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
            + (6.0 - 2.0 * b)
    } else if a < 2.0 {
        (-b - 6.0 * c) * a.powi(3)
            + (6.0 * b + 30.0 * c) * a.powi(2)
            + (-12.0 * b - 48.0 * c) * a
            + (8.0 * b + 24.0 * c)
    } else {
        0.0
    };

    k / 6.0
}

/// The Gaussian Function.
/// ```r``` is the standard deviation.
pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
    ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
}

/// Calculate the lanczos kernel with a window of 3
pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
    lanczos(x, 3.0)
}

/// Calculate the gaussian function with a
/// standard deviation of 0.5
pub(crate) fn gaussian_kernel(x: f32) -> f32 {
    gaussian(x, 0.5)
}

/// Calculate the Catmull-Rom cubic spline.
/// Also known as a form of `BiCubic` sampling in two dimensions.
pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
    bc_cubic_spline(x, 0.0, 0.5)
}

/// Calculate the triangle function.
/// Also known as `BiLinear` sampling in two dimensions.
pub(crate) fn triangle_kernel(x: f32) -> f32 {
    if x.abs() < 1.0 {
        1.0 - x.abs()
    } else {
        0.0
    }
}

/// Calculate the box kernel.
/// Only pixels inside the box should be considered, and those
/// contribute equally.  So this method simply returns 1.
pub(crate) fn box_kernel(_x: f32) -> f32 {
    1.0
}

// Sample the rows of the supplied image using the provided filter.
// The height of the image remains unchanged.
// ```new_width``` is the desired width of the new image
// ```filter``` is the filter to use for sampling.
// ```image``` is not necessarily Rgba and the order of channels is passed through.
fn horizontal_sample<P, S>(
    image: &Rgba32FImage,
    new_width: u32,
    filter: &mut Filter,
) -> ImageBuffer<P, Vec<S>>
where
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(new_width, height);
    let mut ws = Vec::new();

    let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap();
    let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap();
    let ratio = width as f32 / new_width as f32;
    let sratio = if ratio < 1.0 { 1.0 } else { ratio };
    let src_support = filter.support * sratio;

    for outx in 0..new_width {
        // Find the point in the input image corresponding to the centre
        // of the current pixel in the output image.
        let inputx = (outx as f32 + 0.5) * ratio;

        // Left and right are slice bounds for the input pixels relevant
        // to the output pixel we are calculating.  Pixel x is relevant
        // if and only if (x >= left) && (x < right).

        // Invariant: 0 <= left < right <= width

        let left = (inputx - src_support).floor() as i64;
        let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;

        let right = (inputx + src_support).ceil() as i64;
        let right = clamp(
            right,
            <i64 as From<_>>::from(left) + 1,
            <i64 as From<_>>::from(width),
        ) as u32;

        // Go back to left boundary of pixel, to properly compare with i
        // below, as the kernel treats the centre of a pixel as 0.
        let inputx = inputx - 0.5;

        ws.clear();
        let mut sum = 0.0;
        for i in left..right {
            let w = (filter.kernel)((i as f32 - inputx) / sratio);
            ws.push(w);
            sum += w;
        }
        ws.iter_mut().for_each(|w| *w /= sum);

        for y in 0..height {
            let mut t = (0.0, 0.0, 0.0, 0.0);

            for (i, w) in ws.iter().enumerate() {
                let p = image.get_pixel(left + i as u32, y);

                #[allow(deprecated)]
                let vec = p.channels4();

                t.0 += vec.0 * w;
                t.1 += vec.1 * w;
                t.2 += vec.2 * w;
                t.3 += vec.3 * w;
            }

            #[allow(deprecated)]
            let t = Pixel::from_channels(
                NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(),
                NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(),
                NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(),
                NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(),
            );

            out.put_pixel(outx, y, t);
        }
    }

    out
}

/// Linearly sample from an image using coordinates in [0, 1].
pub fn sample_bilinear<P: Pixel>(
    img: &impl GenericImageView<Pixel = P>,
    u: f32,
    v: f32,
) -> Option<P> {
    if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
        return None;
    }

    let (w, h) = img.dimensions();
    if w == 0 || h == 0 {
        return None;
    }

    let ui = w as f32 * u - 0.5;
    let vi = h as f32 * v - 0.5;
    interpolate_bilinear(
        img,
        ui.max(0.).min((w - 1) as f32),
        vi.max(0.).min((h - 1) as f32),
    )
}

/// Sample from an image using coordinates in [0, 1], taking the nearest coordinate.
pub fn sample_nearest<P: Pixel>(
    img: &impl GenericImageView<Pixel = P>,
    u: f32,
    v: f32,
) -> Option<P> {
    if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
        return None;
    }

    let (w, h) = img.dimensions();
    let ui = w as f32 * u - 0.5;
    let ui = ui.max(0.).min((w.saturating_sub(1)) as f32);

    let vi = h as f32 * v - 0.5;
    let vi = vi.max(0.).min((h.saturating_sub(1)) as f32);
    interpolate_nearest(img, ui, vi)
}

/// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the
/// nearest pixel.
///
/// Coordinates outside the image bounds will return `None`, however the
/// behavior for points within half a pixel of the image bounds may change in
/// the future.
pub fn interpolate_nearest<P: Pixel>(
    img: &impl GenericImageView<Pixel = P>,
    x: f32,
    y: f32,
) -> Option<P> {
    let (w, h) = img.dimensions();
    if w == 0 || h == 0 {
        return None;
    }
    if !(0.0..=((w - 1) as f32)).contains(&x) {
        return None;
    }
    if !(0.0..=((h - 1) as f32)).contains(&y) {
        return None;
    }

    Some(img.get_pixel(x.round() as u32, y.round() as u32))
}

/// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1].
pub fn interpolate_bilinear<P: Pixel>(
    img: &impl GenericImageView<Pixel = P>,
    x: f32,
    y: f32,
) -> Option<P> {
    // assumption needed for correctness of pixel creation
    assert!(P::CHANNEL_COUNT <= 4);

    let (w, h) = img.dimensions();
    if w == 0 || h == 0 {
        return None;
    }
    if !(0.0..=((w - 1) as f32)).contains(&x) {
        return None;
    }
    if !(0.0..=((h - 1) as f32)).contains(&y) {
        return None;
    }

    // keep these as integers, for fewer FLOPs
    let uf = x.floor() as u32;
    let vf = y.floor() as u32;
    let uc = (uf + 1).min(w - 1);
    let vc = (vf + 1).min(h - 1);

    // clamp coords to the range of the image
    let mut sxx = [[0.; 4]; 4];

    // do not use Array::map, as it can be slow with high stack usage,
    // for [[f32; 4]; 4].

    // convert samples to f32
    // currently rgba is the largest one,
    // so just store as many items as necessary,
    // because there's not a simple way to be generic over all of them.
    let mut compute = |u: u32, v: u32, i| {
        let s = img.get_pixel(u, v);
        for (j, c) in s.channels().iter().enumerate() {
            sxx[j][i] = c.to_f32().unwrap();
        }
        s
    };

    // hacky reuse since cannot construct a generic Pixel
    let mut out: P = compute(uf, vf, 0);
    compute(uf, vc, 1);
    compute(uc, vf, 2);
    compute(uc, vc, 3);

    // weights, the later two are independent from the first 2 for better vectorization.
    let ufw = x - uf as f32;
    let vfw = y - vf as f32;
    let ucw = (uf + 1) as f32 - x;
    let vcw = (vf + 1) as f32 - y;

    // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean
    // the distance between pixels is 1 so there is no denominator
    let wff = ucw * vcw;
    let wfc = ucw * vfw;
    let wcf = ufw * vcw;
    let wcc = ufw * vfw;
    // was originally assert, but is actually not a cheap computation
    debug_assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3);

    // hack to see if primitive is an integer or a float
    let is_float = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap() == 1.0;

    for (i, c) in out.channels_mut().iter_mut().enumerate() {
        let v = wff * sxx[i][0] + wfc * sxx[i][1] + wcf * sxx[i][2] + wcc * sxx[i][3];
        // this rounding may introduce quantization errors,
        // Specifically what is meant is that many samples may deviate
        // from the mean value of the originals, but it's not possible to fix that.
        *c = <P::Subpixel as NumCast>::from(if is_float { v } else { v.round() }).unwrap_or({
            if v < 0.0 {
                P::Subpixel::DEFAULT_MIN_VALUE
            } else {
                P::Subpixel::DEFAULT_MAX_VALUE
            }
        });
    }

    Some(out)
}

// Sample the columns of the supplied image using the provided filter.
// The width of the image remains unchanged.
// ```new_height``` is the desired height of the new image
// ```filter``` is the filter to use for sampling.
// The return value is not necessarily Rgba, the underlying order of channels in ```image``` is
// preserved.
fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(width, new_height);
    let mut ws = Vec::new();

    let ratio = height as f32 / new_height as f32;
    let sratio = if ratio < 1.0 { 1.0 } else { ratio };
    let src_support = filter.support * sratio;

    for outy in 0..new_height {
        // For an explanation of this algorithm, see the comments
        // in horizontal_sample.
        let inputy = (outy as f32 + 0.5) * ratio;

        let left = (inputy - src_support).floor() as i64;
        let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;

        let right = (inputy + src_support).ceil() as i64;
        let right = clamp(
            right,
            <i64 as From<_>>::from(left) + 1,
            <i64 as From<_>>::from(height),
        ) as u32;

        let inputy = inputy - 0.5;

        ws.clear();
        let mut sum = 0.0;
        for i in left..right {
            let w = (filter.kernel)((i as f32 - inputy) / sratio);
            ws.push(w);
            sum += w;
        }
        ws.iter_mut().for_each(|w| *w /= sum);

        for x in 0..width {
            let mut t = (0.0, 0.0, 0.0, 0.0);

            for (i, w) in ws.iter().enumerate() {
                let p = image.get_pixel(x, left + i as u32);

                #[allow(deprecated)]
                let (k1, k2, k3, k4) = p.channels4();
                let vec: (f32, f32, f32, f32) = (
                    NumCast::from(k1).unwrap(),
                    NumCast::from(k2).unwrap(),
                    NumCast::from(k3).unwrap(),
                    NumCast::from(k4).unwrap(),
                );

                t.0 += vec.0 * w;
                t.1 += vec.1 * w;
                t.2 += vec.2 * w;
                t.3 += vec.3 * w;
            }

            #[allow(deprecated)]
            // This is not necessarily Rgba.
            let t = Pixel::from_channels(t.0, t.1, t.2, t.3);

            out.put_pixel(x, outy, t);
        }
    }

    out
}

/// Local struct for keeping track of pixel sums for fast thumbnail averaging
struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);

impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
    fn zeroed() -> Self {
        ThumbnailSum(
            S::Larger::zero(),
            S::Larger::zero(),
            S::Larger::zero(),
            S::Larger::zero(),
        )
    }

    fn sample_val(val: S) -> S::Larger {
        <S::Larger as NumCast>::from(val).unwrap()
    }

    fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) {
        #[allow(deprecated)]
        let pixel = pixel.channels4();
        self.0 += Self::sample_val(pixel.0);
        self.1 += Self::sample_val(pixel.1);
        self.2 += Self::sample_val(pixel.2);
        self.3 += Self::sample_val(pixel.3);
    }
}

/// Resize the supplied image to the specific dimensions.
///
/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
/// to exactly one target pixel.  May give aliasing artifacts if new size is close to old size.
///
/// In case the current width is smaller than the new width or similar for the height, another
/// strategy is used instead.  For each pixel in the output, a rectangular region of the input is
/// determined, just as previously.  But when no input pixel is part of this region, the nearest
/// pixels are interpolated instead.
///
/// For speed reasons, all interpolation is performed linearly over the colour values.  It will not
/// take the pixel colour spaces into account.
pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + Enlargeable + 'static,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(new_width, new_height);
    if height == 0 || width == 0 {
        return out;
    }

    let x_ratio = width as f32 / new_width as f32;
    let y_ratio = height as f32 / new_height as f32;

    for outy in 0..new_height {
        let bottomf = outy as f32 * y_ratio;
        let topf = bottomf + y_ratio;

        let bottom = clamp(bottomf.ceil() as u32, 0, height - 1);
        let top = clamp(topf.ceil() as u32, bottom, height);

        for outx in 0..new_width {
            let leftf = outx as f32 * x_ratio;
            let rightf = leftf + x_ratio;

            let left = clamp(leftf.ceil() as u32, 0, width - 1);
            let right = clamp(rightf.ceil() as u32, left, width);

            let avg = if bottom != top && left != right {
                thumbnail_sample_block(image, left, right, bottom, top)
            } else if bottom != top {
                // && left == right
                // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
                // assertion can never trigger.
                debug_assert!(
                    left > 0 && right > 0,
                    "First output column must have corresponding pixels"
                );

                let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.;
                thumbnail_sample_fraction_horizontal(
                    image,
                    right - 1,
                    fraction_horizontal,
                    bottom,
                    top,
                )
            } else if left != right {
                // && bottom == top
                // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
                // assertion can never trigger.
                debug_assert!(
                    bottom > 0 && top > 0,
                    "First output row must have corresponding pixels"
                );

                let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.;
                thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
            } else {
                // bottom == top && left == right
                let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.;
                let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.;

                thumbnail_sample_fraction_both(
                    image,
                    right - 1,
                    fraction_horizontal,
                    top - 1,
                    fraction_vertical,
                )
            };

            #[allow(deprecated)]
            let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
            out.put_pixel(outx, outy, pixel);
        }
    }

    out
}

/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
fn thumbnail_sample_block<I, P, S>(
    image: &I,
    left: u32,
    right: u32,
    bottom: u32,
    top: u32,
) -> (S, S, S, S)
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S>,
    S: Primitive + Enlargeable,
{
    let mut sum = ThumbnailSum::zeroed();

    for y in bottom..top {
        for x in left..right {
            let k = image.get_pixel(x, y);
            sum.add_pixel(k);
        }
    }

    let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap();
    let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap();
    (
        S::clamp_from((sum.0 + round) / n),
        S::clamp_from((sum.1 + round) / n),
        S::clamp_from((sum.2 + round) / n),
        S::clamp_from((sum.3 + round) / n),
    )
}

/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
fn thumbnail_sample_fraction_horizontal<I, P, S>(
    image: &I,
    left: u32,
    fraction_horizontal: f32,
    bottom: u32,
    top: u32,
) -> (S, S, S, S)
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S>,
    S: Primitive + Enlargeable,
{
    let fract = fraction_horizontal;

    let mut sum_left = ThumbnailSum::zeroed();
    let mut sum_right = ThumbnailSum::zeroed();
    for x in bottom..top {
        let k_left = image.get_pixel(left, x);
        sum_left.add_pixel(k_left);

        let k_right = image.get_pixel(left + 1, x);
        sum_right.add_pixel(k_right);
    }

    // Now we approximate: left/n*(1-fract) + right/n*fract
    let fact_right = fract / ((top - bottom) as f32);
    let fact_left = (1. - fract) / ((top - bottom) as f32);

    let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| {
        <S as NumCast>::from(
            fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(),
        )
        .expect("Average sample value should fit into sample type")
    };

    (
        mix_left_and_right(sum_left.0, sum_right.0),
        mix_left_and_right(sum_left.1, sum_right.1),
        mix_left_and_right(sum_left.2, sum_right.2),
        mix_left_and_right(sum_left.3, sum_right.3),
    )
}

/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
fn thumbnail_sample_fraction_vertical<I, P, S>(
    image: &I,
    left: u32,
    right: u32,
    bottom: u32,
    fraction_vertical: f32,
) -> (S, S, S, S)
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S>,
    S: Primitive + Enlargeable,
{
    let fract = fraction_vertical;

    let mut sum_bot = ThumbnailSum::zeroed();
    let mut sum_top = ThumbnailSum::zeroed();
    for x in left..right {
        let k_bot = image.get_pixel(x, bottom);
        sum_bot.add_pixel(k_bot);

        let k_top = image.get_pixel(x, bottom + 1);
        sum_top.add_pixel(k_top);
    }

    // Now we approximate: bot/n*fract + top/n*(1-fract)
    let fact_top = fract / ((right - left) as f32);
    let fact_bot = (1. - fract) / ((right - left) as f32);

    let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| {
        <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap())
            .expect("Average sample value should fit into sample type")
    };

    (
        mix_bot_and_top(sum_bot.0, sum_top.0),
        mix_bot_and_top(sum_bot.1, sum_top.1),
        mix_bot_and_top(sum_bot.2, sum_top.2),
        mix_bot_and_top(sum_bot.3, sum_top.3),
    )
}

/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
fn thumbnail_sample_fraction_both<I, P, S>(
    image: &I,
    left: u32,
    fraction_vertical: f32,
    bottom: u32,
    fraction_horizontal: f32,
) -> (S, S, S, S)
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S>,
    S: Primitive + Enlargeable,
{
    #[allow(deprecated)]
    let k_bl = image.get_pixel(left, bottom).channels4();
    #[allow(deprecated)]
    let k_tl = image.get_pixel(left, bottom + 1).channels4();
    #[allow(deprecated)]
    let k_br = image.get_pixel(left + 1, bottom).channels4();
    #[allow(deprecated)]
    let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();

    let frac_v = fraction_vertical;
    let frac_h = fraction_horizontal;

    let fact_tr = frac_v * frac_h;
    let fact_tl = frac_v * (1. - frac_h);
    let fact_br = (1. - frac_v) * frac_h;
    let fact_bl = (1. - frac_v) * (1. - frac_h);

    let mix = |br: S, tr: S, bl: S, tl: S| {
        <S as NumCast>::from(
            fact_br * br.to_f32().unwrap()
                + fact_tr * tr.to_f32().unwrap()
                + fact_bl * bl.to_f32().unwrap()
                + fact_tl * tl.to_f32().unwrap(),
        )
        .expect("Average sample value should fit into sample type")
    };

    (
        mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
        mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
        mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
        mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
    )
}

/// Perform a 3x3 box filter on the supplied image.
/// ```kernel``` is an array of the filter weights of length 9.
pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    // The kernel's input positions relative to the current pixel.
    let taps: &[(isize, isize)] = &[
        (-1, -1),
        (0, -1),
        (1, -1),
        (-1, 0),
        (0, 0),
        (1, 0),
        (-1, 1),
        (0, 1),
        (1, 1),
    ];

    let (width, height) = image.dimensions();

    let mut out = ImageBuffer::new(width, height);

    let max = S::DEFAULT_MAX_VALUE;
    let max: f32 = NumCast::from(max).unwrap();

    let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
        x if x == 0.0 => 1.0,
        sum => sum,
    };
    let sum = (sum, sum, sum, sum);

    for y in 1..height - 1 {
        for x in 1..width - 1 {
            let mut t = (0.0, 0.0, 0.0, 0.0);

            // TODO: There is no need to recalculate the kernel for each pixel.
            // Only a subtract and addition is needed for pixels after the first
            // in each row.
            for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
                let k = (k, k, k, k);
                let x0 = x as isize + a;
                let y0 = y as isize + b;

                let p = image.get_pixel(x0 as u32, y0 as u32);

                #[allow(deprecated)]
                let (k1, k2, k3, k4) = p.channels4();

                let vec: (f32, f32, f32, f32) = (
                    NumCast::from(k1).unwrap(),
                    NumCast::from(k2).unwrap(),
                    NumCast::from(k3).unwrap(),
                    NumCast::from(k4).unwrap(),
                );

                t.0 += vec.0 * k.0;
                t.1 += vec.1 * k.1;
                t.2 += vec.2 * k.2;
                t.3 += vec.3 * k.3;
            }

            let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);

            #[allow(deprecated)]
            let t = Pixel::from_channels(
                NumCast::from(clamp(t1, 0.0, max)).unwrap(),
                NumCast::from(clamp(t2, 0.0, max)).unwrap(),
                NumCast::from(clamp(t3, 0.0, max)).unwrap(),
                NumCast::from(clamp(t4, 0.0, max)).unwrap(),
            );

            out.put_pixel(x, y, t);
        }
    }

    out
}

/// Resize the supplied image to the specified dimensions.
/// ```nwidth``` and ```nheight``` are the new dimensions.
/// ```filter``` is the sampling filter to use.
pub fn resize<I: GenericImageView>(
    image: &I,
    nwidth: u32,
    nheight: u32,
    filter: FilterType,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
    I::Pixel: 'static,
    <I::Pixel as Pixel>::Subpixel: 'static,
{
    // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling
    if (nwidth, nheight) == image.dimensions() {
        let mut tmp = ImageBuffer::new(image.width(), image.height());
        tmp.copy_from(image, 0, 0).unwrap();
        return tmp;
    }

    let mut method = match filter {
        FilterType::Nearest => Filter {
            kernel: Box::new(box_kernel),
            support: 0.0,
        },
        FilterType::Triangle => Filter {
            kernel: Box::new(triangle_kernel),
            support: 1.0,
        },
        FilterType::CatmullRom => Filter {
            kernel: Box::new(catmullrom_kernel),
            support: 2.0,
        },
        FilterType::Gaussian => Filter {
            kernel: Box::new(gaussian_kernel),
            support: 3.0,
        },
        FilterType::Lanczos3 => Filter {
            kernel: Box::new(lanczos3_kernel),
            support: 3.0,
        },
    };

    // Note: tmp is not necessarily actually Rgba
    let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method);
    horizontal_sample(&tmp, nwidth, &mut method)
}

/// Performs a Gaussian blur on the supplied image.
/// ```sigma``` is a measure of how much to blur by.
pub fn blur<I: GenericImageView>(
    image: &I,
    sigma: f32,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
    I::Pixel: 'static,
{
    let sigma = if sigma <= 0.0 { 1.0 } else { sigma };

    let mut method = Filter {
        kernel: Box::new(|x| gaussian(x, sigma)),
        support: 2.0 * sigma,
    };

    let (width, height) = image.dimensions();

    // Keep width and height the same for horizontal and
    // vertical sampling.
    // Note: tmp is not necessarily actually Rgba
    let tmp: Rgba32FImage = vertical_sample(image, height, &mut method);
    horizontal_sample(&tmp, width, &mut method)
}

/// Performs an unsharpen mask on the supplied image.
/// ```sigma``` is the amount to blur the image by.
/// ```threshold``` is the threshold for minimal brightness change that will be sharpened.
///
/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    let mut tmp = blur(image, sigma);

    let max = S::DEFAULT_MAX_VALUE;
    let max: i32 = NumCast::from(max).unwrap();
    let (width, height) = image.dimensions();

    for y in 0..height {
        for x in 0..width {
            let a = image.get_pixel(x, y);
            let b = tmp.get_pixel_mut(x, y);

            let p = a.map2(b, |c, d| {
                let ic: i32 = NumCast::from(c).unwrap();
                let id: i32 = NumCast::from(d).unwrap();

                let diff = ic - id;

                if diff.abs() > threshold {
                    let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers??

                    NumCast::from(e).unwrap()
                } else {
                    c
                }
            });

            *b = p;
        }
    }

    tmp
}

#[cfg(test)]
mod tests {
    use super::{resize, sample_bilinear, sample_nearest, FilterType};
    use crate::{GenericImageView, ImageBuffer, RgbImage};
    #[cfg(feature = "benchmarks")]
    use test;

    #[bench]
    #[cfg(all(feature = "benchmarks", feature = "png"))]
    fn bench_resize(b: &mut test::Bencher) {
        use std::path::Path;
        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
        b.iter(|| {
            test::black_box(resize(&img, 200, 200, FilterType::Nearest));
        });
        b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
    }

    #[test]
    #[cfg(feature = "png")]
    fn test_resize_same_size() {
        use std::path::Path;
        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
        let resize = img.resize(img.width(), img.height(), FilterType::Triangle);
        assert!(img.pixels().eq(resize.pixels()))
    }

    #[test]
    #[cfg(feature = "png")]
    fn test_sample_bilinear() {
        use std::path::Path;
        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
        assert!(sample_bilinear(&img, 0., 0.).is_some());
        assert!(sample_bilinear(&img, 1., 0.).is_some());
        assert!(sample_bilinear(&img, 0., 1.).is_some());
        assert!(sample_bilinear(&img, 1., 1.).is_some());
        assert!(sample_bilinear(&img, 0.5, 0.5).is_some());

        assert!(sample_bilinear(&img, 1.2, 0.5).is_none());
        assert!(sample_bilinear(&img, 0.5, 1.2).is_none());
        assert!(sample_bilinear(&img, 1.2, 1.2).is_none());

        assert!(sample_bilinear(&img, -0.1, 0.2).is_none());
        assert!(sample_bilinear(&img, 0.2, -0.1).is_none());
        assert!(sample_bilinear(&img, -0.1, -0.1).is_none());
    }
    #[test]
    #[cfg(feature = "png")]
    fn test_sample_nearest() {
        use std::path::Path;
        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
        assert!(sample_nearest(&img, 0., 0.).is_some());
        assert!(sample_nearest(&img, 1., 0.).is_some());
        assert!(sample_nearest(&img, 0., 1.).is_some());
        assert!(sample_nearest(&img, 1., 1.).is_some());
        assert!(sample_nearest(&img, 0.5, 0.5).is_some());

        assert!(sample_nearest(&img, 1.2, 0.5).is_none());
        assert!(sample_nearest(&img, 0.5, 1.2).is_none());
        assert!(sample_nearest(&img, 1.2, 1.2).is_none());

        assert!(sample_nearest(&img, -0.1, 0.2).is_none());
        assert!(sample_nearest(&img, 0.2, -0.1).is_none());
        assert!(sample_nearest(&img, -0.1, -0.1).is_none());
    }
    #[test]
    fn test_sample_bilinear_correctness() {
        use crate::Rgba;
        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
            (0, 0) => Rgba([255, 0, 0, 0]),
            (0, 1) => Rgba([0, 255, 0, 0]),
            (1, 0) => Rgba([0, 0, 255, 0]),
            (1, 1) => Rgba([0, 0, 0, 255]),
            _ => panic!(),
        });
        assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4])));
        assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
        assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
        assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
        assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));

        assert_eq!(
            sample_bilinear(&img, 0.5, 0.0),
            Some(Rgba([128, 0, 128, 0]))
        );
        assert_eq!(
            sample_bilinear(&img, 0.0, 0.5),
            Some(Rgba([128, 128, 0, 0]))
        );
        assert_eq!(
            sample_bilinear(&img, 0.5, 1.0),
            Some(Rgba([0, 128, 0, 128]))
        );
        assert_eq!(
            sample_bilinear(&img, 1.0, 0.5),
            Some(Rgba([0, 0, 128, 128]))
        );
    }
    #[bench]
    #[cfg(feature = "benchmarks")]
    fn bench_sample_bilinear(b: &mut test::Bencher) {
        use crate::Rgba;
        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
            (0, 0) => Rgba([255, 0, 0, 0]),
            (0, 1) => Rgba([0, 255, 0, 0]),
            (1, 0) => Rgba([0, 0, 255, 0]),
            (1, 1) => Rgba([0, 0, 0, 255]),
            _ => panic!(),
        });
        b.iter(|| {
            sample_bilinear(&img, test::black_box(0.5), test::black_box(0.5));
        });
    }
    #[test]
    fn test_sample_nearest_correctness() {
        use crate::Rgba;
        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
            (0, 0) => Rgba([255, 0, 0, 0]),
            (0, 1) => Rgba([0, 255, 0, 0]),
            (1, 0) => Rgba([0, 0, 255, 0]),
            (1, 1) => Rgba([0, 0, 0, 255]),
            _ => panic!(),
        });

        assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
        assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
        assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
        assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));

        assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255])));
        assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0])));
        assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0])));
        assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255])));
        assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255])));
    }

    #[bench]
    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
    fn bench_resize_same_size(b: &mut test::Bencher) {
        let path = concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/tests/images/tiff/testsuite/mandrill.tiff"
        );
        let image = crate::open(path).unwrap();
        b.iter(|| {
            test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom));
        });
        b.bytes = (image.width() * image.height() * 3) as u64;
    }

    #[test]
    fn test_issue_186() {
        let img: RgbImage = ImageBuffer::new(100, 100);
        let _ = resize(&img, 50, 50, FilterType::Lanczos3);
    }

    #[bench]
    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
    fn bench_thumbnail(b: &mut test::Bencher) {
        let path = concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/tests/images/tiff/testsuite/mandrill.tiff"
        );
        let image = crate::open(path).unwrap();
        b.iter(|| {
            test::black_box(image.thumbnail(256, 256));
        });
        b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
    }

    #[bench]
    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
    fn bench_thumbnail_upsize(b: &mut test::Bencher) {
        let path = concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/tests/images/tiff/testsuite/mandrill.tiff"
        );
        let image = crate::open(path).unwrap().thumbnail(256, 256);
        b.iter(|| {
            test::black_box(image.thumbnail(512, 512));
        });
        b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
    }

    #[bench]
    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
    fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
        let path = concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/tests/images/tiff/testsuite/mandrill.tiff"
        );
        let image = crate::open(path).unwrap().thumbnail(193, 193);
        b.iter(|| {
            test::black_box(image.thumbnail(256, 256));
        });
        b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
    }

    #[test]
    #[cfg(feature = "png")]
    fn resize_transparent_image() {
        use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
        use crate::imageops::crop_imm;
        use crate::RgbaImage;

        fn assert_resize(image: &RgbaImage, filter: FilterType) {
            let resized = resize(image, 16, 16, filter);
            let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image();
            for pixel in cropped.pixels() {
                let alpha = pixel.0[3];
                assert!(
                    alpha != 254 && alpha != 253,
                    "alpha value: {}, {:?}",
                    alpha,
                    filter
                );
            }
        }

        let path = concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/tests/images/png/transparency/tp1n3p08.png"
        );
        let img = crate::open(path).unwrap();
        let rgba8 = img.as_rgba8().unwrap();
        let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3];
        for filter in filters {
            assert_resize(rgba8, *filter);
        }
    }

    #[test]
    fn bug_1600() {
        let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap();
        let result = resize(&image, 22, 22, FilterType::Lanczos3);
        assert!(result.into_raw().into_iter().any(|c| c != 0));
    }
}