1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Machinery for [task-queue](https://html.spec.whatwg.org/multipage/#task-queue).
use std::cell::Cell;
use std::collections::{HashMap, HashSet, VecDeque};
use std::default::Default;
use base::id::PipelineId;
use crossbeam_channel::{self, Receiver, Sender};
use crate::dom::bindings::cell::DomRefCell;
use crate::dom::worker::TrustedWorkerAddress;
use crate::script_runtime::ScriptThreadEventCategory;
use crate::script_thread::ScriptThread;
use crate::task::TaskBox;
use crate::task_source::TaskSourceName;
pub type QueuedTask = (
Option<TrustedWorkerAddress>,
ScriptThreadEventCategory,
Box<dyn TaskBox>,
Option<PipelineId>,
TaskSourceName,
);
/// Defining the operations used to convert from a msg T to a QueuedTask.
pub trait QueuedTaskConversion {
fn task_source_name(&self) -> Option<&TaskSourceName>;
fn pipeline_id(&self) -> Option<PipelineId>;
fn into_queued_task(self) -> Option<QueuedTask>;
fn from_queued_task(queued_task: QueuedTask) -> Self;
fn inactive_msg() -> Self;
fn wake_up_msg() -> Self;
fn is_wake_up(&self) -> bool;
}
pub struct TaskQueue<T> {
/// The original port on which the task-sources send tasks as messages.
port: Receiver<T>,
/// A sender to ensure the port doesn't block on select while there are throttled tasks.
wake_up_sender: Sender<T>,
/// A queue from which the event-loop can drain tasks.
msg_queue: DomRefCell<VecDeque<T>>,
/// A "business" counter, reset for each iteration of the event-loop
taken_task_counter: Cell<u64>,
/// Tasks that will be throttled for as long as we are "busy".
throttled: DomRefCell<HashMap<TaskSourceName, VecDeque<QueuedTask>>>,
/// Tasks for not fully-active documents.
inactive: DomRefCell<HashMap<PipelineId, VecDeque<QueuedTask>>>,
}
impl<T: QueuedTaskConversion> TaskQueue<T> {
pub fn new(port: Receiver<T>, wake_up_sender: Sender<T>) -> TaskQueue<T> {
TaskQueue {
port,
wake_up_sender,
msg_queue: DomRefCell::new(VecDeque::new()),
taken_task_counter: Default::default(),
throttled: Default::default(),
inactive: Default::default(),
}
}
/// Release previously held-back tasks for documents that are now fully-active.
/// <https://html.spec.whatwg.org/multipage/#event-loop-processing-model:fully-active>
fn release_tasks_for_fully_active_documents(
&self,
fully_active: &HashSet<PipelineId>,
) -> Vec<T> {
self.inactive
.borrow_mut()
.iter_mut()
.filter(|(pipeline_id, _)| fully_active.contains(pipeline_id))
.flat_map(|(_, inactive_queue)| {
inactive_queue
.drain(0..)
.map(|queued_task| T::from_queued_task(queued_task))
})
.collect()
}
/// Hold back tasks for currently not fully-active documents.
/// <https://html.spec.whatwg.org/multipage/#event-loop-processing-model:fully-active>
fn store_task_for_inactive_pipeline(&self, msg: T, pipeline_id: &PipelineId) {
let mut inactive = self.inactive.borrow_mut();
let inactive_queue = inactive.entry(*pipeline_id).or_default();
inactive_queue.push_back(
msg.into_queued_task()
.expect("Incoming messages should always be convertible into queued tasks"),
);
let mut msg_queue = self.msg_queue.borrow_mut();
if msg_queue.is_empty() {
// Ensure there is at least one message.
// Otherwise if the just stored inactive message
// was the first and last of this iteration,
// it will result in a spurious wake-up of the event-loop.
msg_queue.push_back(T::inactive_msg());
}
}
/// Process incoming tasks, immediately sending priority ones downstream,
/// and categorizing potential throttles.
fn process_incoming_tasks(&self, first_msg: T, fully_active: &HashSet<PipelineId>) {
// 1. Make any previously stored task from now fully-active document available.
let mut incoming = self.release_tasks_for_fully_active_documents(fully_active);
// 2. Process the first message(artifact of the fact that select always returns a message).
if !first_msg.is_wake_up() {
incoming.push(first_msg);
}
// 3. Process any other incoming message.
while let Ok(msg) = self.port.try_recv() {
if !msg.is_wake_up() {
incoming.push(msg);
}
}
// 4. Filter tasks from non-priority task-sources.
// TODO: This can use `extract_if` once that is stabilized.
let mut to_be_throttled = Vec::new();
let mut index = 0;
while index != incoming.len() {
index += 1; // By default we go to the next index of the vector.
let task_source = match incoming[index - 1].task_source_name() {
Some(task_source) => task_source,
None => continue,
};
match task_source {
TaskSourceName::PerformanceTimeline => {
to_be_throttled.push(incoming.remove(index - 1));
index -= 1; // We've removed an element, so the next has the same index.
},
_ => {
// A task that will not be throttled, start counting "business"
self.taken_task_counter
.set(self.taken_task_counter.get() + 1);
},
}
}
for msg in incoming {
// Always run "update the rendering" tasks,
// TODO: fix "fully active" concept for iframes.
if let Some(TaskSourceName::Rendering) = msg.task_source_name() {
self.msg_queue.borrow_mut().push_back(msg);
continue;
}
if let Some(pipeline_id) = msg.pipeline_id() {
if !fully_active.contains(&pipeline_id) {
self.store_task_for_inactive_pipeline(msg, &pipeline_id);
continue;
}
}
// Immediately send non-throttled tasks for processing.
self.msg_queue.borrow_mut().push_back(msg);
}
for msg in to_be_throttled {
// Categorize tasks per task queue.
let (worker, category, boxed, pipeline_id, task_source) = match msg.into_queued_task() {
Some(queued_task) => queued_task,
None => unreachable!(
"A message to be throttled should always be convertible into a queued task"
),
};
let mut throttled_tasks = self.throttled.borrow_mut();
throttled_tasks.entry(task_source).or_default().push_back((
worker,
category,
boxed,
pipeline_id,
task_source,
));
}
}
/// Reset the queue for a new iteration of the event-loop,
/// returning the port about whose readiness we want to be notified.
pub fn select(&self) -> &crossbeam_channel::Receiver<T> {
// This is a new iteration of the event-loop, so we reset the "business" counter.
self.taken_task_counter.set(0);
// We want to be notified when the script-port is ready to receive.
// Hence that's the one we need to include in the select.
&self.port
}
/// Take a message from the front of the queue, without waiting if empty.
pub fn recv(&self) -> Result<T, ()> {
self.msg_queue.borrow_mut().pop_front().ok_or(())
}
/// Take all tasks again and then run `recv()`.
pub fn take_tasks_and_recv(&self) -> Result<T, ()> {
self.take_tasks(T::wake_up_msg());
self.recv()
}
/// Drain the queue for the current iteration of the event-loop.
/// Holding-back throttles above a given high-water mark.
pub fn take_tasks(&self, first_msg: T) {
// High-watermark: once reached, throttled tasks will be held-back.
const PER_ITERATION_MAX: u64 = 5;
let fully_active = ScriptThread::get_fully_active_document_ids();
// Always first check for new tasks, but don't reset 'taken_task_counter'.
self.process_incoming_tasks(first_msg, &fully_active);
let mut throttled = self.throttled.borrow_mut();
let mut throttled_length: usize = throttled.values().map(|queue| queue.len()).sum();
let task_source_names = TaskSourceName::all();
let mut task_source_cycler = task_source_names.iter().cycle();
// "being busy", is defined as having more than x tasks for this loop's iteration.
// As long as we're not busy, and there are throttled tasks left:
loop {
let max_reached = self.taken_task_counter.get() > PER_ITERATION_MAX;
let none_left = throttled_length == 0;
match (max_reached, none_left) {
(_, true) => break,
(true, false) => {
// We have reached the high-watermark for this iteration of the event-loop,
// yet also have throttled messages left in the queue.
// Ensure the select wakes up in the next iteration of the event-loop
let _ = self.wake_up_sender.send(T::wake_up_msg());
break;
},
(false, false) => {
// Cycle through non-priority task sources, taking one throttled task from each.
let task_source = task_source_cycler.next().unwrap();
let throttled_queue = match throttled.get_mut(task_source) {
Some(queue) => queue,
None => continue,
};
let queued_task = match throttled_queue.pop_front() {
Some(queued_task) => queued_task,
None => continue,
};
let msg = T::from_queued_task(queued_task);
// Hold back tasks for currently inactive documents.
if let Some(pipeline_id) = msg.pipeline_id() {
if !fully_active.contains(&pipeline_id) {
self.store_task_for_inactive_pipeline(msg, &pipeline_id);
// Reduce the length of throttles,
// but don't add the task to "msg_queue",
// and neither increment "taken_task_counter".
throttled_length -= 1;
continue;
}
}
// Make the task available for the event-loop to handle as a message.
self.msg_queue.borrow_mut().push_back(msg);
self.taken_task_counter
.set(self.taken_task_counter.get() + 1);
throttled_length -= 1;
},
}
}
}
}