1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Float layout.
//!
//! See CSS 2.1 § 9.5.1: <https://www.w3.org/TR/CSS2/visuren.html#float-position>

use std::collections::VecDeque;
use std::fmt::Debug;
use std::mem;
use std::ops::Range;

use app_units::{Au, MAX_AU, MIN_AU};
use euclid::num::Zero;
use serde::Serialize;
use servo_arc::Arc;
use style::computed_values::float::T as FloatProperty;
use style::computed_values::position::T as Position;
use style::logical_geometry::WritingMode;
use style::properties::ComputedValues;
use style::values::computed::Clear as StyleClear;
use style::values::specified::text::TextDecorationLine;

use crate::context::LayoutContext;
use crate::dom::NodeExt;
use crate::dom_traversal::{Contents, NodeAndStyleInfo};
use crate::formatting_contexts::IndependentFormattingContext;
use crate::fragment_tree::{BoxFragment, CollapsedMargin};
use crate::geom::{LogicalRect, LogicalVec2, ToLogical};
use crate::positioned::{relative_adjustement, PositioningContext};
use crate::style_ext::{DisplayInside, PaddingBorderMargin};
use crate::ContainingBlock;

/// A floating box.
#[derive(Debug, Serialize)]
pub(crate) struct FloatBox {
    /// The formatting context that makes up the content of this box.
    pub contents: IndependentFormattingContext,
}

/// `FloatContext` positions floats relative to the independent block formatting
/// context which contains the floating elements. The Fragment tree positions
/// elements relative to their containing blocks. This data structure is used to
/// help map between these two coordinate systems.
#[derive(Clone, Copy, Debug)]
pub struct ContainingBlockPositionInfo {
    /// The distance from the block start of the independent block formatting
    /// context that contains the floats and the block start of the current
    /// containing block, excluding uncollapsed block start margins. Note that
    /// this does not include uncollapsed block start margins because we don't
    /// know the value of collapsed margins until we lay out children.
    pub(crate) block_start: Au,
    /// Any uncollapsed block start margins that we have collected between the
    /// block start of the float containing independent block formatting context
    /// and this containing block, including for this containing block.
    pub(crate) block_start_margins_not_collapsed: CollapsedMargin,
    /// The distance from the inline start position of the float containing
    /// independent formatting context and the inline start of this containing
    /// block.
    pub inline_start: Au,
    /// The offset from the inline start position of the float containing
    /// independent formatting context to the inline end of this containing
    /// block.
    pub inline_end: Au,
}

impl ContainingBlockPositionInfo {
    pub fn new_with_inline_offsets(inline_start: Au, inline_end: Au) -> Self {
        Self {
            block_start: Au::zero(),
            block_start_margins_not_collapsed: CollapsedMargin::zero(),
            inline_start,
            inline_end,
        }
    }
}

/// This data strucure is used to try to place non-floating content among float content.
/// This is used primarily to place replaced content and independent formatting contexts
/// next to floats, as the specifcation dictates.
pub(crate) struct PlacementAmongFloats<'a> {
    /// The [FloatContext] to use for this placement.
    float_context: &'a FloatContext,
    /// The current bands we are considering for this placement.
    current_bands: VecDeque<FloatBand>,
    /// The next band, needed to know the height of the last band in current_bands.
    next_band: FloatBand,
    /// The size of the object to place.
    object_size: LogicalVec2<Au>,
    /// The minimum position in the block direction for the placement. Objects should not
    /// be placed before this point.
    ceiling: Au,
    /// The inline position where the object would be if there were no floats. The object
    /// can be placed after it due to floats, but not before it.
    min_inline_start: Au,
    /// The maximum inline position that the object can attain when avoiding floats.
    max_inline_end: Au,
}

impl<'a> PlacementAmongFloats<'a> {
    pub(crate) fn new(
        float_context: &'a FloatContext,
        ceiling: Au,
        object_size: LogicalVec2<Au>,
        pbm: &PaddingBorderMargin,
    ) -> Self {
        let mut ceiling_band = float_context.bands.find(ceiling).unwrap();
        let (current_bands, next_band) = if ceiling == MAX_AU {
            (VecDeque::new(), ceiling_band)
        } else {
            ceiling_band.top = ceiling;
            let current_bands = VecDeque::from([ceiling_band]);
            let next_band = float_context.bands.find_next(ceiling).unwrap();
            (current_bands, next_band)
        };
        let min_inline_start = float_context.containing_block_info.inline_start +
            pbm.margin.inline_start.auto_is(Au::zero);
        let max_inline_end = (float_context.containing_block_info.inline_end -
            pbm.margin.inline_end.auto_is(Au::zero))
        .max(min_inline_start + object_size.inline);
        PlacementAmongFloats {
            float_context,
            current_bands,
            next_band,
            object_size,
            ceiling,
            min_inline_start,
            max_inline_end,
        }
    }

    /// The top of the bands under consideration. This is initially the ceiling provided
    /// during creation of this [`PlacementAmongFloats`], but may be larger if the top
    /// band is discarded.
    fn top_of_bands(&self) -> Option<Au> {
        self.current_bands.front().map(|band| band.top)
    }

    /// The height of the bands under consideration.
    fn current_bands_height(&self) -> Au {
        if self.next_band.top == MAX_AU {
            // Treat MAX_AU as infinity.
            MAX_AU
        } else {
            let top = self
                .top_of_bands()
                .expect("Should have bands before reaching the end");
            self.next_band.top - top
        }
    }

    /// Add a single band to the bands under consideration and calculate the new
    /// [`PlacementAmongFloats::next_band`].
    fn add_one_band(&mut self) {
        assert!(self.next_band.top != MAX_AU);
        self.current_bands.push_back(self.next_band);
        self.next_band = self
            .float_context
            .bands
            .find_next(self.next_band.top)
            .unwrap();
    }

    /// Adds bands to the set of bands under consideration until their block size is at
    /// least large enough to contain the block size of the object being placed.
    fn accumulate_enough_bands_for_block_size(&mut self) {
        while self.current_bands_height() < self.object_size.block {
            self.add_one_band();
        }
    }

    /// Find the start and end of the inline space provided by the current set of bands
    /// under consideration.
    fn calculate_inline_start_and_end(&self) -> (Au, Au) {
        let mut max_inline_start = self.min_inline_start;
        let mut min_inline_end = self.max_inline_end;
        for band in self.current_bands.iter() {
            if let Some(inline_start) = band.inline_start {
                max_inline_start.max_assign(inline_start);
            }
            if let Some(inline_end) = band.inline_end {
                min_inline_end.min_assign(inline_end);
            }
        }
        (max_inline_start, min_inline_end)
    }

    /// Find the total inline size provided by the current set of bands under consideration.
    fn calculate_viable_inline_size(&self) -> Au {
        let (inline_start, inline_end) = self.calculate_inline_start_and_end();
        inline_end - inline_start
    }

    fn try_place_once(&mut self) -> Option<LogicalRect<Au>> {
        assert!(!self.current_bands.is_empty());
        self.accumulate_enough_bands_for_block_size();
        let (inline_start, inline_end) = self.calculate_inline_start_and_end();
        let available_inline_size = inline_end - inline_start;
        if available_inline_size < self.object_size.inline {
            return None;
        }
        Some(LogicalRect {
            start_corner: LogicalVec2 {
                inline: inline_start,
                block: self.top_of_bands().unwrap(),
            },
            size: LogicalVec2 {
                inline: available_inline_size,
                block: self.current_bands_height(),
            },
        })
    }

    /// Checks if we either have bands or we have gone past all of them.
    /// This is an invariant that should hold, otherwise we are in a broken state.
    fn has_bands_or_at_end(&self) -> bool {
        !self.current_bands.is_empty() || self.next_band.top == MAX_AU
    }

    fn pop_front_band_ensuring_has_bands_or_at_end(&mut self) {
        self.current_bands.pop_front();
        if !self.has_bands_or_at_end() {
            self.add_one_band();
        }
    }

    /// Run the placement algorithm for this [PlacementAmongFloats].
    pub(crate) fn place(&mut self) -> LogicalRect<Au> {
        debug_assert!(self.has_bands_or_at_end());
        while !self.current_bands.is_empty() {
            if let Some(result) = self.try_place_once() {
                return result;
            }
            self.pop_front_band_ensuring_has_bands_or_at_end();
        }
        debug_assert!(self.has_bands_or_at_end());

        // We could not fit the object in among the floats, so we place it as if it
        // cleared all floats.
        LogicalRect {
            start_corner: LogicalVec2 {
                inline: self.min_inline_start,
                block: self
                    .ceiling
                    .max(self.float_context.clear_inline_start_position)
                    .max(self.float_context.clear_inline_end_position),
            },
            size: LogicalVec2 {
                inline: self.max_inline_end - self.min_inline_start,
                block: MAX_AU,
            },
        }
    }

    /// After placing a table and then laying it out, it may turn out wider than what
    /// we initially expected. This method takes care of updating the data so that
    /// the next place() can find the right area for the new size.
    /// Note that if the new size is smaller, placement won't backtrack to consider
    /// areas that weren't big enough for the old size.
    pub(crate) fn set_inline_size(&mut self, inline_size: Au, pbm: &PaddingBorderMargin) {
        self.object_size.inline = inline_size;
        self.max_inline_end = (self.float_context.containing_block_info.inline_end -
            pbm.margin.inline_end.auto_is(Au::zero))
        .max(self.min_inline_start + inline_size);
    }

    /// After placing an object with `height: auto` (and using the minimum inline and
    /// block size as the object size) and then laying it out, try to fit the object into
    /// the current set of bands, given block size after layout and the available inline
    /// space from the original placement. This will return true if the object fits at the
    /// original placement location or false if the placement and layout must be run again
    /// (with this [PlacementAmongFloats]).
    pub(crate) fn try_to_expand_for_auto_block_size(
        &mut self,
        block_size_after_layout: Au,
        size_from_placement: &LogicalVec2<Au>,
    ) -> bool {
        debug_assert!(self.has_bands_or_at_end());
        debug_assert_eq!(size_from_placement.block, self.current_bands_height());
        debug_assert_eq!(
            size_from_placement.inline,
            self.calculate_viable_inline_size()
        );

        // If the object after layout fits into the originally calculated placement, then
        // it fits without any more work.
        if block_size_after_layout <= size_from_placement.block {
            return true;
        }

        // Keep searching until we have found an area with enough height
        // to contain the block after layout.
        let old_num_bands = self.current_bands.len();
        assert!(old_num_bands > 0);
        while self.current_bands_height() < block_size_after_layout {
            self.add_one_band();

            // If the new inline size is narrower, we must stop and run layout again.
            // Normally, a narrower block size means a bigger height, but in some
            // circumstances, such as when aspect ratio is used a narrower inline size
            // can counter-interuitively lead to a smaller block size after layout!
            let available_inline_size = self.calculate_viable_inline_size();
            if available_inline_size < size_from_placement.inline {
                // If the inline size becomes smaller than the minimum inline size, then
                // the current set of bands will never work and we must try removing the
                // first and searching starting from the second.
                if available_inline_size < self.object_size.inline {
                    self.next_band = self.current_bands[old_num_bands];
                    self.current_bands.truncate(old_num_bands);
                    self.pop_front_band_ensuring_has_bands_or_at_end();
                }
                return false;
            }
        }
        true
    }
}

/// Data kept during layout about the floats in a given block formatting context.
///
/// This is a persistent data structure. Each float has its own private copy of the float context,
/// although such copies may share portions of the `bands` tree.
#[derive(Clone, Debug)]
pub struct FloatContext {
    /// A persistent AA tree of float bands.
    ///
    /// This tree is immutable; modification operations return the new tree, which may share nodes
    /// with previous versions of the tree.
    pub bands: FloatBandTree,
    /// The block-direction "ceiling" defined by the placement of other floated content of
    /// this FloatContext. No new floats can be placed at a lower block start than this value.
    pub ceiling_from_floats: Au,
    /// The block-direction "ceiling" defined by the placement of non-floated content that
    /// precedes floated content in the document. Note that this may actually decrease as
    /// content is laid out in the case that content overflows its container.
    pub ceiling_from_non_floats: Au,
    /// Details about the position of the containing block relative to the
    /// independent block formatting context that contains all of the floats
    /// this `FloatContext` positions.
    pub containing_block_info: ContainingBlockPositionInfo,
    /// The (logically) lowest margin edge of the last inline-start float.
    pub clear_inline_start_position: Au,
    /// The (logically) lowest margin edge of the last inline-end float.
    pub clear_inline_end_position: Au,
}

impl FloatContext {
    /// Returns a new float context representing a containing block with the given content
    /// inline-size.
    pub fn new(max_inline_size: Au) -> Self {
        let mut bands = FloatBandTree::new();
        bands = bands.insert(FloatBand {
            top: MIN_AU,
            inline_start: None,
            inline_end: None,
        });
        bands = bands.insert(FloatBand {
            top: MAX_AU,
            inline_start: None,
            inline_end: None,
        });
        FloatContext {
            bands,
            ceiling_from_floats: Au::zero(),
            ceiling_from_non_floats: Au::zero(),
            containing_block_info: ContainingBlockPositionInfo::new_with_inline_offsets(
                Au::zero(),
                max_inline_size,
            ),
            clear_inline_start_position: Au::zero(),
            clear_inline_end_position: Au::zero(),
        }
    }

    /// (Logically) lowers the ceiling to at least `new_ceiling` units.
    ///
    /// If the ceiling is already logically lower (i.e. larger) than this, does nothing.
    pub fn set_ceiling_from_non_floats(&mut self, new_ceiling: Au) {
        self.ceiling_from_non_floats = new_ceiling;
    }

    /// The "ceiling" used for float placement. This is the minimum block position value
    /// that should be used for placing any new float.
    fn ceiling(&mut self) -> Au {
        self.ceiling_from_floats.max(self.ceiling_from_non_floats)
    }

    /// Determines where a float with the given placement would go, but leaves the float context
    /// unmodified. Returns the start corner of its margin box.
    ///
    /// This should be used for placing inline elements and block formatting contexts so that they
    /// don't collide with floats.
    pub(crate) fn place_object(&self, object: &PlacementInfo, ceiling: Au) -> LogicalVec2<Au> {
        let ceiling = match object.clear {
            Clear::None => ceiling,
            Clear::InlineStart => ceiling.max(self.clear_inline_start_position),
            Clear::InlineEnd => ceiling.max(self.clear_inline_end_position),
            Clear::Both => ceiling
                .max(self.clear_inline_start_position)
                .max(self.clear_inline_end_position),
        };

        // Find the first band this float fits in.
        let mut first_band = self.bands.find(ceiling).unwrap();
        while !first_band.object_fits(object, &self.containing_block_info) {
            let next_band = self.bands.find_next(first_band.top).unwrap();
            if next_band.top == MAX_AU {
                break;
            }
            first_band = next_band;
        }

        // The object fits perfectly here. Place it.
        match object.side {
            FloatSide::InlineStart => {
                let inline_start_object_edge = match first_band.inline_start {
                    Some(inline_start) => inline_start.max(self.containing_block_info.inline_start),
                    None => self.containing_block_info.inline_start,
                };
                LogicalVec2 {
                    inline: inline_start_object_edge,
                    block: first_band.top.max(ceiling),
                }
            },
            FloatSide::InlineEnd => {
                let inline_end_object_edge = match first_band.inline_end {
                    Some(inline_end) => inline_end.min(self.containing_block_info.inline_end),
                    None => self.containing_block_info.inline_end,
                };
                LogicalVec2 {
                    inline: inline_end_object_edge - object.size.inline,
                    block: first_band.top.max(ceiling),
                }
            },
        }
    }

    /// Places a new float and adds it to the list. Returns the start corner of its margin box.
    pub fn add_float(&mut self, new_float: &PlacementInfo) -> LogicalVec2<Au> {
        // Place the float.
        let ceiling = self.ceiling();
        let new_float_origin = self.place_object(new_float, ceiling);
        let new_float_extent = match new_float.side {
            FloatSide::InlineStart => new_float_origin.inline + new_float.size.inline,
            FloatSide::InlineEnd => new_float_origin.inline,
        };

        let new_float_rect = LogicalRect {
            start_corner: new_float_origin,
            // If this float has a negative margin, we should only consider its non-negative
            // block size contribution when determing where to place it. When the margin is
            // so negative that it's placed completely above the current float ceiling, then
            // we should position it as if it had zero block size.
            size: LogicalVec2 {
                inline: new_float.size.inline.max(Au::zero()),
                block: new_float.size.block.max(Au::zero()),
            },
        };

        // Update clear.
        match new_float.side {
            FloatSide::InlineStart => {
                self.clear_inline_start_position
                    .max_assign(new_float_rect.max_block_position());
            },
            FloatSide::InlineEnd => {
                self.clear_inline_end_position
                    .max_assign(new_float_rect.max_block_position());
            },
        }

        // Split the first band if necessary.
        let mut first_band = self.bands.find(new_float_rect.start_corner.block).unwrap();
        first_band.top = new_float_rect.start_corner.block;
        self.bands = self.bands.insert(first_band);

        // Split the last band if necessary.
        let mut last_band = self
            .bands
            .find(new_float_rect.max_block_position())
            .unwrap();
        last_band.top = new_float_rect.max_block_position();
        self.bands = self.bands.insert(last_band);

        // Update all bands that contain this float to reflect the new available size.
        let block_range = new_float_rect.start_corner.block..new_float_rect.max_block_position();
        self.bands = self
            .bands
            .set_range(&block_range, new_float.side, new_float_extent);

        // CSS 2.1 § 9.5.1 rule 6: The outer top of a floating box may not be higher than the outer
        // top of any block or floated box generated by an element earlier in the source document.
        self.ceiling_from_floats
            .max_assign(new_float_rect.start_corner.block);

        new_float_rect.start_corner
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Clear {
    None,
    InlineStart,
    InlineEnd,
    Both,
}

impl Clear {
    pub(crate) fn from_style_and_container_writing_mode(
        style: &ComputedValues,
        container_writing_mode: WritingMode,
    ) -> Self {
        match style.get_box().clear {
            StyleClear::None => Self::None,
            StyleClear::Both => Self::Both,
            StyleClear::InlineStart => Self::InlineStart,
            StyleClear::InlineEnd => Self::InlineEnd,
            StyleClear::Left if container_writing_mode.is_bidi_ltr() => Self::InlineStart,
            StyleClear::Left => Self::InlineEnd,
            StyleClear::Right if container_writing_mode.is_bidi_ltr() => Self::InlineEnd,
            StyleClear::Right => Self::InlineStart,
        }
    }
}

/// Information needed to place a float so that it doesn't collide with existing floats.
#[derive(Clone, Debug)]
pub struct PlacementInfo {
    /// The *margin* box size of the float.
    pub size: LogicalVec2<Au>,
    /// Which side of the containing block the float is aligned to.
    pub side: FloatSide,
    /// Which side or sides to clear existing floats on.
    pub clear: Clear,
}

/// Whether the float is aligned to the inline-start or inline-end side of its containing block.
///
/// See CSS 2.1 § 9.5.1: <https://www.w3.org/TR/CSS2/visuren.html#float-position>
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum FloatSide {
    InlineStart,
    InlineEnd,
}

/// Internal data structure that describes a nonoverlapping vertical region in which floats may be placed.
/// Floats must go between "inline-start edge + `inline_start`" and "inline-end edge - `inline_end`".
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct FloatBand {
    /// The logical vertical position of the top of this band.
    pub top: Au,
    /// The distance from the inline-start edge of the block formatting context to the first legal
    /// (logically) horizontal position where floats may be placed. If `None`, there are no floats
    /// to the inline-start; distinguishing between the cases of "a zero-width float is present" and
    /// "no floats at all are present" is necessary to, for example, clear past zero-width floats.
    pub inline_start: Option<Au>,
    /// The distance from the *inline-start* edge of the block formatting context to the last legal
    /// (logically) horizontal position where floats may be placed. If `None`, there are no floats
    /// to the inline-end; distinguishing between the cases of "a zero-width float is present" and
    /// "no floats at all are present" is necessary to, for example, clear past zero-width floats.
    pub inline_end: Option<Au>,
}

impl FloatSide {
    pub(crate) fn from_style_and_container_writing_mode(
        style: &ComputedValues,
        container_writing_mode: WritingMode,
    ) -> Option<FloatSide> {
        Some(match style.get_box().float {
            FloatProperty::None => return None,
            FloatProperty::InlineStart => Self::InlineStart,
            FloatProperty::InlineEnd => Self::InlineEnd,
            FloatProperty::Left if container_writing_mode.is_bidi_ltr() => Self::InlineStart,
            FloatProperty::Left => Self::InlineEnd,
            FloatProperty::Right if container_writing_mode.is_bidi_ltr() => Self::InlineEnd,
            FloatProperty::Right => Self::InlineStart,
        })
    }
}

impl FloatBand {
    /// Determines whether an object fits in a band. Returns true if the object fits.
    fn object_fits(&self, object: &PlacementInfo, walls: &ContainingBlockPositionInfo) -> bool {
        match object.side {
            FloatSide::InlineStart => {
                // Compute a candidate inline-start position for the object.
                let candidate_inline_start = match self.inline_start {
                    None => walls.inline_start,
                    Some(inline_start) => inline_start.max(walls.inline_start),
                };

                // If this band has an existing inline-start float in it, then make sure that the object
                // doesn't stick out past the inline-end edge (rule 7).
                if self.inline_start.is_some() &&
                    candidate_inline_start + object.size.inline > walls.inline_end
                {
                    return false;
                }

                // If this band has an existing inline-end float in it, make sure we don't collide with
                // it (rule 3).
                match self.inline_end {
                    None => true,
                    Some(inline_end) => object.size.inline <= inline_end - candidate_inline_start,
                }
            },

            FloatSide::InlineEnd => {
                // Compute a candidate inline-end position for the object.
                let candidate_inline_end = match self.inline_end {
                    None => walls.inline_end,
                    Some(inline_end) => inline_end.min(walls.inline_end),
                };

                // If this band has an existing inline-end float in it, then make sure that the new
                // object doesn't stick out past the inline-start edge (rule 7).
                if self.inline_end.is_some() &&
                    candidate_inline_end - object.size.inline < walls.inline_start
                {
                    return false;
                }

                // If this band has an existing inline-start float in it, make sure we don't collide with
                // it (rule 3).
                match self.inline_start {
                    None => true,
                    Some(inline_start) => object.size.inline <= candidate_inline_end - inline_start,
                }
            },
        }
    }
}

// Float band storage

/// A persistent AA tree for float band storage.
///
/// Bands here are nonoverlapping, and there is guaranteed to be a band at block-position 0 and
/// another band at block-position infinity.
///
/// AA trees were chosen for simplicity.
///
/// See: <https://en.wikipedia.org/wiki/AA_tree>
///      <https://arxiv.org/pdf/1412.4882.pdf>
#[derive(Clone, Debug)]
pub struct FloatBandTree {
    pub root: FloatBandLink,
}

/// A single edge (or lack thereof) in the float band tree.
#[derive(Clone, Debug)]
pub struct FloatBandLink(pub Option<Arc<FloatBandNode>>);

/// A single node in the float band tree.
#[derive(Clone, Debug)]
pub struct FloatBandNode {
    /// The actual band.
    pub band: FloatBand,
    /// The left child.
    pub left: FloatBandLink,
    /// The right child.
    pub right: FloatBandLink,
    /// The level, which increases as you go up the tree.
    ///
    /// This value is needed for tree balancing.
    pub level: i32,
}

impl FloatBandTree {
    /// Creates a new float band tree.
    pub fn new() -> FloatBandTree {
        FloatBandTree {
            root: FloatBandLink(None),
        }
    }

    /// Returns the first band whose top is less than or equal to the given `block_position`.
    pub fn find(&self, block_position: Au) -> Option<FloatBand> {
        self.root.find(block_position)
    }

    /// Returns the first band whose top is strictly greater than to the given `block_position`.
    pub fn find_next(&self, block_position: Au) -> Option<FloatBand> {
        self.root.find_next(block_position)
    }

    /// Sets the side values of all bands within the given half-open range to be at least
    /// `new_value`.
    #[must_use]
    pub fn set_range(&self, range: &Range<Au>, side: FloatSide, new_value: Au) -> FloatBandTree {
        FloatBandTree {
            root: FloatBandLink(
                self.root
                    .0
                    .as_ref()
                    .map(|root| root.set_range(range, side, new_value)),
            ),
        }
    }

    /// Inserts a new band into the tree. If the band has the same level as a pre-existing one,
    /// replaces the existing band with the new one.
    #[must_use]
    pub fn insert(&self, band: FloatBand) -> FloatBandTree {
        FloatBandTree {
            root: self.root.insert(band),
        }
    }
}

impl Default for FloatBandTree {
    fn default() -> Self {
        Self::new()
    }
}

impl FloatBandNode {
    fn new(band: FloatBand) -> FloatBandNode {
        FloatBandNode {
            band,
            left: FloatBandLink(None),
            right: FloatBandLink(None),
            level: 1,
        }
    }

    /// Sets the side values of all bands within the given half-open range to be at least
    /// `new_value`.
    fn set_range(&self, range: &Range<Au>, side: FloatSide, new_value: Au) -> Arc<FloatBandNode> {
        let mut new_band = self.band;
        if self.band.top >= range.start && self.band.top < range.end {
            match side {
                FloatSide::InlineStart => {
                    new_band.inline_start = match new_band.inline_start {
                        Some(old_value) => Some(std::cmp::max(old_value, new_value)),
                        None => Some(new_value),
                    };
                },
                FloatSide::InlineEnd => {
                    new_band.inline_end = match new_band.inline_end {
                        Some(old_value) => Some(std::cmp::min(old_value, new_value)),
                        None => Some(new_value),
                    };
                },
            }
        }

        let new_left = match self.left.0 {
            None => FloatBandLink(None),
            Some(ref old_left) if range.start < new_band.top => {
                FloatBandLink(Some(old_left.set_range(range, side, new_value)))
            },
            Some(ref old_left) => FloatBandLink(Some((*old_left).clone())),
        };

        let new_right = match self.right.0 {
            None => FloatBandLink(None),
            Some(ref old_right) if range.end > new_band.top => {
                FloatBandLink(Some(old_right.set_range(range, side, new_value)))
            },
            Some(ref old_right) => FloatBandLink(Some((*old_right).clone())),
        };

        Arc::new(FloatBandNode {
            band: new_band,
            left: new_left,
            right: new_right,
            level: self.level,
        })
    }
}

impl FloatBandLink {
    /// Returns the first band whose top is less than or equal to the given `block_position`.
    fn find(&self, block_position: Au) -> Option<FloatBand> {
        let this = match self.0 {
            None => return None,
            Some(ref node) => node,
        };

        if block_position < this.band.top {
            return this.left.find(block_position);
        }

        // It's somewhere in this subtree, but we aren't sure whether it's here or in the right
        // subtree.
        if let Some(band) = this.right.find(block_position) {
            return Some(band);
        }

        Some(this.band)
    }

    /// Returns the first band whose top is strictly greater than the given `block_position`.
    fn find_next(&self, block_position: Au) -> Option<FloatBand> {
        let this = match self.0 {
            None => return None,
            Some(ref node) => node,
        };

        if block_position >= this.band.top {
            return this.right.find_next(block_position);
        }

        // It's somewhere in this subtree, but we aren't sure whether it's here or in the left
        // subtree.
        if let Some(band) = this.left.find_next(block_position) {
            return Some(band);
        }

        Some(this.band)
    }

    /// Inserts a new band into the tree. If the band has the same level as a pre-existing one,
    /// replaces the existing band with the new one.
    fn insert(&self, band: FloatBand) -> FloatBandLink {
        let mut this = match self.0 {
            None => return FloatBandLink(Some(Arc::new(FloatBandNode::new(band)))),
            Some(ref this) => (**this).clone(),
        };

        if band.top < this.band.top {
            this.left = this.left.insert(band);
            return FloatBandLink(Some(Arc::new(this))).skew().split();
        }
        if band.top > this.band.top {
            this.right = this.right.insert(band);
            return FloatBandLink(Some(Arc::new(this))).skew().split();
        }

        this.band = band;
        FloatBandLink(Some(Arc::new(this)))
    }

    /// Corrects tree balance:
    ///```text
    ///         T          L
    ///        / \        / \
    ///       L   R  →   A   T      if level(T) = level(L)
    ///      / \            / \
    ///     A   B          B   R
    /// ```
    fn skew(&self) -> FloatBandLink {
        if let Some(ref this) = self.0 {
            if let Some(ref left) = this.left.0 {
                if this.level == left.level {
                    return FloatBandLink(Some(Arc::new(FloatBandNode {
                        level: this.level,
                        left: left.left.clone(),
                        band: left.band,
                        right: FloatBandLink(Some(Arc::new(FloatBandNode {
                            level: this.level,
                            left: left.right.clone(),
                            band: this.band,
                            right: this.right.clone(),
                        }))),
                    })));
                }
            }
        }

        (*self).clone()
    }

    /// Corrects tree balance:
    ///```text
    ///         T            R
    ///        / \          / \
    ///       A   R   →    T   X    if level(T) = level(X)
    ///          / \      / \
    ///         B   X    A   B
    /// ```
    fn split(&self) -> FloatBandLink {
        if let Some(ref this) = self.0 {
            if let Some(ref right) = this.right.0 {
                if let Some(ref right_right) = right.right.0 {
                    if this.level == right_right.level {
                        return FloatBandLink(Some(Arc::new(FloatBandNode {
                            level: this.level + 1,
                            left: FloatBandLink(Some(Arc::new(FloatBandNode {
                                level: this.level,
                                left: this.left.clone(),
                                band: this.band,
                                right: right.left.clone(),
                            }))),
                            band: right.band,
                            right: right.right.clone(),
                        })));
                    }
                }
            }
        }

        (*self).clone()
    }
}

impl FloatBox {
    /// Creates a new float box.
    pub fn construct<'dom>(
        context: &LayoutContext,
        info: &NodeAndStyleInfo<impl NodeExt<'dom>>,
        display_inside: DisplayInside,
        contents: Contents,
    ) -> Self {
        Self {
            contents: IndependentFormattingContext::construct(
                context,
                info,
                display_inside,
                contents,
                // Text decorations are not propagated to any out-of-flow descendants
                TextDecorationLine::NONE,
            ),
        }
    }

    /// Lay out this float box and its children. Note that the position will be relative to
    /// the float containing block formatting context. A later step adjusts the position
    /// to be relative to the containing block.
    pub fn layout(
        &self,
        layout_context: &LayoutContext,
        positioning_context: &mut PositioningContext,
        containing_block: &ContainingBlock,
    ) -> BoxFragment {
        let style = self.contents.style().clone();
        positioning_context.layout_maybe_position_relative_fragment(
            layout_context,
            containing_block,
            &style,
            |positioning_context| {
                self.contents
                    .layout_float_or_atomic_inline(
                        layout_context,
                        positioning_context,
                        containing_block,
                    )
                    .fragment
            },
        )
    }
}

/// Layout state that we maintain when doing sequential traversals of the box tree in document
/// order.
///
/// This data is only needed for float placement and float interaction, and as such is only present
/// if the current block formatting context contains floats.
///
/// All coordinates here are relative to the start of the nearest ancestor block formatting context.
///
/// This structure is expected to be cheap to clone, in order to allow for "snapshots" that enable
/// restarting layout at any point in the tree.
#[derive(Clone)]
pub(crate) struct SequentialLayoutState {
    /// Holds all floats in this block formatting context.
    pub(crate) floats: FloatContext,
    /// The (logically) bottom border edge or top padding edge of the last in-flow block. Floats
    /// cannot be placed above this line.
    ///
    /// This is often, but not always, the same as the float ceiling. The float ceiling can be lower
    /// than this value because this value is calculated based on in-flow boxes only, while
    /// out-of-flow floats can affect the ceiling as well (see CSS 2.1 § 9.5.1 rule 6).
    pub(crate) bfc_relative_block_position: Au,
    /// Any collapsible margins that we've encountered after `bfc_relative_block_position`.
    pub(crate) current_margin: CollapsedMargin,
}

impl SequentialLayoutState {
    /// Creates a new empty `SequentialLayoutState`.
    pub(crate) fn new(max_inline_size: Au) -> SequentialLayoutState {
        SequentialLayoutState {
            floats: FloatContext::new(max_inline_size),
            current_margin: CollapsedMargin::zero(),
            bfc_relative_block_position: Au::zero(),
        }
    }

    /// Moves the current block position (logically) down by `block_distance`. This may be
    /// a negative advancement in the case that that block content overflows its
    /// container, when the container is adjusting the block position of the
    /// [`SequentialLayoutState`] after processing its overflowing content.
    ///
    /// Floats may not be placed higher than the current block position.
    pub(crate) fn advance_block_position(&mut self, block_distance: Au) {
        self.bfc_relative_block_position += block_distance;
        self.floats
            .set_ceiling_from_non_floats(self.bfc_relative_block_position);
    }

    /// Replace the entire [ContainingBlockPositionInfo] data structure stored
    /// by this [SequentialLayoutState]. Return the old data structure.
    pub(crate) fn replace_containing_block_position_info(
        &mut self,
        mut position_info: ContainingBlockPositionInfo,
    ) -> ContainingBlockPositionInfo {
        mem::swap(&mut position_info, &mut self.floats.containing_block_info);
        position_info
    }

    /// Return the current block position in the float containing block formatting
    /// context and any uncollapsed block margins.
    pub(crate) fn current_block_position_including_margins(&self) -> Au {
        self.bfc_relative_block_position + self.current_margin.solve()
    }

    /// Collapses margins, moving the block position down by the collapsed value of `current_margin`
    /// and resetting `current_margin` to zero.
    ///
    /// Call this method before laying out children when it is known that the start margin of the
    /// current fragment can't collapse with the margins of any of its children.
    pub(crate) fn collapse_margins(&mut self) {
        self.advance_block_position(self.current_margin.solve());
        self.current_margin = CollapsedMargin::zero();
    }

    /// Computes the position of the block-start border edge of an element
    /// with the provided `block_start_margin`, assuming no clearance.
    pub(crate) fn position_without_clearance(&self, block_start_margin: &CollapsedMargin) -> Au {
        // Adjoin `current_margin` and `block_start_margin` since there is no clearance.
        self.bfc_relative_block_position + self.current_margin.adjoin(block_start_margin).solve()
    }

    /// Computes the position of the block-start border edge of an element
    /// with the provided `block_start_margin`, assuming a clearance of 0px.
    pub(crate) fn position_with_zero_clearance(&self, block_start_margin: &CollapsedMargin) -> Au {
        // Clearance prevents `current_margin` and `block_start_margin` from being
        // adjoining, so we need to solve them separately and then sum.
        self.bfc_relative_block_position + self.current_margin.solve() + block_start_margin.solve()
    }

    /// Returns the block-end outer edge of the lowest float that is to be cleared (if any)
    /// by an element with the provided `clear` and `block_start_margin`.
    pub(crate) fn calculate_clear_position(
        &self,
        clear: Clear,
        block_start_margin: &CollapsedMargin,
    ) -> Option<Au> {
        if clear == Clear::None {
            return None;
        }

        // Calculate the hypothetical position where the element's top border edge
        // would have been if the element's `clear` property had been `none`.
        let hypothetical_block_position = self.position_without_clearance(block_start_margin);

        // Check if the hypothetical position is past the relevant floats,
        // in that case we don't need to add clearance.
        let clear_position = match clear {
            Clear::None => unreachable!(),
            Clear::InlineStart => self.floats.clear_inline_start_position,
            Clear::InlineEnd => self.floats.clear_inline_end_position,
            Clear::Both => self
                .floats
                .clear_inline_start_position
                .max(self.floats.clear_inline_end_position),
        };
        if hypothetical_block_position >= clear_position {
            None
        } else {
            Some(clear_position)
        }
    }

    /// Returns the amount of clearance (if any) that a block with the given `clear` value
    /// needs to have at `current_block_position_including_margins()`.
    /// `block_start_margin` is the top margin of the block, after collapsing (if possible)
    /// with the margin of its contents. This must not be included in `current_margin`,
    /// since adding clearance will prevent `current_margin` and `block_start_margin`
    /// from collapsing together.
    ///
    /// <https://www.w3.org/TR/2011/REC-CSS2-20110607/visuren.html#flow-control>
    pub(crate) fn calculate_clearance(
        &self,
        clear: Clear,
        block_start_margin: &CollapsedMargin,
    ) -> Option<Au> {
        self.calculate_clear_position(clear, block_start_margin)
            .map(|offset| offset - self.position_with_zero_clearance(block_start_margin))
    }

    /// A block that is replaced or establishes an independent formatting context can't overlap floats,
    /// it has to be placed next to them, and may get some clearance if there isn't enough space.
    /// Given such a block with the provided 'clear', 'block_start_margin', 'pbm' and 'object_size',
    /// this method finds an area that is big enough and doesn't overlap floats.
    /// It returns a tuple with:
    /// - The clearance amount (if any), which includes both the effect of 'clear'
    ///   and the extra space to avoid floats.
    /// - The LogicalRect in which the block can be placed without overlapping floats.
    pub(crate) fn calculate_clearance_and_inline_adjustment(
        &self,
        clear: Clear,
        block_start_margin: &CollapsedMargin,
        pbm: &PaddingBorderMargin,
        object_size: LogicalVec2<Au>,
    ) -> (Option<Au>, LogicalRect<Au>) {
        // First compute the clear position required by the 'clear' property.
        // The code below may then add extra clearance when the element can't fit
        // next to floats not covered by 'clear'.
        let clear_position = self.calculate_clear_position(clear, block_start_margin);
        let ceiling =
            clear_position.unwrap_or_else(|| self.position_without_clearance(block_start_margin));
        let mut placement = PlacementAmongFloats::new(&self.floats, ceiling, object_size, pbm);
        let placement_rect = placement.place();
        let position = &placement_rect.start_corner;
        let has_clearance = clear_position.is_some() || position.block > ceiling;
        let clearance = has_clearance
            .then(|| position.block - self.position_with_zero_clearance(block_start_margin));
        (clearance, placement_rect)
    }

    /// Adds a new adjoining margin.
    pub(crate) fn adjoin_assign(&mut self, margin: &CollapsedMargin) {
        self.current_margin.adjoin_assign(margin)
    }

    /// Get the offset of the current containing block and any uncollapsed margins.
    pub(crate) fn current_containing_block_offset(&self) -> Au {
        self.floats.containing_block_info.block_start +
            self.floats
                .containing_block_info
                .block_start_margins_not_collapsed
                .solve()
    }

    /// This function places a Fragment that has been created for a FloatBox.
    pub(crate) fn place_float_fragment(
        &mut self,
        box_fragment: &mut BoxFragment,
        containing_block: &ContainingBlock,
        margins_collapsing_with_parent_containing_block: CollapsedMargin,
        block_offset_from_containing_block_top: Au,
    ) {
        let block_start_of_containing_block_in_bfc = self.floats.containing_block_info.block_start +
            self.floats
                .containing_block_info
                .block_start_margins_not_collapsed
                .adjoin(&margins_collapsing_with_parent_containing_block)
                .solve();

        self.floats.set_ceiling_from_non_floats(
            block_start_of_containing_block_in_bfc + block_offset_from_containing_block_top,
        );

        let container_writing_mode = containing_block.style.writing_mode;
        let logical_float_size = box_fragment
            .content_rect
            .size
            .to_logical(container_writing_mode);
        let pbm_sums = box_fragment
            .padding_border_margin()
            .to_logical(container_writing_mode);
        let margin_box_start_corner = self.floats.add_float(&PlacementInfo {
            size: logical_float_size + pbm_sums.sum(),
            side: FloatSide::from_style_and_container_writing_mode(
                &box_fragment.style,
                container_writing_mode,
            )
            .expect("Float box wasn't floated!"),
            clear: Clear::from_style_and_container_writing_mode(
                &box_fragment.style,
                container_writing_mode,
            ),
        });

        // Re-calculate relative adjustment so that it is not lost when the BoxFragment's
        // `content_rect` is overwritten below.
        let relative_offset = match box_fragment.style.clone_position() {
            Position::Relative => relative_adjustement(&box_fragment.style, containing_block),
            _ => LogicalVec2::zero(),
        };

        // This is the position of the float in the float-containing block formatting context. We add the
        // existing start corner here because we may have already gotten some relative positioning offset.
        let new_position_in_bfc =
            margin_box_start_corner + pbm_sums.start_offset() + relative_offset;

        // This is the position of the float relative to the containing block start.
        let new_position_in_containing_block = LogicalVec2 {
            inline: new_position_in_bfc.inline - self.floats.containing_block_info.inline_start,
            block: new_position_in_bfc.block - block_start_of_containing_block_in_bfc,
        };

        box_fragment.content_rect = LogicalRect {
            start_corner: new_position_in_containing_block,
            size: box_fragment
                .content_rect
                .size
                .to_logical(container_writing_mode),
        }
        .as_physical(Some(containing_block));
    }
}