1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Float layout.
//!
//! See CSS 2.1 § 9.5.1: <https://www.w3.org/TR/CSS2/visuren.html#float-position>
use std::collections::VecDeque;
use std::fmt::Debug;
use std::mem;
use std::ops::Range;
use app_units::{Au, MAX_AU, MIN_AU};
use euclid::num::Zero;
use serde::Serialize;
use servo_arc::Arc;
use style::computed_values::float::T as FloatProperty;
use style::computed_values::position::T as Position;
use style::logical_geometry::WritingMode;
use style::properties::ComputedValues;
use style::values::computed::Clear;
use style::values::specified::text::TextDecorationLine;
use crate::context::LayoutContext;
use crate::dom::NodeExt;
use crate::dom_traversal::{Contents, NodeAndStyleInfo};
use crate::formatting_contexts::IndependentFormattingContext;
use crate::fragment_tree::{BoxFragment, CollapsedMargin};
use crate::geom::{LogicalRect, LogicalVec2, ToLogical};
use crate::positioned::{relative_adjustement, PositioningContext};
use crate::style_ext::{DisplayInside, PaddingBorderMargin};
use crate::ContainingBlock;
/// A floating box.
#[derive(Debug, Serialize)]
pub(crate) struct FloatBox {
/// The formatting context that makes up the content of this box.
pub contents: IndependentFormattingContext,
}
/// `FloatContext` positions floats relative to the independent block formatting
/// context which contains the floating elements. The Fragment tree positions
/// elements relative to their containing blocks. This data structure is used to
/// help map between these two coordinate systems.
#[derive(Clone, Copy, Debug)]
pub struct ContainingBlockPositionInfo {
/// The distance from the block start of the independent block formatting
/// context that contains the floats and the block start of the current
/// containing block, excluding uncollapsed block start margins. Note that
/// this does not include uncollapsed block start margins because we don't
/// know the value of collapsed margins until we lay out children.
pub(crate) block_start: Au,
/// Any uncollapsed block start margins that we have collected between the
/// block start of the float containing independent block formatting context
/// and this containing block, including for this containing block.
pub(crate) block_start_margins_not_collapsed: CollapsedMargin,
/// The distance from the inline start position of the float containing
/// independent formatting context and the inline start of this containing
/// block.
pub inline_start: Au,
/// The offset from the inline start position of the float containing
/// independent formatting context to the inline end of this containing
/// block.
pub inline_end: Au,
}
impl ContainingBlockPositionInfo {
pub fn new_with_inline_offsets(inline_start: Au, inline_end: Au) -> Self {
Self {
block_start: Au::zero(),
block_start_margins_not_collapsed: CollapsedMargin::zero(),
inline_start,
inline_end,
}
}
}
/// This data strucure is used to try to place non-floating content among float content.
/// This is used primarily to place replaced content and independent formatting contexts
/// next to floats, as the specifcation dictates.
pub(crate) struct PlacementAmongFloats<'a> {
/// The [FloatContext] to use for this placement.
float_context: &'a FloatContext,
/// The current bands we are considering for this placement.
current_bands: VecDeque<FloatBand>,
/// The next band, needed to know the height of the last band in current_bands.
next_band: FloatBand,
/// The size of the object to place.
object_size: LogicalVec2<Au>,
/// The minimum position in the block direction for the placement. Objects should not
/// be placed before this point.
ceiling: Au,
/// The inline position where the object would be if there were no floats. The object
/// can be placed after it due to floats, but not before it.
min_inline_start: Au,
/// The maximum inline position that the object can attain when avoiding floats.
max_inline_end: Au,
}
impl<'a> PlacementAmongFloats<'a> {
pub(crate) fn new(
float_context: &'a FloatContext,
ceiling: Au,
object_size: LogicalVec2<Au>,
pbm: &PaddingBorderMargin,
) -> Self {
let mut ceiling_band = float_context.bands.find(ceiling).unwrap();
let (current_bands, next_band) = if ceiling == MAX_AU {
(VecDeque::new(), ceiling_band)
} else {
ceiling_band.top = ceiling;
let current_bands = VecDeque::from([ceiling_band]);
let next_band = float_context.bands.find_next(ceiling).unwrap();
(current_bands, next_band)
};
let min_inline_start = float_context.containing_block_info.inline_start +
pbm.margin.inline_start.auto_is(Au::zero);
let max_inline_end = (float_context.containing_block_info.inline_end -
pbm.margin.inline_end.auto_is(Au::zero))
.max(min_inline_start + object_size.inline);
PlacementAmongFloats {
float_context,
current_bands,
next_band,
object_size,
ceiling,
min_inline_start,
max_inline_end,
}
}
/// The top of the bands under consideration. This is initially the ceiling provided
/// during creation of this [`PlacementAmongFloats`], but may be larger if the top
/// band is discarded.
fn top_of_bands(&self) -> Option<Au> {
self.current_bands.front().map(|band| band.top)
}
/// The height of the bands under consideration.
fn current_bands_height(&self) -> Au {
if self.next_band.top == MAX_AU {
// Treat MAX_AU as infinity.
MAX_AU
} else {
let top = self
.top_of_bands()
.expect("Should have bands before reaching the end");
self.next_band.top - top
}
}
/// Add a single band to the bands under consideration and calculate the new
/// [`PlacementAmongFloats::next_band`].
fn add_one_band(&mut self) {
assert!(self.next_band.top != MAX_AU);
self.current_bands.push_back(self.next_band);
self.next_band = self
.float_context
.bands
.find_next(self.next_band.top)
.unwrap();
}
/// Adds bands to the set of bands under consideration until their block size is at
/// least large enough to contain the block size of the object being placed.
fn accumulate_enough_bands_for_block_size(&mut self) {
while self.current_bands_height() < self.object_size.block {
self.add_one_band();
}
}
/// Find the start and end of the inline space provided by the current set of bands
/// under consideration.
fn calculate_inline_start_and_end(&self) -> (Au, Au) {
let mut max_inline_start = self.min_inline_start;
let mut min_inline_end = self.max_inline_end;
for band in self.current_bands.iter() {
if let Some(left) = band.left {
max_inline_start.max_assign(left);
}
if let Some(right) = band.right {
min_inline_end.min_assign(right);
}
}
(max_inline_start, min_inline_end)
}
/// Find the total inline size provided by the current set of bands under consideration.
fn calculate_viable_inline_size(&self) -> Au {
let (inline_start, inline_end) = self.calculate_inline_start_and_end();
inline_end - inline_start
}
fn try_place_once(&mut self) -> Option<LogicalRect<Au>> {
assert!(!self.current_bands.is_empty());
self.accumulate_enough_bands_for_block_size();
let (inline_start, inline_end) = self.calculate_inline_start_and_end();
let available_inline_size = inline_end - inline_start;
if available_inline_size < self.object_size.inline {
return None;
}
Some(LogicalRect {
start_corner: LogicalVec2 {
inline: inline_start,
block: self.top_of_bands().unwrap(),
},
size: LogicalVec2 {
inline: available_inline_size,
block: self.current_bands_height(),
},
})
}
/// Checks if we either have bands or we have gone past all of them.
/// This is an invariant that should hold, otherwise we are in a broken state.
fn has_bands_or_at_end(&self) -> bool {
!self.current_bands.is_empty() || self.next_band.top == MAX_AU
}
fn pop_front_band_ensuring_has_bands_or_at_end(&mut self) {
self.current_bands.pop_front();
if !self.has_bands_or_at_end() {
self.add_one_band();
}
}
/// Run the placement algorithm for this [PlacementAmongFloats].
pub(crate) fn place(&mut self) -> LogicalRect<Au> {
debug_assert!(self.has_bands_or_at_end());
while !self.current_bands.is_empty() {
if let Some(result) = self.try_place_once() {
return result;
}
self.pop_front_band_ensuring_has_bands_or_at_end();
}
debug_assert!(self.has_bands_or_at_end());
// We could not fit the object in among the floats, so we place it as if it
// cleared all floats.
LogicalRect {
start_corner: LogicalVec2 {
inline: self.min_inline_start,
block: self
.ceiling
.max(self.float_context.clear_left_position)
.max(self.float_context.clear_right_position),
},
size: LogicalVec2 {
inline: self.max_inline_end - self.min_inline_start,
block: MAX_AU,
},
}
}
/// After placing a table and then laying it out, it may turn out wider than what
/// we initially expected. This method takes care of updating the data so that
/// the next place() can find the right area for the new size.
/// Note that if the new size is smaller, placement won't backtrack to consider
/// areas that weren't big enough for the old size.
pub(crate) fn set_inline_size(&mut self, inline_size: Au, pbm: &PaddingBorderMargin) {
self.object_size.inline = inline_size;
self.max_inline_end = (self.float_context.containing_block_info.inline_end -
pbm.margin.inline_end.auto_is(Au::zero))
.max(self.min_inline_start + inline_size);
}
/// After placing an object with `height: auto` (and using the minimum inline and
/// block size as the object size) and then laying it out, try to fit the object into
/// the current set of bands, given block size after layout and the available inline
/// space from the original placement. This will return true if the object fits at the
/// original placement location or false if the placement and layout must be run again
/// (with this [PlacementAmongFloats]).
pub(crate) fn try_to_expand_for_auto_block_size(
&mut self,
block_size_after_layout: Au,
size_from_placement: &LogicalVec2<Au>,
) -> bool {
debug_assert!(self.has_bands_or_at_end());
debug_assert_eq!(size_from_placement.block, self.current_bands_height());
debug_assert_eq!(
size_from_placement.inline,
self.calculate_viable_inline_size()
);
// If the object after layout fits into the originally calculated placement, then
// it fits without any more work.
if block_size_after_layout <= size_from_placement.block {
return true;
}
// Keep searching until we have found an area with enough height
// to contain the block after layout.
let old_num_bands = self.current_bands.len();
assert!(old_num_bands > 0);
while self.current_bands_height() < block_size_after_layout {
self.add_one_band();
// If the new inline size is narrower, we must stop and run layout again.
// Normally, a narrower block size means a bigger height, but in some
// circumstances, such as when aspect ratio is used a narrower inline size
// can counter-interuitively lead to a smaller block size after layout!
let available_inline_size = self.calculate_viable_inline_size();
if available_inline_size < size_from_placement.inline {
// If the inline size becomes smaller than the minimum inline size, then
// the current set of bands will never work and we must try removing the
// first and searching starting from the second.
if available_inline_size < self.object_size.inline {
self.next_band = self.current_bands[old_num_bands];
self.current_bands.truncate(old_num_bands);
self.pop_front_band_ensuring_has_bands_or_at_end();
}
return false;
}
}
true
}
}
/// Data kept during layout about the floats in a given block formatting context.
///
/// This is a persistent data structure. Each float has its own private copy of the float context,
/// although such copies may share portions of the `bands` tree.
#[derive(Clone, Debug)]
pub struct FloatContext {
/// A persistent AA tree of float bands.
///
/// This tree is immutable; modification operations return the new tree, which may share nodes
/// with previous versions of the tree.
pub bands: FloatBandTree,
/// The block-direction "ceiling" defined by the placement of other floated content of
/// this FloatContext. No new floats can be placed at a lower block start than this value.
pub ceiling_from_floats: Au,
/// The block-direction "ceiling" defined by the placement of non-floated content that
/// precedes floated content in the document. Note that this may actually decrease as
/// content is laid out in the case that content overflows its container.
pub ceiling_from_non_floats: Au,
/// Details about the position of the containing block relative to the
/// independent block formatting context that contains all of the floats
/// this `FloatContext` positions.
pub containing_block_info: ContainingBlockPositionInfo,
/// The (logically) lowest margin edge of the last left float.
pub clear_left_position: Au,
/// The (logically) lowest margin edge of the last right float.
pub clear_right_position: Au,
}
impl FloatContext {
/// Returns a new float context representing a containing block with the given content
/// inline-size.
pub fn new(max_inline_size: Au) -> Self {
let mut bands = FloatBandTree::new();
bands = bands.insert(FloatBand {
top: MIN_AU,
left: None,
right: None,
});
bands = bands.insert(FloatBand {
top: MAX_AU,
left: None,
right: None,
});
FloatContext {
bands,
ceiling_from_floats: Au::zero(),
ceiling_from_non_floats: Au::zero(),
containing_block_info: ContainingBlockPositionInfo::new_with_inline_offsets(
Au::zero(),
max_inline_size,
),
clear_left_position: Au::zero(),
clear_right_position: Au::zero(),
}
}
/// (Logically) lowers the ceiling to at least `new_ceiling` units.
///
/// If the ceiling is already logically lower (i.e. larger) than this, does nothing.
pub fn set_ceiling_from_non_floats(&mut self, new_ceiling: Au) {
self.ceiling_from_non_floats = new_ceiling;
}
/// The "ceiling" used for float placement. This is the minimum block position value
/// that should be used for placing any new float.
fn ceiling(&mut self) -> Au {
self.ceiling_from_floats.max(self.ceiling_from_non_floats)
}
/// Determines where a float with the given placement would go, but leaves the float context
/// unmodified. Returns the start corner of its margin box.
///
/// This should be used for placing inline elements and block formatting contexts so that they
/// don't collide with floats.
pub(crate) fn place_object(&self, object: &PlacementInfo, ceiling: Au) -> LogicalVec2<Au> {
let ceiling = match object.clear {
Clear::None => ceiling,
Clear::Left => ceiling.max(self.clear_left_position),
Clear::Right => ceiling.max(self.clear_right_position),
Clear::Both => ceiling
.max(self.clear_left_position)
.max(self.clear_right_position),
};
// Find the first band this float fits in.
let mut first_band = self.bands.find(ceiling).unwrap();
while !first_band.object_fits(object, &self.containing_block_info) {
let next_band = self.bands.find_next(first_band.top).unwrap();
if next_band.top == MAX_AU {
break;
}
first_band = next_band;
}
// The object fits perfectly here. Place it.
match object.side {
FloatSide::InlineStart => {
let left_object_edge = match first_band.left {
Some(band_left) => band_left.max(self.containing_block_info.inline_start),
None => self.containing_block_info.inline_start,
};
LogicalVec2 {
inline: left_object_edge,
block: first_band.top.max(ceiling),
}
},
FloatSide::InlineEnd => {
let right_object_edge = match first_band.right {
Some(band_right) => band_right.min(self.containing_block_info.inline_end),
None => self.containing_block_info.inline_end,
};
LogicalVec2 {
inline: right_object_edge - object.size.inline,
block: first_band.top.max(ceiling),
}
},
}
}
/// Places a new float and adds it to the list. Returns the start corner of its margin box.
pub fn add_float(&mut self, new_float: &PlacementInfo) -> LogicalVec2<Au> {
// Place the float.
let ceiling = self.ceiling();
let new_float_origin = self.place_object(new_float, ceiling);
let new_float_extent = match new_float.side {
FloatSide::InlineStart => new_float_origin.inline + new_float.size.inline,
FloatSide::InlineEnd => new_float_origin.inline,
};
let new_float_rect = LogicalRect {
start_corner: new_float_origin,
// If this float has a negative margin, we should only consider its non-negative
// block size contribution when determing where to place it. When the margin is
// so negative that it's placed completely above the current float ceiling, then
// we should position it as if it had zero block size.
size: LogicalVec2 {
inline: new_float.size.inline.max(Au::zero()),
block: new_float.size.block.max(Au::zero()),
},
};
// Update clear.
match new_float.side {
FloatSide::InlineStart => {
self.clear_left_position
.max_assign(new_float_rect.max_block_position());
},
FloatSide::InlineEnd => {
self.clear_right_position
.max_assign(new_float_rect.max_block_position());
},
}
// Split the first band if necessary.
let mut first_band = self.bands.find(new_float_rect.start_corner.block).unwrap();
first_band.top = new_float_rect.start_corner.block;
self.bands = self.bands.insert(first_band);
// Split the last band if necessary.
let mut last_band = self
.bands
.find(new_float_rect.max_block_position())
.unwrap();
last_band.top = new_float_rect.max_block_position();
self.bands = self.bands.insert(last_band);
// Update all bands that contain this float to reflect the new available size.
let block_range = new_float_rect.start_corner.block..new_float_rect.max_block_position();
self.bands = self
.bands
.set_range(&block_range, new_float.side, new_float_extent);
// CSS 2.1 § 9.5.1 rule 6: The outer top of a floating box may not be higher than the outer
// top of any block or floated box generated by an element earlier in the source document.
self.ceiling_from_floats
.max_assign(new_float_rect.start_corner.block);
new_float_rect.start_corner
}
}
/// Information needed to place an object so that it doesn't collide with existing floats.
#[derive(Clone, Debug)]
pub struct PlacementInfo {
/// The *margin* box size of the object.
pub size: LogicalVec2<Au>,
/// Whether the object is (logically) aligned to the left or right.
pub side: FloatSide,
/// Which side or sides to clear floats on.
pub clear: Clear,
}
/// Whether the float is left or right.
///
/// See CSS 2.1 § 9.5.1: <https://www.w3.org/TR/CSS2/visuren.html#float-position>
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum FloatSide {
InlineStart,
InlineEnd,
}
/// Internal data structure that describes a nonoverlapping vertical region in which floats may be
/// placed. Floats must go between "left edge + `left`" and "right edge - `right`".
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct FloatBand {
/// The logical vertical position of the top of this band.
pub top: Au,
/// The distance from the left edge of the block formatting context to the first legal
/// (logically) horizontal position where floats may be placed. If `None`, there are no floats
/// to the left; distinguishing between the cases of "a zero-width float is present" and "no
/// floats at all are present" is necessary to, for example, clear past zero-width floats.
pub left: Option<Au>,
/// The distance from the *left* edge of the block formatting context to the first legal
/// (logically) horizontal position where floats may be placed. If `None`, there are no floats
/// to the right; distinguishing between the cases of "a zero-width float is present" and "no
/// floats at all are present" is necessary to, for example, clear past zero-width floats.
pub right: Option<Au>,
}
impl FloatSide {
fn from_style_and_container_writing_mode(
style: &ComputedValues,
container_writing_mode: WritingMode,
) -> Option<FloatSide> {
match (style.get_box().float, container_writing_mode.is_bidi_ltr()) {
(FloatProperty::None, _) => None,
(FloatProperty::Left, true) | (FloatProperty::Right, false) => {
Some(FloatSide::InlineStart)
},
(FloatProperty::Right, true) | (FloatProperty::Left, false) => {
Some(FloatSide::InlineEnd)
},
}
}
}
impl FloatBand {
/// Determines whether an object fits in a band. Returns true if the object fits.
fn object_fits(&self, object: &PlacementInfo, walls: &ContainingBlockPositionInfo) -> bool {
match object.side {
FloatSide::InlineStart => {
// Compute a candidate left position for the object.
let candidate_left = match self.left {
None => walls.inline_start,
Some(left) => left.max(walls.inline_start),
};
// If this band has an existing left float in it, then make sure that the object
// doesn't stick out past the right edge (rule 7).
if self.left.is_some() && candidate_left + object.size.inline > walls.inline_end {
return false;
}
// If this band has an existing right float in it, make sure we don't collide with
// it (rule 3).
match self.right {
None => true,
Some(right) => object.size.inline <= right - candidate_left,
}
},
FloatSide::InlineEnd => {
// Compute a candidate right position for the object.
let candidate_right = match self.right {
None => walls.inline_end,
Some(right) => right.min(walls.inline_end),
};
// If this band has an existing right float in it, then make sure that the new
// object doesn't stick out past the left edge (rule 7).
if self.right.is_some() && candidate_right - object.size.inline < walls.inline_start
{
return false;
}
// If this band has an existing left float in it, make sure we don't collide with
// it (rule 3).
match self.left {
None => true,
Some(left) => object.size.inline <= candidate_right - left,
}
},
}
}
}
// Float band storage
/// A persistent AA tree for float band storage.
///
/// Bands here are nonoverlapping, and there is guaranteed to be a band at block-position 0 and
/// another band at block-position infinity.
///
/// AA trees were chosen for simplicity.
///
/// See: <https://en.wikipedia.org/wiki/AA_tree>
/// <https://arxiv.org/pdf/1412.4882.pdf>
#[derive(Clone, Debug)]
pub struct FloatBandTree {
pub root: FloatBandLink,
}
/// A single edge (or lack thereof) in the float band tree.
#[derive(Clone, Debug)]
pub struct FloatBandLink(pub Option<Arc<FloatBandNode>>);
/// A single node in the float band tree.
#[derive(Clone, Debug)]
pub struct FloatBandNode {
/// The actual band.
pub band: FloatBand,
/// The left child.
pub left: FloatBandLink,
/// The right child.
pub right: FloatBandLink,
/// The level, which increases as you go up the tree.
///
/// This value is needed for tree balancing.
pub level: i32,
}
impl FloatBandTree {
/// Creates a new float band tree.
pub fn new() -> FloatBandTree {
FloatBandTree {
root: FloatBandLink(None),
}
}
/// Returns the first band whose top is less than or equal to the given `block_position`.
pub fn find(&self, block_position: Au) -> Option<FloatBand> {
self.root.find(block_position)
}
/// Returns the first band whose top is strictly greater than to the given `block_position`.
pub fn find_next(&self, block_position: Au) -> Option<FloatBand> {
self.root.find_next(block_position)
}
/// Sets the side values of all bands within the given half-open range to be at least
/// `new_value`.
#[must_use]
pub fn set_range(&self, range: &Range<Au>, side: FloatSide, new_value: Au) -> FloatBandTree {
FloatBandTree {
root: FloatBandLink(
self.root
.0
.as_ref()
.map(|root| root.set_range(range, side, new_value)),
),
}
}
/// Inserts a new band into the tree. If the band has the same level as a pre-existing one,
/// replaces the existing band with the new one.
#[must_use]
pub fn insert(&self, band: FloatBand) -> FloatBandTree {
FloatBandTree {
root: self.root.insert(band),
}
}
}
impl Default for FloatBandTree {
fn default() -> Self {
Self::new()
}
}
impl FloatBandNode {
fn new(band: FloatBand) -> FloatBandNode {
FloatBandNode {
band,
left: FloatBandLink(None),
right: FloatBandLink(None),
level: 1,
}
}
/// Sets the side values of all bands within the given half-open range to be at least
/// `new_value`.
fn set_range(&self, range: &Range<Au>, side: FloatSide, new_value: Au) -> Arc<FloatBandNode> {
let mut new_band = self.band;
if self.band.top >= range.start && self.band.top < range.end {
match side {
FloatSide::InlineStart => {
new_band.left = match new_band.left {
Some(old_value) => Some(std::cmp::max(old_value, new_value)),
None => Some(new_value),
};
},
FloatSide::InlineEnd => {
new_band.right = match new_band.right {
Some(old_value) => Some(std::cmp::min(old_value, new_value)),
None => Some(new_value),
};
},
}
}
let new_left = match self.left.0 {
None => FloatBandLink(None),
Some(ref old_left) if range.start < new_band.top => {
FloatBandLink(Some(old_left.set_range(range, side, new_value)))
},
Some(ref old_left) => FloatBandLink(Some((*old_left).clone())),
};
let new_right = match self.right.0 {
None => FloatBandLink(None),
Some(ref old_right) if range.end > new_band.top => {
FloatBandLink(Some(old_right.set_range(range, side, new_value)))
},
Some(ref old_right) => FloatBandLink(Some((*old_right).clone())),
};
Arc::new(FloatBandNode {
band: new_band,
left: new_left,
right: new_right,
level: self.level,
})
}
}
impl FloatBandLink {
/// Returns the first band whose top is less than or equal to the given `block_position`.
fn find(&self, block_position: Au) -> Option<FloatBand> {
let this = match self.0 {
None => return None,
Some(ref node) => node,
};
if block_position < this.band.top {
return this.left.find(block_position);
}
// It's somewhere in this subtree, but we aren't sure whether it's here or in the right
// subtree.
if let Some(band) = this.right.find(block_position) {
return Some(band);
}
Some(this.band)
}
/// Returns the first band whose top is strictly greater than the given `block_position`.
fn find_next(&self, block_position: Au) -> Option<FloatBand> {
let this = match self.0 {
None => return None,
Some(ref node) => node,
};
if block_position >= this.band.top {
return this.right.find_next(block_position);
}
// It's somewhere in this subtree, but we aren't sure whether it's here or in the left
// subtree.
if let Some(band) = this.left.find_next(block_position) {
return Some(band);
}
Some(this.band)
}
/// Inserts a new band into the tree. If the band has the same level as a pre-existing one,
/// replaces the existing band with the new one.
fn insert(&self, band: FloatBand) -> FloatBandLink {
let mut this = match self.0 {
None => return FloatBandLink(Some(Arc::new(FloatBandNode::new(band)))),
Some(ref this) => (**this).clone(),
};
if band.top < this.band.top {
this.left = this.left.insert(band);
return FloatBandLink(Some(Arc::new(this))).skew().split();
}
if band.top > this.band.top {
this.right = this.right.insert(band);
return FloatBandLink(Some(Arc::new(this))).skew().split();
}
this.band = band;
FloatBandLink(Some(Arc::new(this)))
}
/// Corrects tree balance:
///```text
/// T L
/// / \ / \
/// L R → A T if level(T) = level(L)
/// / \ / \
/// A B B R
/// ```
fn skew(&self) -> FloatBandLink {
if let Some(ref this) = self.0 {
if let Some(ref left) = this.left.0 {
if this.level == left.level {
return FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level,
left: left.left.clone(),
band: left.band,
right: FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level,
left: left.right.clone(),
band: this.band,
right: this.right.clone(),
}))),
})));
}
}
}
(*self).clone()
}
/// Corrects tree balance:
///```text
/// T R
/// / \ / \
/// A R → T X if level(T) = level(X)
/// / \ / \
/// B X A B
/// ```
fn split(&self) -> FloatBandLink {
if let Some(ref this) = self.0 {
if let Some(ref right) = this.right.0 {
if let Some(ref right_right) = right.right.0 {
if this.level == right_right.level {
return FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level + 1,
left: FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level,
left: this.left.clone(),
band: this.band,
right: right.left.clone(),
}))),
band: right.band,
right: right.right.clone(),
})));
}
}
}
}
(*self).clone()
}
}
impl FloatBox {
/// Creates a new float box.
pub fn construct<'dom>(
context: &LayoutContext,
info: &NodeAndStyleInfo<impl NodeExt<'dom>>,
display_inside: DisplayInside,
contents: Contents,
) -> Self {
Self {
contents: IndependentFormattingContext::construct(
context,
info,
display_inside,
contents,
// Text decorations are not propagated to any out-of-flow descendants
TextDecorationLine::NONE,
),
}
}
/// Lay out this float box and its children. Note that the position will be relative to
/// the float containing block formatting context. A later step adjusts the position
/// to be relative to the containing block.
pub fn layout(
&self,
layout_context: &LayoutContext,
positioning_context: &mut PositioningContext,
containing_block: &ContainingBlock,
) -> BoxFragment {
let style = self.contents.style().clone();
positioning_context.layout_maybe_position_relative_fragment(
layout_context,
containing_block,
&style,
|positioning_context| {
self.contents
.layout_float_or_atomic_inline(
layout_context,
positioning_context,
containing_block,
)
.fragment
},
)
}
}
/// Layout state that we maintain when doing sequential traversals of the box tree in document
/// order.
///
/// This data is only needed for float placement and float interaction, and as such is only present
/// if the current block formatting context contains floats.
///
/// All coordinates here are relative to the start of the nearest ancestor block formatting context.
///
/// This structure is expected to be cheap to clone, in order to allow for "snapshots" that enable
/// restarting layout at any point in the tree.
#[derive(Clone)]
pub(crate) struct SequentialLayoutState {
/// Holds all floats in this block formatting context.
pub(crate) floats: FloatContext,
/// The (logically) bottom border edge or top padding edge of the last in-flow block. Floats
/// cannot be placed above this line.
///
/// This is often, but not always, the same as the float ceiling. The float ceiling can be lower
/// than this value because this value is calculated based on in-flow boxes only, while
/// out-of-flow floats can affect the ceiling as well (see CSS 2.1 § 9.5.1 rule 6).
pub(crate) bfc_relative_block_position: Au,
/// Any collapsible margins that we've encountered after `bfc_relative_block_position`.
pub(crate) current_margin: CollapsedMargin,
}
impl SequentialLayoutState {
/// Creates a new empty `SequentialLayoutState`.
pub(crate) fn new(max_inline_size: Au) -> SequentialLayoutState {
SequentialLayoutState {
floats: FloatContext::new(max_inline_size),
current_margin: CollapsedMargin::zero(),
bfc_relative_block_position: Au::zero(),
}
}
/// Moves the current block position (logically) down by `block_distance`. This may be
/// a negative advancement in the case that that block content overflows its
/// container, when the container is adjusting the block position of the
/// [`SequentialLayoutState`] after processing its overflowing content.
///
/// Floats may not be placed higher than the current block position.
pub(crate) fn advance_block_position(&mut self, block_distance: Au) {
self.bfc_relative_block_position += block_distance;
self.floats
.set_ceiling_from_non_floats(self.bfc_relative_block_position);
}
/// Replace the entire [ContainingBlockPositionInfo] data structure stored
/// by this [SequentialLayoutState]. Return the old data structure.
pub(crate) fn replace_containing_block_position_info(
&mut self,
mut position_info: ContainingBlockPositionInfo,
) -> ContainingBlockPositionInfo {
mem::swap(&mut position_info, &mut self.floats.containing_block_info);
position_info
}
/// Return the current block position in the float containing block formatting
/// context and any uncollapsed block margins.
pub(crate) fn current_block_position_including_margins(&self) -> Au {
self.bfc_relative_block_position + self.current_margin.solve()
}
/// Collapses margins, moving the block position down by the collapsed value of `current_margin`
/// and resetting `current_margin` to zero.
///
/// Call this method before laying out children when it is known that the start margin of the
/// current fragment can't collapse with the margins of any of its children.
pub(crate) fn collapse_margins(&mut self) {
self.advance_block_position(self.current_margin.solve());
self.current_margin = CollapsedMargin::zero();
}
/// Computes the position of the block-start border edge of an element
/// with the provided `block_start_margin`, assuming no clearance.
pub(crate) fn position_without_clearance(&self, block_start_margin: &CollapsedMargin) -> Au {
// Adjoin `current_margin` and `block_start_margin` since there is no clearance.
self.bfc_relative_block_position + self.current_margin.adjoin(block_start_margin).solve()
}
/// Computes the position of the block-start border edge of an element
/// with the provided `block_start_margin`, assuming a clearance of 0px.
pub(crate) fn position_with_zero_clearance(&self, block_start_margin: &CollapsedMargin) -> Au {
// Clearance prevents `current_margin` and `block_start_margin` from being
// adjoining, so we need to solve them separately and then sum.
self.bfc_relative_block_position + self.current_margin.solve() + block_start_margin.solve()
}
/// Returns the block-end outer edge of the lowest float that is to be cleared (if any)
/// by an element with the provided `clear` and `block_start_margin`.
pub(crate) fn calculate_clear_position(
&self,
clear: Clear,
block_start_margin: &CollapsedMargin,
) -> Option<Au> {
if clear == Clear::None {
return None;
}
// Calculate the hypothetical position where the element's top border edge
// would have been if the element's `clear` property had been `none`.
let hypothetical_block_position = self.position_without_clearance(block_start_margin);
// Check if the hypothetical position is past the relevant floats,
// in that case we don't need to add clearance.
let clear_position = match clear {
Clear::None => unreachable!(),
Clear::Left => self.floats.clear_left_position,
Clear::Right => self.floats.clear_right_position,
Clear::Both => self
.floats
.clear_left_position
.max(self.floats.clear_right_position),
};
if hypothetical_block_position >= clear_position {
None
} else {
Some(clear_position)
}
}
/// Returns the amount of clearance (if any) that a block with the given `clear` value
/// needs to have at `current_block_position_including_margins()`.
/// `block_start_margin` is the top margin of the block, after collapsing (if possible)
/// with the margin of its contents. This must not be included in `current_margin`,
/// since adding clearance will prevent `current_margin` and `block_start_margin`
/// from collapsing together.
///
/// <https://www.w3.org/TR/2011/REC-CSS2-20110607/visuren.html#flow-control>
pub(crate) fn calculate_clearance(
&self,
clear: Clear,
block_start_margin: &CollapsedMargin,
) -> Option<Au> {
self.calculate_clear_position(clear, block_start_margin)
.map(|offset| offset - self.position_with_zero_clearance(block_start_margin))
}
/// A block that is replaced or establishes an independent formatting context can't overlap floats,
/// it has to be placed next to them, and may get some clearance if there isn't enough space.
/// Given such a block with the provided 'clear', 'block_start_margin', 'pbm' and 'object_size',
/// this method finds an area that is big enough and doesn't overlap floats.
/// It returns a tuple with:
/// - The clearance amount (if any), which includes both the effect of 'clear'
/// and the extra space to avoid floats.
/// - The LogicalRect in which the block can be placed without overlapping floats.
pub(crate) fn calculate_clearance_and_inline_adjustment(
&self,
clear: Clear,
block_start_margin: &CollapsedMargin,
pbm: &PaddingBorderMargin,
object_size: LogicalVec2<Au>,
) -> (Option<Au>, LogicalRect<Au>) {
// First compute the clear position required by the 'clear' property.
// The code below may then add extra clearance when the element can't fit
// next to floats not covered by 'clear'.
let clear_position = self.calculate_clear_position(clear, block_start_margin);
let ceiling =
clear_position.unwrap_or_else(|| self.position_without_clearance(block_start_margin));
let mut placement = PlacementAmongFloats::new(&self.floats, ceiling, object_size, pbm);
let placement_rect = placement.place();
let position = &placement_rect.start_corner;
let has_clearance = clear_position.is_some() || position.block > ceiling;
let clearance = if has_clearance {
Some(position.block - self.position_with_zero_clearance(block_start_margin))
} else {
None
};
(clearance, placement_rect)
}
/// Adds a new adjoining margin.
pub(crate) fn adjoin_assign(&mut self, margin: &CollapsedMargin) {
self.current_margin.adjoin_assign(margin)
}
/// Get the offset of the current containing block and any uncollapsed margins.
pub(crate) fn current_containing_block_offset(&self) -> Au {
self.floats.containing_block_info.block_start +
self.floats
.containing_block_info
.block_start_margins_not_collapsed
.solve()
}
/// This function places a Fragment that has been created for a FloatBox.
pub(crate) fn place_float_fragment(
&mut self,
box_fragment: &mut BoxFragment,
containing_block: &ContainingBlock,
margins_collapsing_with_parent_containing_block: CollapsedMargin,
block_offset_from_containing_block_top: Au,
) {
let block_start_of_containing_block_in_bfc = self.floats.containing_block_info.block_start +
self.floats
.containing_block_info
.block_start_margins_not_collapsed
.adjoin(&margins_collapsing_with_parent_containing_block)
.solve();
self.floats.set_ceiling_from_non_floats(
block_start_of_containing_block_in_bfc + block_offset_from_containing_block_top,
);
let container_writing_mode = containing_block.style.writing_mode;
let logical_float_size = box_fragment
.content_rect
.size
.to_logical(container_writing_mode);
let pbm_sums = box_fragment
.padding_border_margin()
.to_logical(container_writing_mode);
let margin_box_start_corner = self.floats.add_float(&PlacementInfo {
size: logical_float_size + pbm_sums.sum(),
side: FloatSide::from_style_and_container_writing_mode(
&box_fragment.style,
container_writing_mode,
)
.expect("Float box wasn't floated!"),
clear: box_fragment.style.get_box().clear,
});
// Re-calculate relative adjustment so that it is not lost when the BoxFragment's
// `content_rect` is overwritten below.
let relative_offset = match box_fragment.style.clone_position() {
Position::Relative => relative_adjustement(&box_fragment.style, containing_block),
_ => LogicalVec2::zero(),
};
// This is the position of the float in the float-containing block formatting context. We add the
// existing start corner here because we may have already gotten some relative positioning offset.
let new_position_in_bfc =
margin_box_start_corner + pbm_sums.start_offset() + relative_offset;
// This is the position of the float relative to the containing block start.
let new_position_in_containing_block = LogicalVec2 {
inline: new_position_in_bfc.inline - self.floats.containing_block_info.inline_start,
block: new_position_in_bfc.block - block_start_of_containing_block_in_bfc,
};
box_fragment.content_rect = LogicalRect {
start_corner: new_position_in_containing_block,
size: box_fragment
.content_rect
.size
.to_logical(container_writing_mode),
}
.to_physical(Some(containing_block));
}
}