1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*!
Backend for [SPIR-V][spv] (Standard Portable Intermediate Representation).

[spv]: https://www.khronos.org/registry/SPIR-V/
*/

mod block;
mod helpers;
mod image;
mod index;
mod instructions;
mod layout;
mod ray;
mod recyclable;
mod selection;
mod subgroup;
mod writer;

pub use spirv::{Capability, SourceLanguage};

use crate::arena::{Handle, HandleVec};
use crate::proc::{BoundsCheckPolicies, TypeResolution};

use spirv::Word;
use std::ops;
use thiserror::Error;

#[derive(Clone)]
struct PhysicalLayout {
    magic_number: Word,
    version: Word,
    generator: Word,
    bound: Word,
    instruction_schema: Word,
}

#[derive(Default)]
struct LogicalLayout {
    capabilities: Vec<Word>,
    extensions: Vec<Word>,
    ext_inst_imports: Vec<Word>,
    memory_model: Vec<Word>,
    entry_points: Vec<Word>,
    execution_modes: Vec<Word>,
    debugs: Vec<Word>,
    annotations: Vec<Word>,
    declarations: Vec<Word>,
    function_declarations: Vec<Word>,
    function_definitions: Vec<Word>,
}

struct Instruction {
    op: spirv::Op,
    wc: u32,
    type_id: Option<Word>,
    result_id: Option<Word>,
    operands: Vec<Word>,
}

const BITS_PER_BYTE: crate::Bytes = 8;

#[derive(Clone, Debug, Error)]
pub enum Error {
    #[error("The requested entry point couldn't be found")]
    EntryPointNotFound,
    #[error("target SPIRV-{0}.{1} is not supported")]
    UnsupportedVersion(u8, u8),
    #[error("using {0} requires at least one of the capabilities {1:?}, but none are available")]
    MissingCapabilities(&'static str, Vec<Capability>),
    #[error("unimplemented {0}")]
    FeatureNotImplemented(&'static str),
    #[error("module is not validated properly: {0}")]
    Validation(&'static str),
    #[error("overrides should not be present at this stage")]
    Override,
}

#[derive(Default)]
struct IdGenerator(Word);

impl IdGenerator {
    fn next(&mut self) -> Word {
        self.0 += 1;
        self.0
    }
}

#[derive(Debug, Clone)]
pub struct DebugInfo<'a> {
    pub source_code: &'a str,
    pub file_name: &'a std::path::Path,
    pub language: SourceLanguage,
}

/// A SPIR-V block to which we are still adding instructions.
///
/// A `Block` represents a SPIR-V block that does not yet have a termination
/// instruction like `OpBranch` or `OpReturn`.
///
/// The `OpLabel` that starts the block is implicit. It will be emitted based on
/// `label_id` when we write the block to a `LogicalLayout`.
///
/// To terminate a `Block`, pass the block and the termination instruction to
/// `Function::consume`. This takes ownership of the `Block` and transforms it
/// into a `TerminatedBlock`.
struct Block {
    label_id: Word,
    body: Vec<Instruction>,
}

/// A SPIR-V block that ends with a termination instruction.
struct TerminatedBlock {
    label_id: Word,
    body: Vec<Instruction>,
}

impl Block {
    const fn new(label_id: Word) -> Self {
        Block {
            label_id,
            body: Vec::new(),
        }
    }
}

struct LocalVariable {
    id: Word,
    instruction: Instruction,
}

struct ResultMember {
    id: Word,
    type_id: Word,
    built_in: Option<crate::BuiltIn>,
}

struct EntryPointContext {
    argument_ids: Vec<Word>,
    results: Vec<ResultMember>,
}

#[derive(Default)]
struct Function {
    signature: Option<Instruction>,
    parameters: Vec<FunctionArgument>,
    variables: crate::FastHashMap<Handle<crate::LocalVariable>, LocalVariable>,

    /// A map taking an expression that yields a composite value (array, matrix)
    /// to the temporary variables we have spilled it to, if any. Spilling
    /// allows us to render an arbitrary chain of [`Access`] and [`AccessIndex`]
    /// expressions as an `OpAccessChain` and an `OpLoad` (plus bounds checks).
    /// This supports dynamic indexing of by-value arrays and matrices, which
    /// SPIR-V does not.
    ///
    /// [`Access`]: crate::Expression::Access
    /// [`AccessIndex`]: crate::Expression::AccessIndex
    spilled_composites: crate::FastIndexMap<Handle<crate::Expression>, LocalVariable>,

    /// A set of expressions that are either in [`spilled_composites`] or refer
    /// to some component/element of such.
    ///
    /// [`spilled_composites`]: Function::spilled_composites
    spilled_accesses: crate::arena::HandleSet<crate::Expression>,

    /// A map taking each expression to the number of [`Access`] and
    /// [`AccessIndex`] expressions that uses it as a base value. If an
    /// expression has no entry, its count is zero: it is never used as a
    /// [`Access`] or [`AccessIndex`] base.
    ///
    /// We use this, together with [`ExpressionInfo::ref_count`], to recognize
    /// the tips of chains of [`Access`] and [`AccessIndex`] expressions that
    /// access spilled values --- expressions in [`spilled_composites`]. We
    /// defer generating code for the chain until we reach its tip, so we can
    /// handle it with a single instruction.
    ///
    /// [`Access`]: crate::Expression::Access
    /// [`AccessIndex`]: crate::Expression::AccessIndex
    /// [`ExpressionInfo::ref_count`]: crate::valid::ExpressionInfo
    /// [`spilled_composites`]: Function::spilled_composites
    access_uses: crate::FastHashMap<Handle<crate::Expression>, usize>,

    blocks: Vec<TerminatedBlock>,
    entry_point_context: Option<EntryPointContext>,
}

impl Function {
    fn consume(&mut self, mut block: Block, termination: Instruction) {
        block.body.push(termination);
        self.blocks.push(TerminatedBlock {
            label_id: block.label_id,
            body: block.body,
        })
    }

    fn parameter_id(&self, index: u32) -> Word {
        match self.entry_point_context {
            Some(ref context) => context.argument_ids[index as usize],
            None => self.parameters[index as usize]
                .instruction
                .result_id
                .unwrap(),
        }
    }
}

/// Characteristics of a SPIR-V `OpTypeImage` type.
///
/// SPIR-V requires non-composite types to be unique, including images. Since we
/// use `LocalType` for this deduplication, it's essential that `LocalImageType`
/// be equal whenever the corresponding `OpTypeImage`s would be. To reduce the
/// likelihood of mistakes, we use fields that correspond exactly to the
/// operands of an `OpTypeImage` instruction, using the actual SPIR-V types
/// where practical.
#[derive(Debug, PartialEq, Hash, Eq, Copy, Clone)]
struct LocalImageType {
    sampled_type: crate::Scalar,
    dim: spirv::Dim,
    flags: ImageTypeFlags,
    image_format: spirv::ImageFormat,
}

bitflags::bitflags! {
    /// Flags corresponding to the boolean(-ish) parameters to OpTypeImage.
    #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
    pub struct ImageTypeFlags: u8 {
        const DEPTH = 0x1;
        const ARRAYED = 0x2;
        const MULTISAMPLED = 0x4;
        const SAMPLED = 0x8;
    }
}

impl LocalImageType {
    /// Construct a `LocalImageType` from the fields of a `TypeInner::Image`.
    fn from_inner(dim: crate::ImageDimension, arrayed: bool, class: crate::ImageClass) -> Self {
        let make_flags = |multi: bool, other: ImageTypeFlags| -> ImageTypeFlags {
            let mut flags = other;
            flags.set(ImageTypeFlags::ARRAYED, arrayed);
            flags.set(ImageTypeFlags::MULTISAMPLED, multi);
            flags
        };

        let dim = spirv::Dim::from(dim);

        match class {
            crate::ImageClass::Sampled { kind, multi } => LocalImageType {
                sampled_type: crate::Scalar { kind, width: 4 },
                dim,
                flags: make_flags(multi, ImageTypeFlags::SAMPLED),
                image_format: spirv::ImageFormat::Unknown,
            },
            crate::ImageClass::Depth { multi } => LocalImageType {
                sampled_type: crate::Scalar {
                    kind: crate::ScalarKind::Float,
                    width: 4,
                },
                dim,
                flags: make_flags(multi, ImageTypeFlags::DEPTH | ImageTypeFlags::SAMPLED),
                image_format: spirv::ImageFormat::Unknown,
            },
            crate::ImageClass::Storage { format, access: _ } => LocalImageType {
                sampled_type: format.into(),
                dim,
                flags: make_flags(false, ImageTypeFlags::empty()),
                image_format: format.into(),
            },
        }
    }
}

/// A numeric type, for use in [`LocalType`].
#[derive(Debug, PartialEq, Hash, Eq, Copy, Clone)]
enum NumericType {
    Scalar(crate::Scalar),
    Vector {
        size: crate::VectorSize,
        scalar: crate::Scalar,
    },
    Matrix {
        columns: crate::VectorSize,
        rows: crate::VectorSize,
        scalar: crate::Scalar,
    },
}

impl NumericType {
    const fn from_inner(inner: &crate::TypeInner) -> Option<Self> {
        match *inner {
            crate::TypeInner::Scalar(scalar) | crate::TypeInner::Atomic(scalar) => {
                Some(NumericType::Scalar(scalar))
            }
            crate::TypeInner::Vector { size, scalar } => Some(NumericType::Vector { size, scalar }),
            crate::TypeInner::Matrix {
                columns,
                rows,
                scalar,
            } => Some(NumericType::Matrix {
                columns,
                rows,
                scalar,
            }),
            _ => None,
        }
    }
}

/// A SPIR-V type constructed during code generation.
///
/// This is the variant of [`LookupType`] used to represent types that might not
/// be available in the arena. Variants are present here for one of two reasons:
///
/// -   They represent types synthesized during code generation, as explained
///     in the documentation for [`LookupType`].
///
/// -   They represent types for which SPIR-V forbids duplicate `OpType...`
///     instructions, requiring deduplication.
///
/// This is not a complete copy of [`TypeInner`]: for example, SPIR-V generation
/// never synthesizes new struct types, so `LocalType` has nothing for that.
///
/// Each `LocalType` variant should be handled identically to its analogous
/// `TypeInner` variant. You can use the [`LocalType::from_inner`] function to
/// help with this, by converting everything possible to a `LocalType` before
/// inspecting it.
///
/// ## `LocalType` equality and SPIR-V `OpType` uniqueness
///
/// The definition of `Eq` on `LocalType` is carefully chosen to help us follow
/// certain SPIR-V rules. SPIR-V ยง2.8 requires some classes of `OpType...`
/// instructions to be unique; for example, you can't have two `OpTypeInt 32 1`
/// instructions in the same module. All 32-bit signed integers must use the
/// same type id.
///
/// All SPIR-V types that must be unique can be represented as a `LocalType`,
/// and two `LocalType`s are always `Eq` if SPIR-V would require them to use the
/// same `OpType...` instruction. This lets us avoid duplicates by recording the
/// ids of the type instructions we've already generated in a hash table,
/// [`Writer::lookup_type`], keyed by `LocalType`.
///
/// As another example, [`LocalImageType`], stored in the `LocalType::Image`
/// variant, is designed to help us deduplicate `OpTypeImage` instructions. See
/// its documentation for details.
///
/// `LocalType` also includes variants like `Pointer` that do not need to be
/// unique - but it is harmless to avoid the duplication.
///
/// As it always must, the `Hash` implementation respects the `Eq` relation.
///
/// [`TypeInner`]: crate::TypeInner
#[derive(Debug, PartialEq, Hash, Eq, Copy, Clone)]
enum LocalType {
    /// A numeric type.
    Numeric(NumericType),
    LocalPointer {
        base: NumericType,
        class: spirv::StorageClass,
    },
    Pointer {
        base: Handle<crate::Type>,
        class: spirv::StorageClass,
    },
    Image(LocalImageType),
    SampledImage {
        image_type_id: Word,
    },
    Sampler,
    /// Equivalent to a [`LocalType::Pointer`] whose `base` is a Naga IR [`BindingArray`]. SPIR-V
    /// permits duplicated `OpTypePointer` ids, so it's fine to have two different [`LocalType`]
    /// representations for pointer types.
    ///
    /// [`BindingArray`]: crate::TypeInner::BindingArray
    PointerToBindingArray {
        base: Handle<crate::Type>,
        size: u32,
        space: crate::AddressSpace,
    },
    BindingArray {
        base: Handle<crate::Type>,
        size: u32,
    },
    AccelerationStructure,
    RayQuery,
}

/// A type encountered during SPIR-V generation.
///
/// In the process of writing SPIR-V, we need to synthesize various types for
/// intermediate results and such: pointer types, vector/matrix component types,
/// or even booleans, which usually appear in SPIR-V code even when they're not
/// used by the module source.
///
/// However, we can't use `crate::Type` or `crate::TypeInner` for these, as the
/// type arena may not contain what we need (it only contains types used
/// directly by other parts of the IR), and the IR module is immutable, so we
/// can't add anything to it.
///
/// So for local use in the SPIR-V writer, we use this type, which holds either
/// a handle into the arena, or a [`LocalType`] containing something synthesized
/// locally.
///
/// This is very similar to the [`proc::TypeResolution`] enum, with `LocalType`
/// playing the role of `TypeInner`. However, `LocalType` also has other
/// properties needed for SPIR-V generation; see the description of
/// [`LocalType`] for details.
///
/// [`proc::TypeResolution`]: crate::proc::TypeResolution
#[derive(Debug, PartialEq, Hash, Eq, Copy, Clone)]
enum LookupType {
    Handle(Handle<crate::Type>),
    Local(LocalType),
}

impl From<LocalType> for LookupType {
    fn from(local: LocalType) -> Self {
        Self::Local(local)
    }
}

#[derive(Debug, PartialEq, Clone, Hash, Eq)]
struct LookupFunctionType {
    parameter_type_ids: Vec<Word>,
    return_type_id: Word,
}

impl LocalType {
    fn from_inner(inner: &crate::TypeInner) -> Option<Self> {
        Some(match *inner {
            crate::TypeInner::Scalar(_)
            | crate::TypeInner::Atomic(_)
            | crate::TypeInner::Vector { .. }
            | crate::TypeInner::Matrix { .. } => {
                // We expect `NumericType::from_inner` to handle all
                // these cases, so unwrap.
                LocalType::Numeric(NumericType::from_inner(inner).unwrap())
            }
            crate::TypeInner::Pointer { base, space } => LocalType::Pointer {
                base,
                class: helpers::map_storage_class(space),
            },
            crate::TypeInner::ValuePointer {
                size: Some(size),
                scalar,
                space,
            } => LocalType::LocalPointer {
                base: NumericType::Vector { size, scalar },
                class: helpers::map_storage_class(space),
            },
            crate::TypeInner::ValuePointer {
                size: None,
                scalar,
                space,
            } => LocalType::LocalPointer {
                base: NumericType::Scalar(scalar),
                class: helpers::map_storage_class(space),
            },
            crate::TypeInner::Image {
                dim,
                arrayed,
                class,
            } => LocalType::Image(LocalImageType::from_inner(dim, arrayed, class)),
            crate::TypeInner::Sampler { comparison: _ } => LocalType::Sampler,
            crate::TypeInner::AccelerationStructure => LocalType::AccelerationStructure,
            crate::TypeInner::RayQuery => LocalType::RayQuery,
            crate::TypeInner::Array { .. }
            | crate::TypeInner::Struct { .. }
            | crate::TypeInner::BindingArray { .. } => return None,
        })
    }
}

#[derive(Debug)]
enum Dimension {
    Scalar,
    Vector,
    Matrix,
}

/// A map from evaluated [`Expression`](crate::Expression)s to their SPIR-V ids.
///
/// When we emit code to evaluate a given `Expression`, we record the
/// SPIR-V id of its value here, under its `Handle<Expression>` index.
///
/// A `CachedExpressions` value can be indexed by a `Handle<Expression>` value.
///
/// [emit]: index.html#expression-evaluation-time-and-scope
#[derive(Default)]
struct CachedExpressions {
    ids: HandleVec<crate::Expression, Word>,
}
impl CachedExpressions {
    fn reset(&mut self, length: usize) {
        self.ids.clear();
        self.ids.resize(length, 0);
    }
}
impl ops::Index<Handle<crate::Expression>> for CachedExpressions {
    type Output = Word;
    fn index(&self, h: Handle<crate::Expression>) -> &Word {
        let id = &self.ids[h];
        if *id == 0 {
            unreachable!("Expression {:?} is not cached!", h);
        }
        id
    }
}
impl ops::IndexMut<Handle<crate::Expression>> for CachedExpressions {
    fn index_mut(&mut self, h: Handle<crate::Expression>) -> &mut Word {
        let id = &mut self.ids[h];
        if *id != 0 {
            unreachable!("Expression {:?} is already cached!", h);
        }
        id
    }
}
impl recyclable::Recyclable for CachedExpressions {
    fn recycle(self) -> Self {
        CachedExpressions {
            ids: self.ids.recycle(),
        }
    }
}

#[derive(Eq, Hash, PartialEq)]
enum CachedConstant {
    Literal(crate::proc::HashableLiteral),
    Composite {
        ty: LookupType,
        constituent_ids: Vec<Word>,
    },
    ZeroValue(Word),
}

/// The SPIR-V representation of a [`crate::GlobalVariable`].
///
/// In the Vulkan spec 1.3.296, the section [Descriptor Set Interface][dsi] says:
///
/// > Variables identified with the `Uniform` storage class are used to access
/// > transparent buffer backed resources. Such variables *must* be:
/// >
/// > -   typed as `OpTypeStruct`, or an array of this type,
/// >
/// > -   identified with a `Block` or `BufferBlock` decoration, and
/// >
/// > -   laid out explicitly using the `Offset`, `ArrayStride`, and `MatrixStride`
/// >     decorations as specified in "Offset and Stride Assignment".
///
/// This is followed by identical language for the `StorageBuffer`,
/// except that a `BufferBlock` decoration is not allowed.
///
/// When we encounter a global variable in the [`Storage`] or [`Uniform`]
/// address spaces whose type is not already [`Struct`], this backend implicitly
/// wraps the global variable in a struct: we generate a SPIR-V global variable
/// holding an `OpTypeStruct` with a single member, whose type is what the Naga
/// global's type would suggest, decorated as required above.
///
/// The [`helpers::global_needs_wrapper`] function determines whether a given
/// [`crate::GlobalVariable`] needs to be wrapped.
///
/// [dsi]: https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#interfaces-resources-descset
/// [`Storage`]: crate::AddressSpace::Storage
/// [`Uniform`]: crate::AddressSpace::Uniform
/// [`Struct`]: crate::TypeInner::Struct
#[derive(Clone)]
struct GlobalVariable {
    /// The SPIR-V id of the `OpVariable` that declares the global.
    ///
    /// If this global has been implicitly wrapped in an `OpTypeStruct`, this id
    /// refers to the wrapper, not the original Naga value it contains. If you
    /// need the Naga value, use [`access_id`] instead of this field.
    ///
    /// If this global is not implicitly wrapped, this is the same as
    /// [`access_id`].
    ///
    /// This is used to compute the `access_id` pointer in function prologues,
    /// and used for `ArrayLength` expressions, which need to pass the wrapper
    /// struct.
    ///
    /// [`access_id`]: GlobalVariable::access_id
    var_id: Word,

    /// The loaded value of a `AddressSpace::Handle` global variable.
    ///
    /// If the current function uses this global variable, this is the id of an
    /// `OpLoad` instruction in the function's prologue that loads its value.
    /// (This value is assigned as we write the prologue code of each function.)
    /// It is then used for all operations on the global, such as `OpImageSample`.
    handle_id: Word,

    /// The SPIR-V id of a pointer to this variable's Naga IR value.
    ///
    /// If the current function uses this global variable, and it has been
    /// implicitly wrapped in an `OpTypeStruct`, this is the id of an
    /// `OpAccessChain` instruction in the function's prologue that refers to
    /// the wrapped value inside the struct. (This value is assigned as we write
    /// the prologue code of each function.) If you need the wrapper struct
    /// itself, use [`var_id`] instead of this field.
    ///
    /// If this global is not implicitly wrapped, this is the same as
    /// [`var_id`].
    ///
    /// [`var_id`]: GlobalVariable::var_id
    access_id: Word,
}

impl GlobalVariable {
    const fn dummy() -> Self {
        Self {
            var_id: 0,
            handle_id: 0,
            access_id: 0,
        }
    }

    const fn new(id: Word) -> Self {
        Self {
            var_id: id,
            handle_id: 0,
            access_id: 0,
        }
    }

    /// Prepare `self` for use within a single function.
    fn reset_for_function(&mut self) {
        self.handle_id = 0;
        self.access_id = 0;
    }
}

struct FunctionArgument {
    /// Actual instruction of the argument.
    instruction: Instruction,
    handle_id: Word,
}

/// Tracks the expressions for which the backend emits the following instructions:
/// - OpConstantTrue
/// - OpConstantFalse
/// - OpConstant
/// - OpConstantComposite
/// - OpConstantNull
struct ExpressionConstnessTracker {
    inner: crate::arena::HandleSet<crate::Expression>,
}

impl ExpressionConstnessTracker {
    fn from_arena(arena: &crate::Arena<crate::Expression>) -> Self {
        let mut inner = crate::arena::HandleSet::for_arena(arena);
        for (handle, expr) in arena.iter() {
            let insert = match *expr {
                crate::Expression::Literal(_)
                | crate::Expression::ZeroValue(_)
                | crate::Expression::Constant(_) => true,
                crate::Expression::Compose { ref components, .. } => {
                    components.iter().all(|&h| inner.contains(h))
                }
                crate::Expression::Splat { value, .. } => inner.contains(value),
                _ => false,
            };
            if insert {
                inner.insert(handle);
            }
        }
        Self { inner }
    }

    fn is_const(&self, value: Handle<crate::Expression>) -> bool {
        self.inner.contains(value)
    }
}

/// General information needed to emit SPIR-V for Naga statements.
struct BlockContext<'w> {
    /// The writer handling the module to which this code belongs.
    writer: &'w mut Writer,

    /// The [`Module`](crate::Module) for which we're generating code.
    ir_module: &'w crate::Module,

    /// The [`Function`](crate::Function) for which we're generating code.
    ir_function: &'w crate::Function,

    /// Information module validation produced about
    /// [`ir_function`](BlockContext::ir_function).
    fun_info: &'w crate::valid::FunctionInfo,

    /// The [`spv::Function`](Function) to which we are contributing SPIR-V instructions.
    function: &'w mut Function,

    /// SPIR-V ids for expressions we've evaluated.
    cached: CachedExpressions,

    /// The `Writer`'s temporary vector, for convenience.
    temp_list: Vec<Word>,

    /// Tracks the constness of `Expression`s residing in `self.ir_function.expressions`
    expression_constness: ExpressionConstnessTracker,
}

impl BlockContext<'_> {
    fn gen_id(&mut self) -> Word {
        self.writer.id_gen.next()
    }

    fn get_type_id(&mut self, lookup_type: LookupType) -> Word {
        self.writer.get_type_id(lookup_type)
    }

    fn get_expression_type_id(&mut self, tr: &TypeResolution) -> Word {
        self.writer.get_expression_type_id(tr)
    }

    fn get_index_constant(&mut self, index: Word) -> Word {
        self.writer.get_constant_scalar(crate::Literal::U32(index))
    }

    fn get_scope_constant(&mut self, scope: Word) -> Word {
        self.writer
            .get_constant_scalar(crate::Literal::I32(scope as _))
    }

    fn get_pointer_id(&mut self, handle: Handle<crate::Type>, class: spirv::StorageClass) -> Word {
        self.writer.get_pointer_id(handle, class)
    }
}

pub struct Writer {
    physical_layout: PhysicalLayout,
    logical_layout: LogicalLayout,
    id_gen: IdGenerator,

    /// The set of capabilities modules are permitted to use.
    ///
    /// This is initialized from `Options::capabilities`.
    capabilities_available: Option<crate::FastHashSet<Capability>>,

    /// The set of capabilities used by this module.
    ///
    /// If `capabilities_available` is `Some`, then this is always a subset of
    /// that.
    capabilities_used: crate::FastIndexSet<Capability>,

    /// The set of spirv extensions used.
    extensions_used: crate::FastIndexSet<&'static str>,

    debugs: Vec<Instruction>,
    annotations: Vec<Instruction>,
    flags: WriterFlags,
    bounds_check_policies: BoundsCheckPolicies,
    zero_initialize_workgroup_memory: ZeroInitializeWorkgroupMemoryMode,
    void_type: Word,
    //TODO: convert most of these into vectors, addressable by handle indices
    lookup_type: crate::FastHashMap<LookupType, Word>,
    lookup_function: crate::FastHashMap<Handle<crate::Function>, Word>,
    lookup_function_type: crate::FastHashMap<LookupFunctionType, Word>,
    /// Indexed by const-expression handle indexes
    constant_ids: HandleVec<crate::Expression, Word>,
    cached_constants: crate::FastHashMap<CachedConstant, Word>,
    global_variables: HandleVec<crate::GlobalVariable, GlobalVariable>,
    binding_map: BindingMap,

    // Cached expressions are only meaningful within a BlockContext, but we
    // retain the table here between functions to save heap allocations.
    saved_cached: CachedExpressions,

    gl450_ext_inst_id: Word,

    // Just a temporary list of SPIR-V ids
    temp_list: Vec<Word>,
}

bitflags::bitflags! {
    #[derive(Clone, Copy, Debug, Eq, PartialEq)]
    pub struct WriterFlags: u32 {
        /// Include debug labels for everything.
        const DEBUG = 0x1;

        /// Flip Y coordinate of [`BuiltIn::Position`] output.
        ///
        /// [`BuiltIn::Position`]: crate::BuiltIn::Position
        const ADJUST_COORDINATE_SPACE = 0x2;

        /// Emit [`OpName`][op] for input/output locations.
        ///
        /// Contrary to spec, some drivers treat it as semantic, not allowing
        /// any conflicts.
        ///
        /// [op]: https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpName
        const LABEL_VARYINGS = 0x4;

        /// Emit [`PointSize`] output builtin to vertex shaders, which is
        /// required for drawing with `PointList` topology.
        ///
        /// [`PointSize`]: crate::BuiltIn::PointSize
        const FORCE_POINT_SIZE = 0x8;

        /// Clamp [`BuiltIn::FragDepth`] output between 0 and 1.
        ///
        /// [`BuiltIn::FragDepth`]: crate::BuiltIn::FragDepth
        const CLAMP_FRAG_DEPTH = 0x10;
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct BindingInfo {
    /// If the binding is an unsized binding array, this overrides the size.
    pub binding_array_size: Option<u32>,
}

// Using `BTreeMap` instead of `HashMap` so that we can hash itself.
pub type BindingMap = std::collections::BTreeMap<crate::ResourceBinding, BindingInfo>;

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ZeroInitializeWorkgroupMemoryMode {
    /// Via `VK_KHR_zero_initialize_workgroup_memory` or Vulkan 1.3
    Native,
    /// Via assignments + barrier
    Polyfill,
    None,
}

#[derive(Debug, Clone)]
pub struct Options<'a> {
    /// (Major, Minor) target version of the SPIR-V.
    pub lang_version: (u8, u8),

    /// Configuration flags for the writer.
    pub flags: WriterFlags,

    /// Map of resources to information about the binding.
    pub binding_map: BindingMap,

    /// If given, the set of capabilities modules are allowed to use. Code that
    /// requires capabilities beyond these is rejected with an error.
    ///
    /// If this is `None`, all capabilities are permitted.
    pub capabilities: Option<crate::FastHashSet<Capability>>,

    /// How should generate code handle array, vector, matrix, or image texel
    /// indices that are out of range?
    pub bounds_check_policies: BoundsCheckPolicies,

    /// Dictates the way workgroup variables should be zero initialized
    pub zero_initialize_workgroup_memory: ZeroInitializeWorkgroupMemoryMode,

    pub debug_info: Option<DebugInfo<'a>>,
}

impl Default for Options<'_> {
    fn default() -> Self {
        let mut flags = WriterFlags::ADJUST_COORDINATE_SPACE
            | WriterFlags::LABEL_VARYINGS
            | WriterFlags::CLAMP_FRAG_DEPTH;
        if cfg!(debug_assertions) {
            flags |= WriterFlags::DEBUG;
        }
        Options {
            lang_version: (1, 0),
            flags,
            binding_map: BindingMap::default(),
            capabilities: None,
            bounds_check_policies: BoundsCheckPolicies::default(),
            zero_initialize_workgroup_memory: ZeroInitializeWorkgroupMemoryMode::Polyfill,
            debug_info: None,
        }
    }
}

// A subset of options meant to be changed per pipeline.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct PipelineOptions {
    /// The stage of the entry point.
    pub shader_stage: crate::ShaderStage,
    /// The name of the entry point.
    ///
    /// If no entry point that matches is found while creating a [`Writer`], a error will be thrown.
    pub entry_point: String,
}

pub fn write_vec(
    module: &crate::Module,
    info: &crate::valid::ModuleInfo,
    options: &Options,
    pipeline_options: Option<&PipelineOptions>,
) -> Result<Vec<u32>, Error> {
    let mut words: Vec<u32> = Vec::new();
    let mut w = Writer::new(options)?;

    w.write(
        module,
        info,
        pipeline_options,
        &options.debug_info,
        &mut words,
    )?;
    Ok(words)
}