1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Overview of the GPU cache.
//!
//! The main goal of the GPU cache is to allow on-demand
//! allocation and construction of GPU resources for the
//! vertex shaders to consume.
//!
//! Every item that wants to be stored in the GPU cache
//! should create a GpuCacheHandle that is used to refer
//! to a cached GPU resource. Creating a handle is a
//! cheap operation, that does *not* allocate room in the
//! cache.
//!
//! On any frame when that data is required, the caller
//! must request that handle, via ```request```. If the
//! data is not in the cache, the user provided closure
//! will be invoked to build the data.
//!
//! After ```end_frame``` has occurred, callers can
//! use the ```get_address``` API to get the allocated
//! address in the GPU cache of a given resource slot
//! for this frame.
use api::{DebugFlags, DocumentId, PremultipliedColorF};
#[cfg(test)]
use api::IdNamespace;
use api::units::*;
use euclid::{HomogeneousVector, Box2D};
use crate::internal_types::{FastHashMap, FastHashSet, FrameStamp, FrameId};
use crate::profiler::{self, TransactionProfile};
use crate::prim_store::VECS_PER_SEGMENT;
use crate::renderer::MAX_VERTEX_TEXTURE_WIDTH;
use crate::util::VecHelper;
use std::{u16, u32};
use std::num::NonZeroU32;
use std::ops::Add;
use std::time::{Duration, Instant};
/// At the time of this writing, Firefox uses about 15 GPU cache rows on
/// startup, and then gradually works its way up to the mid-30s with normal
/// browsing.
pub const GPU_CACHE_INITIAL_HEIGHT: i32 = 20;
const NEW_ROWS_PER_RESIZE: i32 = 10;
/// The number of frames an entry can go unused before being evicted.
const FRAMES_BEFORE_EVICTION: u64 = 10;
/// The ratio of utilized blocks to total blocks for which we start the clock
/// on reclaiming memory.
const RECLAIM_THRESHOLD: f32 = 0.2;
/// The amount of time utilization must be below the above threshold before we
/// blow away the cache and rebuild it.
const RECLAIM_DELAY_S: u64 = 5;
#[derive(Debug, Copy, Clone, Eq, MallocSizeOf, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Epoch(u32);
impl Epoch {
fn next(&mut self) {
*self = Epoch(self.0.wrapping_add(1));
}
}
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct CacheLocation {
block_index: BlockIndex,
epoch: Epoch,
}
/// A single texel in RGBAF32 texture - 16 bytes.
#[derive(Copy, Clone, Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBlockData {
data: [f32; 4],
}
impl GpuBlockData {
pub const EMPTY: Self = GpuBlockData { data: [0.0; 4] };
}
/// Conversion helpers for GpuBlockData
impl From<PremultipliedColorF> for GpuBlockData {
fn from(c: PremultipliedColorF) -> Self {
GpuBlockData {
data: [c.r, c.g, c.b, c.a],
}
}
}
impl From<[f32; 4]> for GpuBlockData {
fn from(data: [f32; 4]) -> Self {
GpuBlockData { data }
}
}
impl<P> From<Box2D<f32, P>> for GpuBlockData {
fn from(r: Box2D<f32, P>) -> Self {
GpuBlockData {
data: [
r.min.x,
r.min.y,
r.max.x,
r.max.y,
],
}
}
}
impl<P> From<HomogeneousVector<f32, P>> for GpuBlockData {
fn from(v: HomogeneousVector<f32, P>) -> Self {
GpuBlockData {
data: [
v.x,
v.y,
v.z,
v.w,
],
}
}
}
impl From<TexelRect> for GpuBlockData {
fn from(tr: TexelRect) -> Self {
GpuBlockData {
data: [tr.uv0.x, tr.uv0.y, tr.uv1.x, tr.uv1.y],
}
}
}
// A handle to a GPU resource.
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheHandle {
location: Option<CacheLocation>,
}
impl GpuCacheHandle {
pub fn new() -> Self {
GpuCacheHandle { location: None }
}
pub fn as_int(self, gpu_cache: &GpuCache) -> i32 {
gpu_cache.get_address(&self).as_int()
}
}
// A unique address in the GPU cache. These are uploaded
// as part of the primitive instances, to allow the vertex
// shader to fetch the specific data.
#[repr(C)]
#[derive(Copy, Debug, Clone, MallocSizeOf, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheAddress {
pub u: u16,
pub v: u16,
}
impl GpuCacheAddress {
fn new(u: usize, v: usize) -> Self {
GpuCacheAddress {
u: u as u16,
v: v as u16,
}
}
pub const INVALID: GpuCacheAddress = GpuCacheAddress {
u: u16::MAX,
v: u16::MAX,
};
pub fn as_int(self) -> i32 {
// TODO(gw): Temporarily encode GPU Cache addresses as a single int.
// In the future, we can change the PrimitiveInstanceData struct
// to use 2x u16 for the vertex attribute instead of an i32.
self.v as i32 * MAX_VERTEX_TEXTURE_WIDTH as i32 + self.u as i32
}
}
impl Add<usize> for GpuCacheAddress {
type Output = GpuCacheAddress;
fn add(self, other: usize) -> GpuCacheAddress {
GpuCacheAddress {
u: self.u + other as u16,
v: self.v,
}
}
}
// An entry in a free-list of blocks in the GPU cache.
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Block {
// The location in the cache of this block.
address: GpuCacheAddress,
// The current epoch (generation) of this block.
epoch: Epoch,
// Index of the next free block in the list it
// belongs to (either a free-list or the
// occupied list).
next: Option<BlockIndex>,
// The last frame this block was referenced.
last_access_time: FrameId,
}
impl Block {
fn new(
address: GpuCacheAddress,
next: Option<BlockIndex>,
frame_id: FrameId,
epoch: Epoch,
) -> Self {
Block {
address,
next,
last_access_time: frame_id,
epoch,
}
}
fn advance_epoch(&mut self, max_epoch: &mut Epoch) {
self.epoch.next();
if max_epoch.0 < self.epoch.0 {
max_epoch.0 = self.epoch.0;
}
}
/// Creates an invalid dummy block ID.
pub const INVALID: Block = Block {
address: GpuCacheAddress { u: 0, v: 0 },
epoch: Epoch(0),
next: None,
last_access_time: FrameId::INVALID,
};
}
/// Represents the index of a Block in the block array. We only create such
/// structs for blocks that represent the start of a chunk.
///
/// Because we use Option<BlockIndex> in a lot of places, we use a NonZeroU32
/// here and avoid ever using the index zero.
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct BlockIndex(NonZeroU32);
impl BlockIndex {
fn new(idx: usize) -> Self {
debug_assert!(idx <= u32::MAX as usize);
BlockIndex(NonZeroU32::new(idx as u32).expect("Index zero forbidden"))
}
fn get(&self) -> usize {
self.0.get() as usize
}
}
// A row in the cache texture.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
struct Row {
// The fixed size of blocks that this row supports.
// Each row becomes a slab allocator for a fixed block size.
// This means no dealing with fragmentation within a cache
// row as items are allocated and freed.
block_count_per_item: usize,
}
impl Row {
fn new(block_count_per_item: usize) -> Self {
Row {
block_count_per_item,
}
}
}
// A list of update operations that can be applied on the cache
// this frame. The list of updates is created by the render backend
// during frame construction. It's passed to the render thread
// where GL commands can be applied.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub enum GpuCacheUpdate {
Copy {
block_index: usize,
block_count: usize,
address: GpuCacheAddress,
},
}
/// Command to inform the debug display in the renderer when chunks are allocated
/// or freed.
#[derive(MallocSizeOf)]
pub enum GpuCacheDebugCmd {
/// Describes an allocated chunk.
Alloc(GpuCacheDebugChunk),
/// Describes a freed chunk.
Free(GpuCacheAddress),
}
#[derive(Clone, MallocSizeOf)]
pub struct GpuCacheDebugChunk {
pub address: GpuCacheAddress,
pub size: usize,
}
#[must_use]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct GpuCacheUpdateList {
/// The frame current update list was generated from.
pub frame_id: FrameId,
/// Whether the texture should be cleared before updates
/// are applied.
pub clear: bool,
/// The current height of the texture. The render thread
/// should resize the texture if required.
pub height: i32,
/// List of updates to apply.
pub updates: Vec<GpuCacheUpdate>,
/// A flat list of GPU blocks that are pending upload
/// to GPU memory.
pub blocks: Vec<GpuBlockData>,
/// Whole state GPU block metadata for debugging.
#[cfg_attr(feature = "serde", serde(skip))]
pub debug_commands: Vec<GpuCacheDebugCmd>,
}
// Holds the free lists of fixed size blocks. Mostly
// just serves to work around the borrow checker.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
struct FreeBlockLists {
free_list_1: Option<BlockIndex>,
free_list_2: Option<BlockIndex>,
free_list_4: Option<BlockIndex>,
free_list_8: Option<BlockIndex>,
free_list_16: Option<BlockIndex>,
free_list_32: Option<BlockIndex>,
free_list_64: Option<BlockIndex>,
free_list_128: Option<BlockIndex>,
free_list_256: Option<BlockIndex>,
free_list_341: Option<BlockIndex>,
free_list_512: Option<BlockIndex>,
free_list_1024: Option<BlockIndex>,
}
impl FreeBlockLists {
fn new() -> Self {
FreeBlockLists {
free_list_1: None,
free_list_2: None,
free_list_4: None,
free_list_8: None,
free_list_16: None,
free_list_32: None,
free_list_64: None,
free_list_128: None,
free_list_256: None,
free_list_341: None,
free_list_512: None,
free_list_1024: None,
}
}
fn get_actual_block_count_and_free_list(
&mut self,
block_count: usize,
) -> (usize, &mut Option<BlockIndex>) {
// Find the appropriate free list to use based on the block size.
//
// Note that we cheat a bit with the 341 bucket, since it's not quite
// a divisor of 1024, because purecss-francine allocates many 260-block
// chunks, and there's no reason we shouldn't pack these three to a row.
// This means the allocation statistics will under-report by one block
// for each row using 341-block buckets, which is fine.
debug_assert_eq!(MAX_VERTEX_TEXTURE_WIDTH, 1024, "Need to update bucketing");
match block_count {
0 => panic!("Can't allocate zero sized blocks!"),
1 => (1, &mut self.free_list_1),
2 => (2, &mut self.free_list_2),
3..=4 => (4, &mut self.free_list_4),
5..=8 => (8, &mut self.free_list_8),
9..=16 => (16, &mut self.free_list_16),
17..=32 => (32, &mut self.free_list_32),
33..=64 => (64, &mut self.free_list_64),
65..=128 => (128, &mut self.free_list_128),
129..=256 => (256, &mut self.free_list_256),
257..=341 => (341, &mut self.free_list_341),
342..=512 => (512, &mut self.free_list_512),
513..=1024 => (1024, &mut self.free_list_1024),
_ => panic!("Can't allocate > MAX_VERTEX_TEXTURE_WIDTH per resource!"),
}
}
}
// CPU-side representation of the GPU resource cache texture.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
struct Texture {
// Current texture height
height: i32,
// All blocks that have been created for this texture
blocks: Vec<Block>,
// Metadata about each allocated row.
rows: Vec<Row>,
// The base Epoch for this texture.
base_epoch: Epoch,
// The maximum epoch reached. We track this along with the above so
// that we can rebuild the Texture and avoid collisions with handles
// allocated for the old texture.
max_epoch: Epoch,
// Free lists of available blocks for each supported
// block size in the texture. These are intrusive
// linked lists.
free_lists: FreeBlockLists,
// Linked list of currently occupied blocks. This
// makes it faster to iterate blocks looking for
// candidates to be evicted from the cache.
occupied_list_heads: FastHashMap<DocumentId, BlockIndex>,
// Pending blocks that have been written this frame
// and will need to be sent to the GPU.
pending_blocks: Vec<GpuBlockData>,
// Pending update commands.
updates: Vec<GpuCacheUpdate>,
// Profile stats
allocated_block_count: usize,
// The stamp at which we first reached our threshold for reclaiming `GpuCache`
// memory, or `None` if the threshold hasn't been reached.
#[cfg_attr(feature = "serde", serde(skip))]
reached_reclaim_threshold: Option<Instant>,
// List of debug commands to be sent to the renderer when the GPU cache
// debug display is enabled.
#[cfg_attr(feature = "serde", serde(skip))]
debug_commands: Vec<GpuCacheDebugCmd>,
// The current debug flags for the system.
debug_flags: DebugFlags,
}
impl Texture {
fn new(base_epoch: Epoch, debug_flags: DebugFlags) -> Self {
// Pre-fill the block array with one invalid block so that we never use
// 0 for a BlockIndex. This lets us use NonZeroU32 for BlockIndex, which
// saves memory.
let blocks = vec![Block::INVALID];
Texture {
height: GPU_CACHE_INITIAL_HEIGHT,
blocks,
rows: Vec::new(),
base_epoch,
max_epoch: base_epoch,
free_lists: FreeBlockLists::new(),
pending_blocks: Vec::new(),
updates: Vec::new(),
occupied_list_heads: FastHashMap::default(),
allocated_block_count: 0,
reached_reclaim_threshold: None,
debug_commands: Vec::new(),
debug_flags,
}
}
// Push new data into the cache. The ```pending_block_index``` field represents
// where the data was pushed into the texture ```pending_blocks``` array.
// Return the allocated address for this data.
fn push_data(
&mut self,
pending_block_index: Option<usize>,
block_count: usize,
frame_stamp: FrameStamp
) -> CacheLocation {
debug_assert!(frame_stamp.is_valid());
// Find the appropriate free list to use based on the block size.
let (alloc_size, free_list) = self.free_lists
.get_actual_block_count_and_free_list(block_count);
// See if we need a new row (if free-list has nothing available)
if free_list.is_none() {
if self.rows.len() as i32 == self.height {
self.height += NEW_ROWS_PER_RESIZE;
}
// Create a new row.
let items_per_row = MAX_VERTEX_TEXTURE_WIDTH / alloc_size;
let row_index = self.rows.len();
self.rows.push(Row::new(alloc_size));
// Create a ```Block``` for each possible allocation address
// in this row, and link it in to the free-list for this
// block size.
let mut prev_block_index = None;
for i in 0 .. items_per_row {
let address = GpuCacheAddress::new(i * alloc_size, row_index);
let block_index = BlockIndex::new(self.blocks.len());
let block = Block::new(address, prev_block_index, frame_stamp.frame_id(), self.base_epoch);
self.blocks.push(block);
prev_block_index = Some(block_index);
}
*free_list = prev_block_index;
}
// Given the code above, it's now guaranteed that there is a block
// available in the appropriate free-list. Pull a block from the
// head of the list.
let free_block_index = free_list.take().unwrap();
let block = &mut self.blocks[free_block_index.get()];
*free_list = block.next;
// Add the block to the occupied linked list.
block.next = self.occupied_list_heads.get(&frame_stamp.document_id()).cloned();
block.last_access_time = frame_stamp.frame_id();
self.occupied_list_heads.insert(frame_stamp.document_id(), free_block_index);
self.allocated_block_count += alloc_size;
if let Some(pending_block_index) = pending_block_index {
// Add this update to the pending list of blocks that need
// to be updated on the GPU.
self.updates.push(GpuCacheUpdate::Copy {
block_index: pending_block_index,
block_count,
address: block.address,
});
}
// If we're using the debug display, communicate the allocation to the
// renderer thread. Note that we do this regardless of whether or not
// pending_block_index is None (if it is, the renderer thread will fill
// in the data via a deferred resolve, but the block is still considered
// allocated).
if self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
self.debug_commands.push(GpuCacheDebugCmd::Alloc(GpuCacheDebugChunk {
address: block.address,
size: block_count,
}));
}
CacheLocation {
block_index: free_block_index,
epoch: block.epoch,
}
}
// Run through the list of occupied cache blocks and evict
// any old blocks that haven't been referenced for a while.
fn evict_old_blocks(&mut self, frame_stamp: FrameStamp) {
debug_assert!(frame_stamp.is_valid());
// Prune any old items from the list to make room.
// Traverse the occupied linked list and see
// which items have not been used for a long time.
let mut current_block = self.occupied_list_heads.get(&frame_stamp.document_id()).map(|x| *x);
let mut prev_block: Option<BlockIndex> = None;
while let Some(index) = current_block {
let (next_block, should_unlink) = {
let block = &mut self.blocks[index.get()];
let next_block = block.next;
let mut should_unlink = false;
// If this resource has not been used in the last
// few frames, free it from the texture and mark
// as empty.
if block.last_access_time + FRAMES_BEFORE_EVICTION < frame_stamp.frame_id() {
should_unlink = true;
// Get the row metadata from the address.
let row = &mut self.rows[block.address.v as usize];
// Use the row metadata to determine which free-list
// this block belongs to.
let (_, free_list) = self.free_lists
.get_actual_block_count_and_free_list(row.block_count_per_item);
block.advance_epoch(&mut self.max_epoch);
block.next = *free_list;
*free_list = Some(index);
self.allocated_block_count -= row.block_count_per_item;
if self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
let cmd = GpuCacheDebugCmd::Free(block.address);
self.debug_commands.push(cmd);
}
};
(next_block, should_unlink)
};
// If the block was released, we will need to remove it
// from the occupied linked list.
if should_unlink {
match prev_block {
Some(prev_block) => {
self.blocks[prev_block.get()].next = next_block;
}
None => {
match next_block {
Some(next_block) => {
self.occupied_list_heads.insert(frame_stamp.document_id(), next_block);
}
None => {
self.occupied_list_heads.remove(&frame_stamp.document_id());
}
}
}
}
} else {
prev_block = current_block;
}
current_block = next_block;
}
}
/// Returns the ratio of utilized blocks.
fn utilization(&self) -> f32 {
let total_blocks = self.rows.len() * MAX_VERTEX_TEXTURE_WIDTH;
debug_assert!(total_blocks > 0);
let ratio = self.allocated_block_count as f32 / total_blocks as f32;
debug_assert!(0.0 <= ratio && ratio <= 1.0, "Bad ratio: {}", ratio);
ratio
}
}
/// A wrapper object for GPU data requests,
/// works as a container that can only grow.
#[must_use]
pub struct GpuDataRequest<'a> {
//TODO: remove this, see
// https://bugzilla.mozilla.org/show_bug.cgi?id=1690546
#[allow(dead_code)]
handle: &'a mut GpuCacheHandle,
frame_stamp: FrameStamp,
start_index: usize,
max_block_count: usize,
texture: &'a mut Texture,
}
impl<'a> GpuDataRequest<'a> {
pub fn push<B>(&mut self, block: B)
where
B: Into<GpuBlockData>,
{
self.texture.pending_blocks.push(block.into());
}
// Write the GPU cache data for an individual segment.
pub fn write_segment(
&mut self,
local_rect: LayoutRect,
extra_data: [f32; 4],
) {
let _ = VECS_PER_SEGMENT;
self.push(local_rect);
self.push(extra_data);
}
pub fn current_used_block_num(&self) -> usize {
self.texture.pending_blocks.len() - self.start_index
}
}
impl<'a> Drop for GpuDataRequest<'a> {
fn drop(&mut self) {
// Push the data to the texture pending updates list.
let block_count = self.current_used_block_num();
debug_assert!(block_count <= self.max_block_count);
let location = self.texture
.push_data(Some(self.start_index), block_count, self.frame_stamp);
self.handle.location = Some(location);
}
}
/// The main LRU cache interface.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct GpuCache {
/// Current FrameId.
now: FrameStamp,
/// CPU-side texture allocator.
texture: Texture,
/// Number of blocks requested this frame that don't
/// need to be re-uploaded.
saved_block_count: usize,
/// The current debug flags for the system.
debug_flags: DebugFlags,
/// Whether there is a pending clear to send with the
/// next update.
pending_clear: bool,
/// Indicates that prepare_for_frames has been called for this group of frames.
/// Used for sanity checks.
prepared_for_frames: bool,
/// This indicates that we performed a cleanup operation which requires all
/// documents to build a frame.
requires_frame_build: bool,
/// The set of documents which have had frames built in this update. Used for
/// sanity checks.
document_frames_to_build: FastHashSet<DocumentId>,
}
impl GpuCache {
pub fn new() -> Self {
let debug_flags = DebugFlags::empty();
GpuCache {
now: FrameStamp::INVALID,
texture: Texture::new(Epoch(0), debug_flags),
saved_block_count: 0,
debug_flags,
pending_clear: false,
prepared_for_frames: false,
requires_frame_build: false,
document_frames_to_build: FastHashSet::default(),
}
}
/// Creates a GpuCache and sets it up with a valid `FrameStamp`, which
/// is useful for avoiding panics when instantiating the `GpuCache`
/// directly from unit test code.
#[cfg(test)]
pub fn new_for_testing() -> Self {
let mut cache = Self::new();
let mut now = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
now.advance();
cache.prepared_for_frames = true;
cache.begin_frame(now);
cache
}
/// Drops everything in the GPU cache. Must not be called once gpu cache entries
/// for the next frame have already been requested.
pub fn clear(&mut self) {
assert!(self.texture.updates.is_empty(), "Clearing with pending updates");
let mut next_base_epoch = self.texture.max_epoch;
next_base_epoch.next();
self.texture = Texture::new(next_base_epoch, self.debug_flags);
self.saved_block_count = 0;
self.pending_clear = true;
self.requires_frame_build = true;
}
pub fn requires_frame_build(&self) -> bool {
self.requires_frame_build
}
pub fn prepare_for_frames(&mut self) {
self.prepared_for_frames = true;
if self.should_reclaim_memory() {
self.clear();
debug_assert!(self.document_frames_to_build.is_empty());
for &document_id in self.texture.occupied_list_heads.keys() {
self.document_frames_to_build.insert(document_id);
}
}
}
pub fn bookkeep_after_frames(&mut self) {
assert!(self.document_frames_to_build.is_empty());
assert!(self.prepared_for_frames);
self.requires_frame_build = false;
self.prepared_for_frames = false;
}
/// Begin a new frame.
pub fn begin_frame(&mut self, stamp: FrameStamp) {
debug_assert!(self.texture.pending_blocks.is_empty());
assert!(self.prepared_for_frames);
profile_scope!("begin_frame");
self.now = stamp;
self.texture.evict_old_blocks(self.now);
self.saved_block_count = 0;
}
// Invalidate a (possibly) existing block in the cache.
// This means the next call to request() for this location
// will rebuild the data and upload it to the GPU.
pub fn invalidate(&mut self, handle: &GpuCacheHandle) {
if let Some(ref location) = handle.location {
// don't invalidate blocks that are already re-assigned
if let Some(block) = self.texture.blocks.get_mut(location.block_index.get()) {
if block.epoch == location.epoch {
block.advance_epoch(&mut self.texture.max_epoch);
}
}
}
}
/// Request a resource be added to the cache. If the resource
/// is already in the cache, `None` will be returned.
pub fn request<'a>(&'a mut self, handle: &'a mut GpuCacheHandle) -> Option<GpuDataRequest<'a>> {
let mut max_block_count = MAX_VERTEX_TEXTURE_WIDTH;
// Check if the allocation for this handle is still valid.
if let Some(ref location) = handle.location {
if let Some(block) = self.texture.blocks.get_mut(location.block_index.get()) {
if block.epoch == location.epoch {
max_block_count = self.texture.rows[block.address.v as usize].block_count_per_item;
if block.last_access_time != self.now.frame_id() {
// Mark last access time to avoid evicting this block.
block.last_access_time = self.now.frame_id();
self.saved_block_count += max_block_count;
}
return None;
}
}
}
debug_assert!(self.now.is_valid());
Some(GpuDataRequest {
handle,
frame_stamp: self.now,
start_index: self.texture.pending_blocks.len(),
texture: &mut self.texture,
max_block_count,
})
}
// Push an array of data blocks to be uploaded to the GPU
// unconditionally for this frame. The cache handle will
// assert if the caller tries to retrieve the address
// of this handle on a subsequent frame. This is typically
// used for uploading data that changes every frame, and
// therefore makes no sense to try and cache.
pub fn push_per_frame_blocks(&mut self, blocks: &[GpuBlockData]) -> GpuCacheHandle {
let start_index = self.texture.pending_blocks.len();
self.texture.pending_blocks.extend_from_slice(blocks);
let location = self.texture
.push_data(Some(start_index), blocks.len(), self.now);
GpuCacheHandle {
location: Some(location),
}
}
// Reserve space in the cache for per-frame blocks that
// will be resolved by the render thread via the
// external image callback.
pub fn push_deferred_per_frame_blocks(&mut self, block_count: usize) -> GpuCacheHandle {
let location = self.texture.push_data(None, block_count, self.now);
GpuCacheHandle {
location: Some(location),
}
}
/// End the frame. Return the list of updates to apply to the
/// device specific cache texture.
pub fn end_frame(
&mut self,
profile: &mut TransactionProfile,
) -> FrameStamp {
profile_scope!("end_frame");
profile.set(profiler::GPU_CACHE_ROWS_TOTAL, self.texture.rows.len());
profile.set(profiler::GPU_CACHE_BLOCKS_TOTAL, self.texture.allocated_block_count);
profile.set(profiler::GPU_CACHE_BLOCKS_SAVED, self.saved_block_count);
let reached_threshold =
self.texture.rows.len() > (GPU_CACHE_INITIAL_HEIGHT as usize) &&
self.texture.utilization() < RECLAIM_THRESHOLD;
if reached_threshold {
self.texture.reached_reclaim_threshold.get_or_insert_with(Instant::now);
} else {
self.texture.reached_reclaim_threshold = None;
}
self.document_frames_to_build.remove(&self.now.document_id());
self.now
}
/// Returns true if utilization has been low enough for long enough that we
/// should blow the cache away and rebuild it.
pub fn should_reclaim_memory(&self) -> bool {
self.texture.reached_reclaim_threshold
.map_or(false, |t| t.elapsed() > Duration::from_secs(RECLAIM_DELAY_S))
}
/// Extract the pending updates from the cache.
pub fn extract_updates(&mut self) -> GpuCacheUpdateList {
let clear = self.pending_clear;
self.pending_clear = false;
GpuCacheUpdateList {
frame_id: self.now.frame_id(),
clear,
height: self.texture.height,
debug_commands: self.texture.debug_commands.take_and_preallocate(),
updates: self.texture.updates.take_and_preallocate(),
blocks: self.texture.pending_blocks.take_and_preallocate(),
}
}
/// Sets the current debug flags for the system.
pub fn set_debug_flags(&mut self, flags: DebugFlags) {
self.debug_flags = flags;
self.texture.debug_flags = flags;
}
/// Get the actual GPU address in the texture for a given slot ID.
/// It's assumed at this point that the given slot has been requested
/// and built for this frame. Attempting to get the address for a
/// freed or pending slot will panic!
pub fn get_address(&self, id: &GpuCacheHandle) -> GpuCacheAddress {
let location = id.location.expect("handle not requested or allocated!");
let block = &self.texture.blocks[location.block_index.get()];
debug_assert_eq!(block.epoch, location.epoch);
debug_assert_eq!(block.last_access_time, self.now.frame_id());
block.address
}
}
#[test]
#[cfg(target_pointer_width = "64")]
fn test_struct_sizes() {
use std::mem;
// We can end up with a lot of blocks stored in the global vec, and keeping
// them small helps reduce memory overhead.
assert_eq!(mem::size_of::<Block>(), 24, "Block size changed");
}