1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Overview of the GPU cache.
//!
//! The main goal of the GPU cache is to allow on-demand
//! allocation and construction of GPU resources for the
//! vertex shaders to consume.
//!
//! Every item that wants to be stored in the GPU cache
//! should create a GpuCacheHandle that is used to refer
//! to a cached GPU resource. Creating a handle is a
//! cheap operation, that does *not* allocate room in the
//! cache.
//!
//! On any frame when that data is required, the caller
//! must request that handle, via ```request```. If the
//! data is not in the cache, the user provided closure
//! will be invoked to build the data.
//!
//! After ```end_frame``` has occurred, callers can
//! use the ```get_address``` API to get the allocated
//! address in the GPU cache of a given resource slot
//! for this frame.

use api::{DebugFlags, DocumentId, PremultipliedColorF};
#[cfg(test)]
use api::IdNamespace;
use api::units::*;
use euclid::{HomogeneousVector, Box2D};
use crate::internal_types::{FastHashMap, FastHashSet, FrameStamp, FrameId};
use crate::profiler::{self, TransactionProfile};
use crate::prim_store::VECS_PER_SEGMENT;
use crate::renderer::MAX_VERTEX_TEXTURE_WIDTH;
use crate::util::VecHelper;
use std::{u16, u32};
use std::num::NonZeroU32;
use std::ops::Add;
use std::time::{Duration, Instant};


/// At the time of this writing, Firefox uses about 15 GPU cache rows on
/// startup, and then gradually works its way up to the mid-30s with normal
/// browsing.
pub const GPU_CACHE_INITIAL_HEIGHT: i32 = 20;
const NEW_ROWS_PER_RESIZE: i32 = 10;

/// The number of frames an entry can go unused before being evicted.
const FRAMES_BEFORE_EVICTION: u64 = 10;

/// The ratio of utilized blocks to total blocks for which we start the clock
/// on reclaiming memory.
const RECLAIM_THRESHOLD: f32 = 0.2;

/// The amount of time utilization must be below the above threshold before we
/// blow away the cache and rebuild it.
const RECLAIM_DELAY_S: u64 = 5;

#[derive(Debug, Copy, Clone, Eq, MallocSizeOf, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Epoch(u32);

impl Epoch {
    fn next(&mut self) {
        *self = Epoch(self.0.wrapping_add(1));
    }
}

#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct CacheLocation {
    block_index: BlockIndex,
    epoch: Epoch,
}

/// A single texel in RGBAF32 texture - 16 bytes.
#[derive(Copy, Clone, Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBlockData {
    data: [f32; 4],
}

impl GpuBlockData {
    pub const EMPTY: Self = GpuBlockData { data: [0.0; 4] };
}

/// Conversion helpers for GpuBlockData
impl From<PremultipliedColorF> for GpuBlockData {
    fn from(c: PremultipliedColorF) -> Self {
        GpuBlockData {
            data: [c.r, c.g, c.b, c.a],
        }
    }
}

impl From<[f32; 4]> for GpuBlockData {
    fn from(data: [f32; 4]) -> Self {
        GpuBlockData { data }
    }
}

impl<P> From<Box2D<f32, P>> for GpuBlockData {
    fn from(r: Box2D<f32, P>) -> Self {
        GpuBlockData {
            data: [
                r.min.x,
                r.min.y,
                r.max.x,
                r.max.y,
            ],
        }
    }
}

impl<P> From<HomogeneousVector<f32, P>> for GpuBlockData {
    fn from(v: HomogeneousVector<f32, P>) -> Self {
        GpuBlockData {
            data: [
                v.x,
                v.y,
                v.z,
                v.w,
            ],
        }
    }
}

impl From<TexelRect> for GpuBlockData {
    fn from(tr: TexelRect) -> Self {
        GpuBlockData {
            data: [tr.uv0.x, tr.uv0.y, tr.uv1.x, tr.uv1.y],
        }
    }
}


// A handle to a GPU resource.
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheHandle {
    location: Option<CacheLocation>,
}

impl GpuCacheHandle {
    pub fn new() -> Self {
        GpuCacheHandle { location: None }
    }

    pub fn as_int(self, gpu_cache: &GpuCache) -> i32 {
        gpu_cache.get_address(&self).as_int()
    }
}

// A unique address in the GPU cache. These are uploaded
// as part of the primitive instances, to allow the vertex
// shader to fetch the specific data.
#[derive(Copy, Debug, Clone, MallocSizeOf, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheAddress {
    pub u: u16,
    pub v: u16,
}

impl GpuCacheAddress {
    fn new(u: usize, v: usize) -> Self {
        GpuCacheAddress {
            u: u as u16,
            v: v as u16,
        }
    }

    pub const INVALID: GpuCacheAddress = GpuCacheAddress {
        u: u16::MAX,
        v: u16::MAX,
    };

    pub fn as_int(self) -> i32 {
        // TODO(gw): Temporarily encode GPU Cache addresses as a single int.
        //           In the future, we can change the PrimitiveInstanceData struct
        //           to use 2x u16 for the vertex attribute instead of an i32.
        self.v as i32 * MAX_VERTEX_TEXTURE_WIDTH as i32 + self.u as i32
    }
}

impl Add<usize> for GpuCacheAddress {
    type Output = GpuCacheAddress;

    fn add(self, other: usize) -> GpuCacheAddress {
        GpuCacheAddress {
            u: self.u + other as u16,
            v: self.v,
        }
    }
}

// An entry in a free-list of blocks in the GPU cache.
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Block {
    // The location in the cache of this block.
    address: GpuCacheAddress,
    // The current epoch (generation) of this block.
    epoch: Epoch,
    // Index of the next free block in the list it
    // belongs to (either a free-list or the
    // occupied list).
    next: Option<BlockIndex>,
    // The last frame this block was referenced.
    last_access_time: FrameId,
}

impl Block {
    fn new(
        address: GpuCacheAddress,
        next: Option<BlockIndex>,
        frame_id: FrameId,
        epoch: Epoch,
    ) -> Self {
        Block {
            address,
            next,
            last_access_time: frame_id,
            epoch,
        }
    }

    fn advance_epoch(&mut self, max_epoch: &mut Epoch) {
        self.epoch.next();
        if max_epoch.0 < self.epoch.0 {
            max_epoch.0 = self.epoch.0;
        }
    }

    /// Creates an invalid dummy block ID.
    pub const INVALID: Block = Block {
        address: GpuCacheAddress { u: 0, v: 0 },
        epoch: Epoch(0),
        next: None,
        last_access_time: FrameId::INVALID,
    };
}

/// Represents the index of a Block in the block array. We only create such
/// structs for blocks that represent the start of a chunk.
///
/// Because we use Option<BlockIndex> in a lot of places, we use a NonZeroU32
/// here and avoid ever using the index zero.
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct BlockIndex(NonZeroU32);

impl BlockIndex {
    fn new(idx: usize) -> Self {
        debug_assert!(idx <= u32::MAX as usize);
        BlockIndex(NonZeroU32::new(idx as u32).expect("Index zero forbidden"))
    }

    fn get(&self) -> usize {
        self.0.get() as usize
    }
}

// A row in the cache texture.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
struct Row {
    // The fixed size of blocks that this row supports.
    // Each row becomes a slab allocator for a fixed block size.
    // This means no dealing with fragmentation within a cache
    // row as items are allocated and freed.
    block_count_per_item: usize,
}

impl Row {
    fn new(block_count_per_item: usize) -> Self {
        Row {
            block_count_per_item,
        }
    }
}

// A list of update operations that can be applied on the cache
// this frame. The list of updates is created by the render backend
// during frame construction. It's passed to the render thread
// where GL commands can be applied.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub enum GpuCacheUpdate {
    Copy {
        block_index: usize,
        block_count: usize,
        address: GpuCacheAddress,
    },
}

/// Command to inform the debug display in the renderer when chunks are allocated
/// or freed.
#[derive(MallocSizeOf)]
pub enum GpuCacheDebugCmd {
    /// Describes an allocated chunk.
    Alloc(GpuCacheDebugChunk),
    /// Describes a freed chunk.
    Free(GpuCacheAddress),
}

#[derive(Clone, MallocSizeOf)]
pub struct GpuCacheDebugChunk {
    pub address: GpuCacheAddress,
    pub size: usize,
}

#[must_use]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct GpuCacheUpdateList {
    /// The frame current update list was generated from.
    pub frame_id: FrameId,
    /// Whether the texture should be cleared before updates
    /// are applied.
    pub clear: bool,
    /// The current height of the texture. The render thread
    /// should resize the texture if required.
    pub height: i32,
    /// List of updates to apply.
    pub updates: Vec<GpuCacheUpdate>,
    /// A flat list of GPU blocks that are pending upload
    /// to GPU memory.
    pub blocks: Vec<GpuBlockData>,
    /// Whole state GPU block metadata for debugging.
    #[cfg_attr(feature = "serde", serde(skip))]
    pub debug_commands: Vec<GpuCacheDebugCmd>,
}

// Holds the free lists of fixed size blocks. Mostly
// just serves to work around the borrow checker.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
struct FreeBlockLists {
    free_list_1: Option<BlockIndex>,
    free_list_2: Option<BlockIndex>,
    free_list_4: Option<BlockIndex>,
    free_list_8: Option<BlockIndex>,
    free_list_16: Option<BlockIndex>,
    free_list_32: Option<BlockIndex>,
    free_list_64: Option<BlockIndex>,
    free_list_128: Option<BlockIndex>,
    free_list_256: Option<BlockIndex>,
    free_list_341: Option<BlockIndex>,
    free_list_512: Option<BlockIndex>,
    free_list_1024: Option<BlockIndex>,
}

impl FreeBlockLists {
    fn new() -> Self {
        FreeBlockLists {
            free_list_1: None,
            free_list_2: None,
            free_list_4: None,
            free_list_8: None,
            free_list_16: None,
            free_list_32: None,
            free_list_64: None,
            free_list_128: None,
            free_list_256: None,
            free_list_341: None,
            free_list_512: None,
            free_list_1024: None,
        }
    }

    fn get_actual_block_count_and_free_list(
        &mut self,
        block_count: usize,
    ) -> (usize, &mut Option<BlockIndex>) {
        // Find the appropriate free list to use based on the block size.
        //
        // Note that we cheat a bit with the 341 bucket, since it's not quite
        // a divisor of 1024, because purecss-francine allocates many 260-block
        // chunks, and there's no reason we shouldn't pack these three to a row.
        // This means the allocation statistics will under-report by one block
        // for each row using 341-block buckets, which is fine.
        debug_assert_eq!(MAX_VERTEX_TEXTURE_WIDTH, 1024, "Need to update bucketing");
        match block_count {
            0 => panic!("Can't allocate zero sized blocks!"),
            1 => (1, &mut self.free_list_1),
            2 => (2, &mut self.free_list_2),
            3..=4 => (4, &mut self.free_list_4),
            5..=8 => (8, &mut self.free_list_8),
            9..=16 => (16, &mut self.free_list_16),
            17..=32 => (32, &mut self.free_list_32),
            33..=64 => (64, &mut self.free_list_64),
            65..=128 => (128, &mut self.free_list_128),
            129..=256 => (256, &mut self.free_list_256),
            257..=341 => (341, &mut self.free_list_341),
            342..=512 => (512, &mut self.free_list_512),
            513..=1024 => (1024, &mut self.free_list_1024),
            _ => panic!("Can't allocate > MAX_VERTEX_TEXTURE_WIDTH per resource!"),
        }
    }
}

// CPU-side representation of the GPU resource cache texture.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
struct Texture {
    // Current texture height
    height: i32,
    // All blocks that have been created for this texture
    blocks: Vec<Block>,
    // Metadata about each allocated row.
    rows: Vec<Row>,
    // The base Epoch for this texture.
    base_epoch: Epoch,
    // The maximum epoch reached. We track this along with the above so
    // that we can rebuild the Texture and avoid collisions with handles
    // allocated for the old texture.
    max_epoch: Epoch,
    // Free lists of available blocks for each supported
    // block size in the texture. These are intrusive
    // linked lists.
    free_lists: FreeBlockLists,
    // Linked list of currently occupied blocks. This
    // makes it faster to iterate blocks looking for
    // candidates to be evicted from the cache.
    occupied_list_heads: FastHashMap<DocumentId, BlockIndex>,
    // Pending blocks that have been written this frame
    // and will need to be sent to the GPU.
    pending_blocks: Vec<GpuBlockData>,
    // Pending update commands.
    updates: Vec<GpuCacheUpdate>,
    // Profile stats
    allocated_block_count: usize,
    // The stamp at which we first reached our threshold for reclaiming `GpuCache`
    // memory, or `None` if the threshold hasn't been reached.
    #[cfg_attr(feature = "serde", serde(skip))]
    reached_reclaim_threshold: Option<Instant>,
    // List of debug commands to be sent to the renderer when the GPU cache
    // debug display is enabled.
    #[cfg_attr(feature = "serde", serde(skip))]
    debug_commands: Vec<GpuCacheDebugCmd>,
    // The current debug flags for the system.
    debug_flags: DebugFlags,
}

impl Texture {
    fn new(base_epoch: Epoch, debug_flags: DebugFlags) -> Self {
        // Pre-fill the block array with one invalid block so that we never use
        // 0 for a BlockIndex. This lets us use NonZeroU32 for BlockIndex, which
        // saves memory.
        let blocks = vec![Block::INVALID];

        Texture {
            height: GPU_CACHE_INITIAL_HEIGHT,
            blocks,
            rows: Vec::new(),
            base_epoch,
            max_epoch: base_epoch,
            free_lists: FreeBlockLists::new(),
            pending_blocks: Vec::new(),
            updates: Vec::new(),
            occupied_list_heads: FastHashMap::default(),
            allocated_block_count: 0,
            reached_reclaim_threshold: None,
            debug_commands: Vec::new(),
            debug_flags,
        }
    }

    // Push new data into the cache. The ```pending_block_index``` field represents
    // where the data was pushed into the texture ```pending_blocks``` array.
    // Return the allocated address for this data.
    fn push_data(
        &mut self,
        pending_block_index: Option<usize>,
        block_count: usize,
        frame_stamp: FrameStamp
    ) -> CacheLocation {
        debug_assert!(frame_stamp.is_valid());
        // Find the appropriate free list to use based on the block size.
        let (alloc_size, free_list) = self.free_lists
            .get_actual_block_count_and_free_list(block_count);

        // See if we need a new row (if free-list has nothing available)
        if free_list.is_none() {
            if self.rows.len() as i32 == self.height {
                self.height += NEW_ROWS_PER_RESIZE;
            }

            // Create a new row.
            let items_per_row = MAX_VERTEX_TEXTURE_WIDTH / alloc_size;
            let row_index = self.rows.len();
            self.rows.push(Row::new(alloc_size));

            // Create a ```Block``` for each possible allocation address
            // in this row, and link it in to the free-list for this
            // block size.
            let mut prev_block_index = None;
            for i in 0 .. items_per_row {
                let address = GpuCacheAddress::new(i * alloc_size, row_index);
                let block_index = BlockIndex::new(self.blocks.len());
                let block = Block::new(address, prev_block_index, frame_stamp.frame_id(), self.base_epoch);
                self.blocks.push(block);
                prev_block_index = Some(block_index);
            }

            *free_list = prev_block_index;
        }

        // Given the code above, it's now guaranteed that there is a block
        // available in the appropriate free-list. Pull a block from the
        // head of the list.
        let free_block_index = free_list.take().unwrap();
        let block = &mut self.blocks[free_block_index.get()];
        *free_list = block.next;

        // Add the block to the occupied linked list.
        block.next = self.occupied_list_heads.get(&frame_stamp.document_id()).cloned();
        block.last_access_time = frame_stamp.frame_id();
        self.occupied_list_heads.insert(frame_stamp.document_id(), free_block_index);
        self.allocated_block_count += alloc_size;

        if let Some(pending_block_index) = pending_block_index {
            // Add this update to the pending list of blocks that need
            // to be updated on the GPU.
            self.updates.push(GpuCacheUpdate::Copy {
                block_index: pending_block_index,
                block_count,
                address: block.address,
            });
        }

        // If we're using the debug display, communicate the allocation to the
        // renderer thread. Note that we do this regardless of whether or not
        // pending_block_index is None (if it is, the renderer thread will fill
        // in the data via a deferred resolve, but the block is still considered
        // allocated).
        if self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
            self.debug_commands.push(GpuCacheDebugCmd::Alloc(GpuCacheDebugChunk {
                address: block.address,
                size: block_count,
            }));
        }

        CacheLocation {
            block_index: free_block_index,
            epoch: block.epoch,
        }
    }

    // Run through the list of occupied cache blocks and evict
    // any old blocks that haven't been referenced for a while.
    fn evict_old_blocks(&mut self, frame_stamp: FrameStamp) {
        debug_assert!(frame_stamp.is_valid());
        // Prune any old items from the list to make room.
        // Traverse the occupied linked list and see
        // which items have not been used for a long time.
        let mut current_block = self.occupied_list_heads.get(&frame_stamp.document_id()).map(|x| *x);
        let mut prev_block: Option<BlockIndex> = None;

        while let Some(index) = current_block {
            let (next_block, should_unlink) = {
                let block = &mut self.blocks[index.get()];

                let next_block = block.next;
                let mut should_unlink = false;

                // If this resource has not been used in the last
                // few frames, free it from the texture and mark
                // as empty.
                if block.last_access_time + FRAMES_BEFORE_EVICTION < frame_stamp.frame_id() {
                    should_unlink = true;

                    // Get the row metadata from the address.
                    let row = &mut self.rows[block.address.v as usize];

                    // Use the row metadata to determine which free-list
                    // this block belongs to.
                    let (_, free_list) = self.free_lists
                        .get_actual_block_count_and_free_list(row.block_count_per_item);

                    block.advance_epoch(&mut self.max_epoch);
                    block.next = *free_list;
                    *free_list = Some(index);

                    self.allocated_block_count -= row.block_count_per_item;

                    if self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
                        let cmd = GpuCacheDebugCmd::Free(block.address);
                        self.debug_commands.push(cmd);
                    }
                };

                (next_block, should_unlink)
            };

            // If the block was released, we will need to remove it
            // from the occupied linked list.
            if should_unlink {
                match prev_block {
                    Some(prev_block) => {
                        self.blocks[prev_block.get()].next = next_block;
                    }
                    None => {
                        match next_block {
                            Some(next_block) => {
                                self.occupied_list_heads.insert(frame_stamp.document_id(), next_block);
                            }
                            None => {
                                self.occupied_list_heads.remove(&frame_stamp.document_id());
                            }
                        }
                    }
                }
            } else {
                prev_block = current_block;
            }

            current_block = next_block;
        }
    }

    /// Returns the ratio of utilized blocks.
    fn utilization(&self) -> f32 {
        let total_blocks = self.rows.len() * MAX_VERTEX_TEXTURE_WIDTH;
        debug_assert!(total_blocks > 0);
        let ratio = self.allocated_block_count as f32 / total_blocks as f32;
        debug_assert!(0.0 <= ratio && ratio <= 1.0, "Bad ratio: {}", ratio);
        ratio
    }
}


/// A wrapper object for GPU data requests,
/// works as a container that can only grow.
#[must_use]
pub struct GpuDataRequest<'a> {
    //TODO: remove this, see
    // https://bugzilla.mozilla.org/show_bug.cgi?id=1690546
    #[allow(dead_code)]
    handle: &'a mut GpuCacheHandle,
    frame_stamp: FrameStamp,
    start_index: usize,
    max_block_count: usize,
    texture: &'a mut Texture,
}

impl<'a> GpuDataRequest<'a> {
    pub fn push<B>(&mut self, block: B)
    where
        B: Into<GpuBlockData>,
    {
        self.texture.pending_blocks.push(block.into());
    }

    // Write the GPU cache data for an individual segment.
    pub fn write_segment(
        &mut self,
        local_rect: LayoutRect,
        extra_data: [f32; 4],
    ) {
        let _ = VECS_PER_SEGMENT;
        self.push(local_rect);
        self.push(extra_data);
    }

    pub fn current_used_block_num(&self) -> usize {
        self.texture.pending_blocks.len() - self.start_index
    }
}

impl<'a> Drop for GpuDataRequest<'a> {
    fn drop(&mut self) {
        // Push the data to the texture pending updates list.
        let block_count = self.current_used_block_num();
        debug_assert!(block_count <= self.max_block_count);

        let location = self.texture
            .push_data(Some(self.start_index), block_count, self.frame_stamp);
        self.handle.location = Some(location);
    }
}


/// The main LRU cache interface.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct GpuCache {
    /// Current FrameId.
    now: FrameStamp,
    /// CPU-side texture allocator.
    texture: Texture,
    /// Number of blocks requested this frame that don't
    /// need to be re-uploaded.
    saved_block_count: usize,
    /// The current debug flags for the system.
    debug_flags: DebugFlags,
    /// Whether there is a pending clear to send with the
    /// next update.
    pending_clear: bool,
    /// Indicates that prepare_for_frames has been called for this group of frames.
    /// Used for sanity checks.
    prepared_for_frames: bool,
    /// This indicates that we performed a cleanup operation which requires all
    /// documents to build a frame.
    requires_frame_build: bool,
    /// The set of documents which have had frames built in this update. Used for
    /// sanity checks.
    document_frames_to_build: FastHashSet<DocumentId>,
}

impl GpuCache {
    pub fn new() -> Self {
        let debug_flags = DebugFlags::empty();
        GpuCache {
            now: FrameStamp::INVALID,
            texture: Texture::new(Epoch(0), debug_flags),
            saved_block_count: 0,
            debug_flags,
            pending_clear: false,
            prepared_for_frames: false,
            requires_frame_build: false,
            document_frames_to_build: FastHashSet::default(),
        }
    }

    /// Creates a GpuCache and sets it up with a valid `FrameStamp`, which
    /// is useful for avoiding panics when instantiating the `GpuCache`
    /// directly from unit test code.
    #[cfg(test)]
    pub fn new_for_testing() -> Self {
        let mut cache = Self::new();
        let mut now = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
        now.advance();
        cache.prepared_for_frames = true;
        cache.begin_frame(now);
        cache
    }

    /// Drops everything in the GPU cache. Must not be called once gpu cache entries
    /// for the next frame have already been requested.
    pub fn clear(&mut self) {
        assert!(self.texture.updates.is_empty(), "Clearing with pending updates");
        let mut next_base_epoch = self.texture.max_epoch;
        next_base_epoch.next();
        self.texture = Texture::new(next_base_epoch, self.debug_flags);
        self.saved_block_count = 0;
        self.pending_clear = true;
        self.requires_frame_build = true;
    }

    pub fn requires_frame_build(&self) -> bool {
        self.requires_frame_build
    }

    pub fn prepare_for_frames(&mut self) {
        self.prepared_for_frames = true;
        if self.should_reclaim_memory() {
            self.clear();
            debug_assert!(self.document_frames_to_build.is_empty());
            for &document_id in self.texture.occupied_list_heads.keys() {
                self.document_frames_to_build.insert(document_id);
            }
        }
    }

    pub fn bookkeep_after_frames(&mut self) {
        assert!(self.document_frames_to_build.is_empty());
        assert!(self.prepared_for_frames);
        self.requires_frame_build = false;
        self.prepared_for_frames = false;
    }

    /// Begin a new frame.
    pub fn begin_frame(&mut self, stamp: FrameStamp) {
        debug_assert!(self.texture.pending_blocks.is_empty());
        assert!(self.prepared_for_frames);
        profile_scope!("begin_frame");
        self.now = stamp;
        self.texture.evict_old_blocks(self.now);
        self.saved_block_count = 0;
    }

    // Invalidate a (possibly) existing block in the cache.
    // This means the next call to request() for this location
    // will rebuild the data and upload it to the GPU.
    pub fn invalidate(&mut self, handle: &GpuCacheHandle) {
        if let Some(ref location) = handle.location {
            // don't invalidate blocks that are already re-assigned
            if let Some(block) = self.texture.blocks.get_mut(location.block_index.get()) {
                if block.epoch == location.epoch {
                    block.advance_epoch(&mut self.texture.max_epoch);
                }
            }
        }
    }

    /// Request a resource be added to the cache. If the resource
    /// is already in the cache, `None` will be returned.
    pub fn request<'a>(&'a mut self, handle: &'a mut GpuCacheHandle) -> Option<GpuDataRequest<'a>> {
        let mut max_block_count = MAX_VERTEX_TEXTURE_WIDTH;
        // Check if the allocation for this handle is still valid.
        if let Some(ref location) = handle.location {
            if let Some(block) = self.texture.blocks.get_mut(location.block_index.get()) {
                if block.epoch == location.epoch {
                    max_block_count = self.texture.rows[block.address.v as usize].block_count_per_item;
                    if block.last_access_time != self.now.frame_id() {
                        // Mark last access time to avoid evicting this block.
                        block.last_access_time = self.now.frame_id();
                        self.saved_block_count += max_block_count;
                    }
                    return None;
                }
            }
        }

        debug_assert!(self.now.is_valid());
        Some(GpuDataRequest {
            handle,
            frame_stamp: self.now,
            start_index: self.texture.pending_blocks.len(),
            texture: &mut self.texture,
            max_block_count,
        })
    }

    // Push an array of data blocks to be uploaded to the GPU
    // unconditionally for this frame. The cache handle will
    // assert if the caller tries to retrieve the address
    // of this handle on a subsequent frame. This is typically
    // used for uploading data that changes every frame, and
    // therefore makes no sense to try and cache.
    pub fn push_per_frame_blocks(&mut self, blocks: &[GpuBlockData]) -> GpuCacheHandle {
        let start_index = self.texture.pending_blocks.len();
        self.texture.pending_blocks.extend_from_slice(blocks);
        let location = self.texture
            .push_data(Some(start_index), blocks.len(), self.now);
        GpuCacheHandle {
            location: Some(location),
        }
    }

    // Reserve space in the cache for per-frame blocks that
    // will be resolved by the render thread via the
    // external image callback.
    pub fn push_deferred_per_frame_blocks(&mut self, block_count: usize) -> GpuCacheHandle {
        let location = self.texture.push_data(None, block_count, self.now);
        GpuCacheHandle {
            location: Some(location),
        }
    }

    /// End the frame. Return the list of updates to apply to the
    /// device specific cache texture.
    pub fn end_frame(
        &mut self,
        profile: &mut TransactionProfile,
    ) -> FrameStamp {
        profile_scope!("end_frame");
        profile.set(profiler::GPU_CACHE_ROWS_TOTAL, self.texture.rows.len());
        profile.set(profiler::GPU_CACHE_BLOCKS_TOTAL, self.texture.allocated_block_count);
        profile.set(profiler::GPU_CACHE_BLOCKS_SAVED, self.saved_block_count);

        let reached_threshold =
            self.texture.rows.len() > (GPU_CACHE_INITIAL_HEIGHT as usize) &&
            self.texture.utilization() < RECLAIM_THRESHOLD;
        if reached_threshold {
            self.texture.reached_reclaim_threshold.get_or_insert_with(Instant::now);
        } else {
            self.texture.reached_reclaim_threshold = None;
        }

        self.document_frames_to_build.remove(&self.now.document_id());
        self.now
    }

    /// Returns true if utilization has been low enough for long enough that we
    /// should blow the cache away and rebuild it.
    pub fn should_reclaim_memory(&self) -> bool {
        self.texture.reached_reclaim_threshold
            .map_or(false, |t| t.elapsed() > Duration::from_secs(RECLAIM_DELAY_S))
    }

    /// Extract the pending updates from the cache.
    pub fn extract_updates(&mut self) -> GpuCacheUpdateList {
        let clear = self.pending_clear;
        self.pending_clear = false;
        GpuCacheUpdateList {
            frame_id: self.now.frame_id(),
            clear,
            height: self.texture.height,
            debug_commands: self.texture.debug_commands.take_and_preallocate(),
            updates: self.texture.updates.take_and_preallocate(),
            blocks: self.texture.pending_blocks.take_and_preallocate(),
        }
    }

    /// Sets the current debug flags for the system.
    pub fn set_debug_flags(&mut self, flags: DebugFlags) {
        self.debug_flags = flags;
        self.texture.debug_flags = flags;
    }

    /// Get the actual GPU address in the texture for a given slot ID.
    /// It's assumed at this point that the given slot has been requested
    /// and built for this frame. Attempting to get the address for a
    /// freed or pending slot will panic!
    pub fn get_address(&self, id: &GpuCacheHandle) -> GpuCacheAddress {
        let location = id.location.expect("handle not requested or allocated!");
        let block = &self.texture.blocks[location.block_index.get()];
        debug_assert_eq!(block.epoch, location.epoch);
        debug_assert_eq!(block.last_access_time, self.now.frame_id());
        block.address
    }
}

#[test]
#[cfg(target_pointer_width = "64")]
fn test_struct_sizes() {
    use std::mem;
    // We can end up with a lot of blocks stored in the global vec, and keeping
    // them small helps reduce memory overhead.
    assert_eq!(mem::size_of::<Block>(), 24, "Block size changed");
}