1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Specified types for CSS Easing functions.
use crate::parser::{Parse, ParserContext};
use crate::piecewise_linear::{PiecewiseLinearFunction, PiecewiseLinearFunctionBuilder};
use crate::values::computed::easing::TimingFunction as ComputedTimingFunction;
use crate::values::computed::{Context, ToComputedValue};
use crate::values::generics::easing::TimingFunction as GenericTimingFunction;
use crate::values::generics::easing::{StepPosition, TimingKeyword};
use crate::values::specified::{AnimationName, Integer, Number, Percentage};
use cssparser::{Delimiter, Parser, Token};
use selectors::parser::SelectorParseErrorKind;
use style_traits::{ParseError, StyleParseErrorKind};

/// A specified timing function.
pub type TimingFunction = GenericTimingFunction<Integer, Number, PiecewiseLinearFunction>;

impl Parse for TimingFunction {
    fn parse<'i, 't>(
        context: &ParserContext,
        input: &mut Parser<'i, 't>,
    ) -> Result<Self, ParseError<'i>> {
        if let Ok(keyword) = input.try_parse(TimingKeyword::parse) {
            return Ok(GenericTimingFunction::Keyword(keyword));
        }
        if let Ok(ident) = input.try_parse(|i| i.expect_ident_cloned()) {
            let position = match_ignore_ascii_case! { &ident,
                "step-start" => StepPosition::Start,
                "step-end" => StepPosition::End,
                _ => {
                    return Err(input.new_custom_error(
                        SelectorParseErrorKind::UnexpectedIdent(ident.clone())
                    ));
                },
            };
            return Ok(GenericTimingFunction::Steps(Integer::new(1), position));
        }
        let location = input.current_source_location();
        let function = input.expect_function()?.clone();
        input.parse_nested_block(move |i| {
            match_ignore_ascii_case! { &function,
                "cubic-bezier" => Self::parse_cubic_bezier(context, i),
                "steps" => Self::parse_steps(context, i),
                "linear" => Self::parse_linear_function(context, i),
                _ => Err(location.new_custom_error(StyleParseErrorKind::UnexpectedFunction(function.clone()))),
            }
        })
    }
}

impl TimingFunction {
    fn parse_cubic_bezier<'i, 't>(
        context: &ParserContext,
        input: &mut Parser<'i, 't>,
    ) -> Result<Self, ParseError<'i>> {
        let x1 = Number::parse(context, input)?;
        input.expect_comma()?;
        let y1 = Number::parse(context, input)?;
        input.expect_comma()?;
        let x2 = Number::parse(context, input)?;
        input.expect_comma()?;
        let y2 = Number::parse(context, input)?;

        if x1.get() < 0.0 || x1.get() > 1.0 || x2.get() < 0.0 || x2.get() > 1.0 {
            return Err(input.new_custom_error(StyleParseErrorKind::UnspecifiedError));
        }

        Ok(GenericTimingFunction::CubicBezier { x1, y1, x2, y2 })
    }

    fn parse_steps<'i, 't>(
        context: &ParserContext,
        input: &mut Parser<'i, 't>,
    ) -> Result<Self, ParseError<'i>> {
        let steps = Integer::parse_positive(context, input)?;
        let position = input
            .try_parse(|i| {
                i.expect_comma()?;
                StepPosition::parse(context, i)
            })
            .unwrap_or(StepPosition::End);

        // jump-none accepts a positive integer greater than 1.
        // FIXME(emilio): The spec asks us to avoid rejecting it at parse
        // time except until computed value time.
        //
        // It's not totally clear it's worth it though, and no other browser
        // does this.
        if position == StepPosition::JumpNone && steps.value() <= 1 {
            return Err(input.new_custom_error(StyleParseErrorKind::UnspecifiedError));
        }
        Ok(GenericTimingFunction::Steps(steps, position))
    }

    fn parse_linear_function<'i, 't>(
        context: &ParserContext,
        input: &mut Parser<'i, 't>,
    ) -> Result<Self, ParseError<'i>> {
        let mut builder = PiecewiseLinearFunctionBuilder::default();
        let mut num_specified_stops = 0;
        // Closely follows `parse_comma_separated`, but can generate multiple entries for one comma-separated entry.
        loop {
            input.parse_until_before(Delimiter::Comma, |i| {
                let builder = &mut builder;
                let mut input_start = i.try_parse(|i| Percentage::parse(context, i)).ok();
                let mut input_end = i.try_parse(|i| Percentage::parse(context, i)).ok();

                let output = Number::parse(context, i)?;
                if input_start.is_none() {
                    debug_assert!(input_end.is_none(), "Input end parsed without input start?");
                    input_start = i.try_parse(|i| Percentage::parse(context, i)).ok();
                    input_end = i.try_parse(|i| Percentage::parse(context, i)).ok();
                }
                builder.push(output.into(), input_start.map(|v| v.get()).into());
                num_specified_stops += 1;
                if input_end.is_some() {
                    debug_assert!(
                        input_start.is_some(),
                        "Input end valid but not input start?"
                    );
                    builder.push(output.into(), input_end.map(|v| v.get()).into());
                }

                Ok(())
            })?;

            match input.next() {
                Err(_) => break,
                Ok(&Token::Comma) => continue,
                Ok(_) => unreachable!(),
            }
        }
        // By spec, specifying only a single stop makes the function invalid, even if that single entry may generate
        // two entries.
        if num_specified_stops < 2 {
            return Err(input.new_custom_error(StyleParseErrorKind::UnspecifiedError));
        }

        Ok(GenericTimingFunction::LinearFunction(builder.build()))
    }

    /// Returns true if the name matches any keyword.
    #[inline]
    pub fn match_keywords(name: &AnimationName) -> bool {
        if let Some(name) = name.as_atom() {
            #[cfg(feature = "gecko")]
            return name.with_str(|n| TimingKeyword::from_ident(n).is_ok());
            #[cfg(feature = "servo")]
            return TimingKeyword::from_ident(name).is_ok();

        }
        false
    }
}

// We need this for converting the specified TimingFunction into computed TimingFunction without
// Context (for some FFIs in glue.rs). In fact, we don't really need Context to get the computed
// value of TimingFunction.
impl TimingFunction {
    /// Generate the ComputedTimingFunction without Context.
    pub fn to_computed_value_without_context(&self) -> ComputedTimingFunction {
        match &self {
            GenericTimingFunction::Steps(steps, pos) => {
                GenericTimingFunction::Steps(steps.value(), *pos)
            },
            GenericTimingFunction::CubicBezier { x1, y1, x2, y2 } => {
                GenericTimingFunction::CubicBezier {
                    x1: x1.get(),
                    y1: y1.get(),
                    x2: x2.get(),
                    y2: y2.get(),
                }
            },
            GenericTimingFunction::Keyword(keyword) => GenericTimingFunction::Keyword(*keyword),
            GenericTimingFunction::LinearFunction(function) => {
                GenericTimingFunction::LinearFunction(function.clone())
            },
        }
    }
}

impl ToComputedValue for TimingFunction {
    type ComputedValue = ComputedTimingFunction;
    fn to_computed_value(&self, _: &Context) -> Self::ComputedValue {
        self.to_computed_value_without_context()
    }

    fn from_computed_value(computed: &Self::ComputedValue) -> Self {
        match &computed {
            ComputedTimingFunction::Steps(steps, pos) => Self::Steps(Integer::new(*steps), *pos),
            ComputedTimingFunction::CubicBezier { x1, y1, x2, y2 } => Self::CubicBezier {
                x1: Number::new(*x1),
                y1: Number::new(*y1),
                x2: Number::new(*x2),
                y2: Number::new(*y2),
            },
            ComputedTimingFunction::Keyword(keyword) => GenericTimingFunction::Keyword(*keyword),
            ComputedTimingFunction::LinearFunction(function) => {
                GenericTimingFunction::LinearFunction(function.clone())
            },
        }
    }
}