1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
//! Provides a predefined pixel storage.
//! Currently only contains a simple flattened vector storage.
//! Use the functions `create_pixel_vec::<YourPixelTuple>` and
//! `set_pixel_in_vec::<YourPixelTuple>` for reading a predefined pixel vector.
//! Use the function `PixelVec::new` to create a pixel vector which can be written to a file.
use super::*;
/// Store all samples in a single array.
/// All samples will be converted to the type `T`.
/// This supports all the sample types, `f16`, `f32`, and `u32`.
///
/// The flattened vector contains all rows one after another.
/// In each row, for each pixel, its red, green, blue, and then alpha
/// samples are stored one after another.
///
/// Use `PixelVec.compute_pixel_index(position)`
/// to compute the flat index of a specific pixel.
#[derive(Eq, PartialEq, Clone)]
pub struct PixelVec<T> {
/// The resolution of this layer.
pub resolution: Vec2<usize>,
/// The flattened vector contains all rows one after another.
/// In each row, for each pixel, its red, green, blue, and then alpha
/// samples are stored one after another.
///
/// Use `Flattened::compute_pixel_index(image, position)`
/// to compute the flat index of a specific pixel.
pub pixels: Vec<T>,
}
impl<Pixel> PixelVec<Pixel> {
/// Create a new flattened pixel storage, filled with default pixels.
/// Accepts a `Channels` parameter, which is not used, so that it can be passed as a function pointer instead of calling it.
pub fn constructor<Channels>(resolution: Vec2<usize>, _: &Channels) -> Self where Pixel: Default + Clone {
PixelVec { resolution, pixels: vec![Pixel::default(); resolution.area()] }
}
/// Examine a pixel of a `PixelVec<T>` image.
/// Can usually be used as a function reference instead of calling it directly.
#[inline]
pub fn get_pixel(&self, position: Vec2<usize>) -> &Pixel where Pixel: Sync {
&self.pixels[self.compute_pixel_index(position)]
}
/// Update a pixel of a `PixelVec<T>` image.
/// Can usually be used as a function reference instead of calling it directly.
#[inline]
pub fn set_pixel(&mut self, position: Vec2<usize>, pixel: Pixel) {
let index = self.compute_pixel_index(position);
self.pixels[index] = pixel;
}
/// Create a new flattened pixel storage, checking the length of the provided pixels vector.
pub fn new(resolution: impl Into<Vec2<usize>>, pixels: Vec<Pixel>) -> Self {
let size = resolution.into();
assert_eq!(size.area(), pixels.len(), "expected {} samples, but vector length is {}", size.area(), pixels.len());
Self { resolution: size, pixels }
}
/// Compute the flat index of a specific pixel. Returns a range of either 3 or 4 samples.
/// The computed index can be used with `PixelVec.samples[index]`.
/// Panics for invalid sample coordinates.
#[inline]
pub fn compute_pixel_index(&self, position: Vec2<usize>) -> usize {
position.flat_index_for_size(self.resolution)
}
}
use crate::image::validate_results::{ValidateResult, ValidationResult};
impl<Px> ValidateResult for PixelVec<Px> where Px: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn() -> String) -> ValidationResult {
if self.resolution != other.resolution { Err(location() + " > resolution") }
else { self.pixels.as_slice().validate_result(&other.pixels.as_slice(), options, || location() + " > pixels") }
}
}
impl<Px> GetPixel for PixelVec<Px> where Px: Clone + Sync {
type Pixel = Px;
fn get_pixel(&self, position: Vec2<usize>) -> Self::Pixel {
self.get_pixel(position).clone()
}
}
use std::fmt::*;
impl<T> Debug for PixelVec<T> {
#[inline] fn fmt(&self, formatter: &mut Formatter<'_>) -> std::fmt::Result {
write!(formatter, "[{}; {}]", std::any::type_name::<T>(), self.pixels.len())
}
}