1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
// Copyright 2016-2017 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A reduced fork of Firefox's malloc_size_of crate, for bundling with WebRender.

extern crate app_units;
extern crate euclid;

use std::hash::{BuildHasher, Hash};
use std::mem::size_of;
use std::ops::Range;
use std::os::raw::c_void;
use std::path::PathBuf;

/// A C function that takes a pointer to a heap allocation and returns its size.
type VoidPtrToSizeFn = unsafe extern "C" fn(ptr: *const c_void) -> usize;

/// Operations used when measuring heap usage of data structures.
pub struct MallocSizeOfOps {
    /// A function that returns the size of a heap allocation.
    pub size_of_op: VoidPtrToSizeFn,

    /// Like `size_of_op`, but can take an interior pointer. Optional because
    /// not all allocators support this operation. If it's not provided, some
    /// memory measurements will actually be computed estimates rather than
    /// real and accurate measurements.
    pub enclosing_size_of_op: Option<VoidPtrToSizeFn>,
}

impl MallocSizeOfOps {
    pub fn new(
        size_of: VoidPtrToSizeFn,
        malloc_enclosing_size_of: Option<VoidPtrToSizeFn>,
    ) -> Self {
        MallocSizeOfOps {
            size_of_op: size_of,
            enclosing_size_of_op: malloc_enclosing_size_of,
        }
    }

    /// Check if an allocation is empty. This relies on knowledge of how Rust
    /// handles empty allocations, which may change in the future.
    fn is_empty<T: ?Sized>(ptr: *const T) -> bool {
        // The correct condition is this:
        //   `ptr as usize <= ::std::mem::align_of::<T>()`
        // But we can't call align_of() on a ?Sized T. So we approximate it
        // with the following. 256 is large enough that it should always be
        // larger than the required alignment, but small enough that it is
        // always in the first page of memory and therefore not a legitimate
        // address.
        ptr as *const usize as usize <= 256
    }

    /// Call `size_of_op` on `ptr`, first checking that the allocation isn't
    /// empty, because some types (such as `Vec`) utilize empty allocations.
    pub unsafe fn malloc_size_of<T: ?Sized>(&self, ptr: *const T) -> usize {
        if MallocSizeOfOps::is_empty(ptr) {
            0
        } else {
            (self.size_of_op)(ptr as *const c_void)
        }
    }

    /// Is an `enclosing_size_of_op` available?
    pub fn has_malloc_enclosing_size_of(&self) -> bool {
        self.enclosing_size_of_op.is_some()
    }

    /// Call `enclosing_size_of_op`, which must be available, on `ptr`, which
    /// must not be empty.
    pub unsafe fn malloc_enclosing_size_of<T>(&self, ptr: *const T) -> usize {
        assert!(!MallocSizeOfOps::is_empty(ptr));
        (self.enclosing_size_of_op.unwrap())(ptr as *const c_void)
    }
}

/// Trait for measuring the "deep" heap usage of a data structure. This is the
/// most commonly-used of the traits.
pub trait MallocSizeOf {
    /// Measure the heap usage of all descendant heap-allocated structures, but
    /// not the space taken up by the value itself.
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}

/// Trait for measuring the "shallow" heap usage of a container.
pub trait MallocShallowSizeOf {
    /// Measure the heap usage of immediate heap-allocated descendant
    /// structures, but not the space taken up by the value itself. Anything
    /// beyond the immediate descendants must be measured separately, using
    /// iteration.
    fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}

impl MallocSizeOf for String {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        unsafe { ops.malloc_size_of(self.as_ptr()) }
    }
}

impl<T: ?Sized> MallocShallowSizeOf for Box<T> {
    fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        unsafe { ops.malloc_size_of(&**self) }
    }
}

impl<T: MallocSizeOf + ?Sized> MallocSizeOf for Box<T> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.shallow_size_of(ops) + (**self).size_of(ops)
    }
}

impl MallocSizeOf for () {
    fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
        0
    }
}

impl<T1, T2> MallocSizeOf for (T1, T2)
where
    T1: MallocSizeOf,
    T2: MallocSizeOf,
{
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.0.size_of(ops) + self.1.size_of(ops)
    }
}

impl<T1, T2, T3> MallocSizeOf for (T1, T2, T3)
where
    T1: MallocSizeOf,
    T2: MallocSizeOf,
    T3: MallocSizeOf,
{
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.0.size_of(ops) + self.1.size_of(ops) + self.2.size_of(ops)
    }
}

impl<T1, T2, T3, T4> MallocSizeOf for (T1, T2, T3, T4)
where
    T1: MallocSizeOf,
    T2: MallocSizeOf,
    T3: MallocSizeOf,
    T4: MallocSizeOf,
{
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.0.size_of(ops) + self.1.size_of(ops) + self.2.size_of(ops) + self.3.size_of(ops)
    }
}

impl<T: MallocSizeOf> MallocSizeOf for Option<T> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        if let Some(val) = self.as_ref() {
            val.size_of(ops)
        } else {
            0
        }
    }
}

impl<T: MallocSizeOf, E: MallocSizeOf> MallocSizeOf for Result<T, E> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        match *self {
            Ok(ref x) => x.size_of(ops),
            Err(ref e) => e.size_of(ops),
        }
    }
}

impl<T: MallocSizeOf + Copy> MallocSizeOf for std::cell::Cell<T> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.get().size_of(ops)
    }
}

impl<T: MallocSizeOf> MallocSizeOf for std::cell::RefCell<T> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.borrow().size_of(ops)
    }
}

impl<'a, B: ?Sized + ToOwned> MallocSizeOf for std::borrow::Cow<'a, B>
where
    B::Owned: MallocSizeOf,
{
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        match *self {
            std::borrow::Cow::Borrowed(_) => 0,
            std::borrow::Cow::Owned(ref b) => b.size_of(ops),
        }
    }
}

impl<T: MallocSizeOf> MallocSizeOf for [T] {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        let mut n = 0;
        for elem in self.iter() {
            n += elem.size_of(ops);
        }
        n
    }
}

impl<T> MallocShallowSizeOf for Vec<T> {
    fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        unsafe { ops.malloc_size_of(self.as_ptr()) }
    }
}

impl<T: MallocSizeOf> MallocSizeOf for Vec<T> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        let mut n = self.shallow_size_of(ops);
        for elem in self.iter() {
            n += elem.size_of(ops);
        }
        n
    }
}

macro_rules! malloc_size_of_hash_set {
    ($ty:ty) => {
        impl<T, S> MallocShallowSizeOf for $ty
        where
            T: Eq + Hash,
            S: BuildHasher,
        {
            fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
                if ops.has_malloc_enclosing_size_of() {
                    // The first value from the iterator gives us an interior pointer.
                    // `ops.malloc_enclosing_size_of()` then gives us the storage size.
                    // This assumes that the `HashSet`'s contents (values and hashes)
                    // are all stored in a single contiguous heap allocation.
                    self.iter()
                        .next()
                        .map_or(0, |t| unsafe { ops.malloc_enclosing_size_of(t) })
                } else {
                    // An estimate.
                    self.capacity() * (size_of::<T>() + size_of::<usize>())
                }
            }
        }

        impl<T, S> MallocSizeOf for $ty
        where
            T: Eq + Hash + MallocSizeOf,
            S: BuildHasher,
        {
            fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
                let mut n = self.shallow_size_of(ops);
                for t in self.iter() {
                    n += t.size_of(ops);
                }
                n
            }
        }
    };
}

malloc_size_of_hash_set!(std::collections::HashSet<T, S>);

macro_rules! malloc_size_of_hash_map {
    ($ty:ty) => {
        impl<K, V, S> MallocShallowSizeOf for $ty
        where
            K: Eq + Hash,
            S: BuildHasher,
        {
            fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
                // See the implementation for std::collections::HashSet for details.
                if ops.has_malloc_enclosing_size_of() {
                    self.values()
                        .next()
                        .map_or(0, |v| unsafe { ops.malloc_enclosing_size_of(v) })
                } else {
                    self.capacity() * (size_of::<V>() + size_of::<K>() + size_of::<usize>())
                }
            }
        }

        impl<K, V, S> MallocSizeOf for $ty
        where
            K: Eq + Hash + MallocSizeOf,
            V: MallocSizeOf,
            S: BuildHasher,
        {
            fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
                let mut n = self.shallow_size_of(ops);
                for (k, v) in self.iter() {
                    n += k.size_of(ops);
                    n += v.size_of(ops);
                }
                n
            }
        }
    };
}

malloc_size_of_hash_map!(std::collections::HashMap<K, V, S>);

// PhantomData is always 0.
impl<T> MallocSizeOf for std::marker::PhantomData<T> {
    fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
        0
    }
}

impl MallocSizeOf for PathBuf {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        match self.to_str() {
            Some(s) => unsafe { ops.malloc_size_of(s.as_ptr()) },
            None => self.as_os_str().len(),
        }
    }
}

impl<T: MallocSizeOf, Unit> MallocSizeOf for euclid::Length<T, Unit> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.0.size_of(ops)
    }
}

impl<T: MallocSizeOf, Src, Dst> MallocSizeOf for euclid::Scale<T, Src, Dst> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.0.size_of(ops)
    }
}

impl<T: MallocSizeOf, U> MallocSizeOf for euclid::Point2D<T, U> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.x.size_of(ops) + self.y.size_of(ops)
    }
}

impl<T: MallocSizeOf, U> MallocSizeOf for euclid::Rect<T, U> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.origin.size_of(ops) + self.size.size_of(ops)
    }
}

impl<T: MallocSizeOf, U> MallocSizeOf for euclid::Box2D<T, U> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.min.size_of(ops) + self.max.size_of(ops)
    }
}

impl<T: MallocSizeOf, U> MallocSizeOf for euclid::SideOffsets2D<T, U> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.top.size_of(ops) +
            self.right.size_of(ops) +
            self.bottom.size_of(ops) +
            self.left.size_of(ops)
    }
}

impl<T: MallocSizeOf, U> MallocSizeOf for euclid::Size2D<T, U> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.width.size_of(ops) + self.height.size_of(ops)
    }
}

impl<T: MallocSizeOf, Src, Dst> MallocSizeOf for euclid::Transform2D<T, Src, Dst> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.m11.size_of(ops) +
            self.m12.size_of(ops) +
            self.m21.size_of(ops) +
            self.m22.size_of(ops) +
            self.m31.size_of(ops) +
            self.m32.size_of(ops)
    }
}

impl<T: MallocSizeOf, Src, Dst> MallocSizeOf for euclid::Transform3D<T, Src, Dst> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.m11.size_of(ops) +
            self.m12.size_of(ops) +
            self.m13.size_of(ops) +
            self.m14.size_of(ops) +
            self.m21.size_of(ops) +
            self.m22.size_of(ops) +
            self.m23.size_of(ops) +
            self.m24.size_of(ops) +
            self.m31.size_of(ops) +
            self.m32.size_of(ops) +
            self.m33.size_of(ops) +
            self.m34.size_of(ops) +
            self.m41.size_of(ops) +
            self.m42.size_of(ops) +
            self.m43.size_of(ops) +
            self.m44.size_of(ops)
    }
}

impl<T: MallocSizeOf, U> MallocSizeOf for euclid::Vector2D<T, U> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.x.size_of(ops) + self.y.size_of(ops)
    }
}

/// For use on types where size_of() returns 0.
#[macro_export]
macro_rules! malloc_size_of_is_0(
    ($($ty:ty),+) => (
        $(
            impl $crate::MallocSizeOf for $ty {
                #[inline(always)]
                fn size_of(&self, _: &mut $crate::MallocSizeOfOps) -> usize {
                    0
                }
            }
        )+
    );
    ($($ty:ident<$($gen:ident),+>),+) => (
        $(
        impl<$($gen: $crate::MallocSizeOf),+> $crate::MallocSizeOf for $ty<$($gen),+> {
            #[inline(always)]
            fn size_of(&self, _: &mut $crate::MallocSizeOfOps) -> usize {
                0
            }
        }
        )+
    );
);

malloc_size_of_is_0!(bool, char, str);
malloc_size_of_is_0!(u8, u16, u32, u64, u128, usize);
malloc_size_of_is_0!(i8, i16, i32, i64, i128, isize);
malloc_size_of_is_0!(f32, f64);

malloc_size_of_is_0!(std::sync::atomic::AtomicBool);
malloc_size_of_is_0!(std::sync::atomic::AtomicIsize);
malloc_size_of_is_0!(std::sync::atomic::AtomicUsize);

malloc_size_of_is_0!(std::num::NonZeroUsize);
malloc_size_of_is_0!(std::num::NonZeroU32);

malloc_size_of_is_0!(std::time::Duration);
malloc_size_of_is_0!(std::time::Instant);
malloc_size_of_is_0!(std::time::SystemTime);

malloc_size_of_is_0!(Range<u8>, Range<u16>, Range<u32>, Range<u64>, Range<usize>);
malloc_size_of_is_0!(Range<i8>, Range<i16>, Range<i32>, Range<i64>, Range<isize>);
malloc_size_of_is_0!(Range<f32>, Range<f64>);

malloc_size_of_is_0!(app_units::Au);