1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Based on https://github.com/Lokathor/wide (Zlib)

use bytemuck::cast;

use super::{f32x8, u32x8};

cfg_if::cfg_if! {
    if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
        #[cfg(target_arch = "x86")]
        use core::arch::x86::*;
        #[cfg(target_arch = "x86_64")]
        use core::arch::x86_64::*;

        #[derive(Clone, Copy, Debug)]
        #[repr(C, align(32))]
        pub struct i32x8(__m256i);
    } else {
        use super::i32x4;

        #[derive(Clone, Copy, Debug)]
        #[repr(C, align(32))]
        pub struct i32x8(pub i32x4, pub i32x4);
    }
}

unsafe impl bytemuck::Zeroable for i32x8 {}
unsafe impl bytemuck::Pod for i32x8 {}

impl Default for i32x8 {
    fn default() -> Self {
        Self::splat(0)
    }
}

impl i32x8 {
    pub fn splat(n: i32) -> Self {
        cast([n, n, n, n, n, n, n, n])
    }

    pub fn blend(self, t: Self, f: Self) -> Self {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_blendv_epi8(f.0, t.0, self.0) })
            } else {
                Self(self.0.blend(t.0, f.0), self.1.blend(t.1, f.1))
            }
        }
    }

    pub fn cmp_eq(self, rhs: Self) -> Self {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_cmpeq_epi32(self.0, rhs.0) })
            } else {
                Self(self.0.cmp_eq(rhs.0), self.1.cmp_eq(rhs.1))
            }
        }
    }

    pub fn cmp_gt(self, rhs: Self) -> Self {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_cmpgt_epi32(self.0, rhs.0) })
            } else {
                Self(self.0.cmp_gt(rhs.0), self.1.cmp_gt(rhs.1))
            }
        }
    }

    pub fn cmp_lt(self, rhs: Self) -> Self {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                // There is no `_mm256_cmpLT_epi32`, therefore we have to use
                // `_mm256_cmpGT_epi32` and then invert the result.
                let v = unsafe { _mm256_cmpgt_epi32(self.0, rhs.0) };
                let all_bits = unsafe { _mm256_set1_epi16(-1) };
                Self(unsafe { _mm256_xor_si256(v, all_bits) })
            } else {
                Self(self.0.cmp_lt(rhs.0), self.1.cmp_lt(rhs.1))
            }
        }
    }

    pub fn to_f32x8(self) -> f32x8 {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                cast(unsafe { _mm256_cvtepi32_ps(self.0) })
            } else if #[cfg(all(feature = "simd", target_feature = "avx"))] {
                cast([self.0.to_f32x4(), self.1.to_f32x4()])
            } else {
                f32x8(self.0.to_f32x4(), self.1.to_f32x4())
            }
        }
    }

    pub fn to_u32x8_bitcast(self) -> u32x8 {
        bytemuck::cast(self)
    }

    pub fn to_f32x8_bitcast(self) -> f32x8 {
        bytemuck::cast(self)
    }
}

impl From<[i32; 8]> for i32x8 {
    fn from(v: [i32; 8]) -> Self {
        cast(v)
    }
}

impl From<i32x8> for [i32; 8] {
    fn from(v: i32x8) -> Self {
        cast(v)
    }
}

impl core::ops::Add for i32x8 {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_add_epi32(self.0, rhs.0) })
            } else {
                Self(self.0 + rhs.0, self.1 + rhs.1)
            }
        }
    }
}

impl core::ops::BitAnd for i32x8 {
    type Output = Self;

    fn bitand(self, rhs: Self) -> Self::Output {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_and_si256(self.0, rhs.0) })
            } else {
                Self(self.0 & rhs.0, self.1 & rhs.1)
            }
        }
    }
}

impl core::ops::Mul for i32x8 {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_mullo_epi32(self.0, rhs.0) })
            } else {
                Self(self.0 * rhs.0, self.1 * rhs.1)
            }
        }
    }
}

impl core::ops::BitOr for i32x8 {
    type Output = Self;

    #[inline]
    fn bitor(self, rhs: Self) -> Self::Output {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_or_si256(self.0, rhs.0) })
            } else {
                Self(self.0 | rhs.0, self.1 | rhs.1)
            }
        }
    }
}

impl core::ops::BitXor for i32x8 {
    type Output = Self;

    #[inline]
    fn bitxor(self, rhs: Self) -> Self::Output {
        cfg_if::cfg_if! {
            if #[cfg(all(feature = "simd", target_feature = "avx2"))] {
                Self(unsafe { _mm256_xor_si256(self.0, rhs.0) })
            } else {
                Self(self.0 ^ rhs.0, self.1 ^ rhs.1)
            }
        }
    }
}