1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
use std::{fmt, str::FromStr};
use crate::{
Buffer, ParseError,
err::{perr, ParseErrorKind::*},
parse::{end_dec_digits, first_byte_or_empty, check_suffix},
};
/// A floating point literal, e.g. `3.14`, `8.`, `135e12`, or `1.956e2f64`.
///
/// This kind of literal has several forms, but generally consists of a main
/// number part, an optional exponent and an optional type suffix. See
/// [the reference][ref] for more information.
///
/// A leading minus sign `-` is not part of the literal grammar! `-3.14` are two
/// tokens in the Rust grammar. Further, `27` and `27f32` are both not float,
/// but integer literals! Consequently `FloatLit::parse` will reject them.
///
///
/// [ref]: https://doc.rust-lang.org/reference/tokens.html#floating-point-literals
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct FloatLit<B: Buffer> {
/// The whole raw input. The `usize` fields in this struct partition this
/// string. Always true: `end_integer_part <= end_fractional_part`.
///
/// ```text
/// 12_3.4_56e789f32
/// ╷ ╷ ╷
/// | | └ end_number_part = 13
/// | └ end_fractional_part = 9
/// └ end_integer_part = 4
///
/// 246.
/// ╷╷
/// |└ end_fractional_part = end_number_part = 4
/// └ end_integer_part = 3
///
/// 1234e89
/// ╷ ╷
/// | └ end_number_part = 7
/// └ end_integer_part = end_fractional_part = 4
/// ```
raw: B,
/// The first index not part of the integer part anymore. Since the integer
/// part is at the start, this is also the length of that part.
end_integer_part: usize,
/// The first index after the fractional part.
end_fractional_part: usize,
/// The first index after the whole number part (everything except type suffix).
end_number_part: usize,
}
impl<B: Buffer> FloatLit<B> {
/// Parses the input as a floating point literal. Returns an error if the
/// input is invalid or represents a different kind of literal. Will also
/// reject decimal integer literals like `23` or `17f32`, in accordance
/// with the spec.
pub fn parse(s: B) -> Result<Self, ParseError> {
match first_byte_or_empty(&s)? {
b'0'..=b'9' => {
// TODO: simplify once RFC 2528 is stabilized
let FloatLit {
end_integer_part,
end_fractional_part,
end_number_part,
..
} = parse_impl(&s)?;
Ok(Self { raw: s, end_integer_part, end_fractional_part, end_number_part })
},
_ => Err(perr(0, DoesNotStartWithDigit)),
}
}
/// Returns the number part (including integer part, fractional part and
/// exponent), but without the suffix. If you want an actual floating
/// point value, you need to parse this string, e.g. with `f32::from_str`
/// or an external crate.
pub fn number_part(&self) -> &str {
&(*self.raw)[..self.end_number_part]
}
/// Returns the non-empty integer part of this literal.
pub fn integer_part(&self) -> &str {
&(*self.raw)[..self.end_integer_part]
}
/// Returns the optional fractional part of this literal. Does not include
/// the period. If a period exists in the input, `Some` is returned, `None`
/// otherwise. Note that `Some("")` might be returned, e.g. for `3.`.
pub fn fractional_part(&self) -> Option<&str> {
if self.end_integer_part == self.end_fractional_part {
None
} else {
Some(&(*self.raw)[self.end_integer_part + 1..self.end_fractional_part])
}
}
/// Optional exponent part. Might be empty if there was no exponent part in
/// the input. Includes the `e` or `E` at the beginning.
pub fn exponent_part(&self) -> &str {
&(*self.raw)[self.end_fractional_part..self.end_number_part]
}
/// The optional suffix. Returns `""` if the suffix is empty/does not exist.
pub fn suffix(&self) -> &str {
&(*self.raw)[self.end_number_part..]
}
/// Returns the raw input that was passed to `parse`.
pub fn raw_input(&self) -> &str {
&self.raw
}
/// Returns the raw input that was passed to `parse`, potentially owned.
pub fn into_raw_input(self) -> B {
self.raw
}
}
impl FloatLit<&str> {
/// Makes a copy of the underlying buffer and returns the owned version of
/// `Self`.
pub fn to_owned(&self) -> FloatLit<String> {
FloatLit {
raw: self.raw.to_owned(),
end_integer_part: self.end_integer_part,
end_fractional_part: self.end_fractional_part,
end_number_part: self.end_number_part,
}
}
}
impl<B: Buffer> fmt::Display for FloatLit<B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", &*self.raw)
}
}
/// Precondition: first byte of string has to be in `b'0'..=b'9'`.
#[inline(never)]
pub(crate) fn parse_impl(input: &str) -> Result<FloatLit<&str>, ParseError> {
// Integer part.
let end_integer_part = end_dec_digits(input.as_bytes());
let rest = &input[end_integer_part..];
// Fractional part.
let end_fractional_part = if rest.as_bytes().get(0) == Some(&b'.') {
// The fractional part must not start with `_`.
if rest.as_bytes().get(1) == Some(&b'_') {
return Err(perr(end_integer_part + 1, UnexpectedChar));
}
end_dec_digits(rest[1..].as_bytes()) + 1 + end_integer_part
} else {
end_integer_part
};
let rest = &input[end_fractional_part..];
// If we have a period that is not followed by decimal digits, the
// literal must end now.
if end_integer_part + 1 == end_fractional_part && !rest.is_empty() {
return Err(perr(end_integer_part + 1, UnexpectedChar));
}
// Optional exponent.
let end_number_part = if rest.starts_with('e') || rest.starts_with('E') {
// Strip single - or + sign at the beginning.
let exp_number_start = match rest.as_bytes().get(1) {
Some(b'-') | Some(b'+') => 2,
_ => 1,
};
// Find end of exponent and make sure there is at least one digit.
let end_exponent = end_dec_digits(rest[exp_number_start..].as_bytes()) + exp_number_start;
if !rest[exp_number_start..end_exponent].bytes().any(|b| matches!(b, b'0'..=b'9')) {
return Err(perr(
end_fractional_part..end_fractional_part + end_exponent,
NoExponentDigits,
));
}
end_exponent + end_fractional_part
} else {
end_fractional_part
};
// Make sure the suffix is valid.
let suffix = &input[end_number_part..];
check_suffix(suffix).map_err(|kind| perr(end_number_part..input.len(), kind))?;
// A float literal needs either a fractional or exponent part, otherwise its
// an integer literal.
if end_integer_part == end_number_part {
return Err(perr(None, UnexpectedIntegerLit));
}
Ok(FloatLit {
raw: input,
end_integer_part,
end_fractional_part,
end_number_part,
})
}
/// All possible float type suffixes.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum FloatType {
F32,
F64,
}
impl FloatType {
/// Returns the type corresponding to the given suffix (e.g. `"f32"` is
/// mapped to `Self::F32`). If the suffix is not a valid float type, `None`
/// is returned.
pub fn from_suffix(suffix: &str) -> Option<Self> {
match suffix {
"f32" => Some(FloatType::F32),
"f64" => Some(FloatType::F64),
_ => None,
}
}
/// Returns the suffix for this type, e.g. `"f32"` for `Self::F32`.
pub fn suffix(self) -> &'static str {
match self {
Self::F32 => "f32",
Self::F64 => "f64",
}
}
}
impl FromStr for FloatType {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::from_suffix(s).ok_or(())
}
}
impl fmt::Display for FloatType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.suffix().fmt(f)
}
}
#[cfg(test)]
mod tests;