ordermap/
set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
//! A hash set implemented using `OrderMap`

use std::cmp::Ordering;
use std::collections::hash_map::RandomState;
use std::fmt;
use std::iter::{FromIterator, Chain};
use std::hash::{Hash, BuildHasher};
use std::mem::replace;
use std::ops::RangeFull;
use std::ops::{BitAnd, BitOr, BitXor, Sub};
use std::slice;
use std::vec;

use super::{OrderMap, Equivalent};

type Bucket<T> = super::Bucket<T, ()>;

/// A hash set where the iteration order of the values is independent of their
/// hash values.
///
/// The interface is closely compatible with the standard `HashSet`, but also
/// has additional features.
///
/// # Order
///
/// The values have a consistent order that is determined by the sequence of
/// insertion and removal calls on the set. The order does not depend on the
/// values or the hash function at all. Note that insertion order and value
/// are not affected if a re-insertion is attempted once an element is
/// already present.
///
/// All iterators traverse the set *in order*.  Set operation iterators like
/// `union` produce a concatenated order, as do their matching "bitwise"
/// operators.  See their documentation for specifics.
///
/// # Indices
///
/// The values are indexed in a compact range without holes in the range
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
/// a value, and the method `.get_index` looks up the value by index.
///
/// # Examples
///
/// ```
/// use ordermap::OrderSet;
///
/// // Collects which letters appear in a sentence.
/// let letters: OrderSet<_> = "a short treatise on fungi".chars().collect();
/// 
/// assert!(letters.contains(&'s'));
/// assert!(letters.contains(&'t'));
/// assert!(letters.contains(&'u'));
/// assert!(!letters.contains(&'y'));
/// ```
#[derive(Clone)]
pub struct OrderSet<T, S = RandomState> {
    map: OrderMap<T, (), S>,
}

impl<T, S> fmt::Debug for OrderSet<T, S>
    where T: fmt::Debug + Hash + Eq,
          S: BuildHasher,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if cfg!(not(feature = "test_debug")) {
            f.debug_set().entries(self.iter()).finish()
        } else {
            // Let the inner `OrderMap` print all of its details
            f.debug_struct("OrderSet").field("map", &self.map).finish()
        }
    }
}

impl<T> OrderSet<T> {
    /// Create a new set. (Does not allocate.)
    pub fn new() -> Self {
        OrderSet { map: OrderMap::new() }
    }

    /// Create a new set with capacity for `n` elements.
    /// (Does not allocate if `n` is zero.)
    ///
    /// Computes in **O(n)** time.
    pub fn with_capacity(n: usize) -> Self {
        OrderSet { map: OrderMap::with_capacity(n) }
    }
}

impl<T, S> OrderSet<T, S> {
    /// Create a new set with capacity for `n` elements.
    /// (Does not allocate if `n` is zero.)
    ///
    /// Computes in **O(n)** time.
    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self
        where S: BuildHasher
    {
        OrderSet { map: OrderMap::with_capacity_and_hasher(n, hash_builder) }
    }

    /// Return the number of elements in the set.
    ///
    /// Computes in **O(1)** time.
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Returns true if the set contains no elements.
    ///
    /// Computes in **O(1)** time.
    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    /// Create a new set with `hash_builder`
    pub fn with_hasher(hash_builder: S) -> Self
        where S: BuildHasher
    {
        OrderSet { map: OrderMap::with_hasher(hash_builder) }
    }

    /// Return a reference to the set's `BuildHasher`.
    pub fn hasher(&self) -> &S
        where S: BuildHasher
    {
        self.map.hasher()
    }

    /// Computes in **O(1)** time.
    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }
}

impl<T, S> OrderSet<T, S>
    where T: Hash + Eq,
          S: BuildHasher,
{
    /// Remove all elements in the set, while preserving its capacity.
    ///
    /// Computes in **O(n)** time.
    pub fn clear(&mut self) {
        self.map.clear();
    }

    /// FIXME Not implemented fully yet
    pub fn reserve(&mut self, additional: usize) {
        self.map.reserve(additional);
    }

    /// Insert the value into the set.
    ///
    /// If an equivalent item already exists in the set, it returns
    /// `false` leaving the original value in the set and without
    /// altering its insertion order. Otherwise, it inserts the new
    /// item and returns `true`.
    ///
    /// Computes in **O(1)** time (amortized average).
    pub fn insert(&mut self, value: T) -> bool {
        self.map.insert(value, ()).is_none()
    }

    /// Return an iterator over the values of the set, in their order
    pub fn iter(&self) -> Iter<T> {
        Iter {
            iter: self.map.keys().iter
        }
    }

    /// Return an iterator over the values that are in `self` but not `other`.
    ///
    /// Values are produced in the same order that they appear in `self`.
    pub fn difference<'a, S2>(&'a self, other: &'a OrderSet<T, S2>) -> Difference<'a, T, S2>
        where S2: BuildHasher
    {
        Difference {
            iter: self.iter(),
            other: other,
        }
    }

    /// Return an iterator over the values that are in `self` or `other`,
    /// but not in both.
    ///
    /// Values from `self` are produced in their original order, followed by
    /// values from `other` in their original order.
    pub fn symmetric_difference<'a, S2>(&'a self, other: &'a OrderSet<T, S2>)
        -> SymmetricDifference<'a, T, S, S2>
        where S2: BuildHasher
    {
        SymmetricDifference {
            iter: self.difference(other).chain(other.difference(self)),
        }
    }

    /// Return an iterator over the values that are in both `self` and `other`.
    ///
    /// Values are produced in the same order that they appear in `self`.
    pub fn intersection<'a, S2>(&'a self, other: &'a OrderSet<T, S2>) -> Intersection<'a, T, S2>
        where S2: BuildHasher
    {
        Intersection {
            iter: self.iter(),
            other: other,
        }
    }

    /// Return an iterator over all values that are in `self` or `other`.
    ///
    /// Values from `self` are produced in their original order, followed by
    /// values that are unique to `other` in their original order.
    pub fn union<'a, S2>(&'a self, other: &'a OrderSet<T, S2>) -> Union<'a, T, S>
        where S2: BuildHasher
    {
        Union {
            iter: self.iter().chain(other.difference(self)),
        }
    }

    /// Return `true` if an equivalent to `value` exists in the set.
    ///
    /// Computes in **O(1)** time (average).
    pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
        where Q: Hash + Equivalent<T>,
    {
        self.map.contains_key(value)
    }

    /// Return a reference to the value stored in the set, if it is present,
    /// else `None`.
    ///
    /// Computes in **O(1)** time (average).
    pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
        where Q: Hash + Equivalent<T>,
    {
        self.map.get_full(value).map(|(_, x, &())| x)
    }

    /// Return item index and value
    pub fn get_full<Q: ?Sized>(&self, value: &Q) -> Option<(usize, &T)>
        where Q: Hash + Equivalent<T>,
    {
        self.map.get_full(value).map(|(i, x, &())| (i, x))
    }

    /// Adds a value to the set, replacing the existing value, if any, that is
    /// equal to the given one. Returns the replaced value.
    ///
    /// Computes in **O(1)** time (average).
    pub fn replace(&mut self, value: T) -> Option<T>
    {
        use super::Entry::*;

        match self.map.entry(value) {
            Vacant(e) => { e.insert(()); None },
            Occupied(e) => {
                // FIXME uses private fields!
                let old_key = &mut e.map.entries[e.index].key;
                Some(replace(old_key, e.key))
            }
        }
    }

    /// FIXME Same as .swap_remove
    ///
    /// Computes in **O(1)** time (average).
    pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
        where Q: Hash + Equivalent<T>,
    {
        self.swap_remove(value)
    }

    /// Remove the value from the set, and return `true` if it was present.
    ///
    /// Like `Vec::swap_remove`, the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the postion of what used to be the last element!**
    ///
    /// Return `false` if `value` was not in the set.
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
        where Q: Hash + Equivalent<T>,
    {
        self.map.swap_remove(value).is_some()
    }

    /// FIXME Same as .swap_take
    ///
    /// Computes in **O(1)** time (average).
    pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
        where Q: Hash + Equivalent<T>,
    {
        self.swap_take(value)
    }

    /// Removes and returns the value in the set, if any, that is equal to the
    /// given one.
    ///
    /// Like `Vec::swap_remove`, the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the postion of what used to be the last element!**
    ///
    /// Return `None` if `value` was not in the set.
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
        where Q: Hash + Equivalent<T>,
    {
        self.map.swap_remove_full(value).map(|(_, x, ())| x)
    }

    /// Remove the value from the set return it and the index it had.
    ///
    /// Like `Vec::swap_remove`, the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the postion of what used to be the last element!**
    ///
    /// Return `None` if `value` was not in the set.
    pub fn swap_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
        where Q: Hash + Equivalent<T>,
    {
        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
    }

    /// Remove the last value
    ///
    /// Computes in **O(1)** time (average).
    pub fn pop(&mut self) -> Option<T> {
        self.map.pop().map(|(x, ())| x)
    }

    /// Scan through each value in the set and keep those where the
    /// closure `keep` returns `true`.
    ///
    /// The elements are visited in order, and remaining elements keep their
    /// order.
    ///
    /// Computes in **O(n)** time (average).
    pub fn retain<F>(&mut self, mut keep: F)
        where F: FnMut(&T) -> bool,
    {
        self.map.retain(move |x, &mut ()| keep(x))
    }

    /// Sort the set’s values by their default ordering.
    ///
    /// See `sort_by` for details.
    pub fn sort(&mut self)
        where T: Ord,
    {
        self.map.sort_keys()
    }

    /// Sort the set’s values in place using the comparison function `compare`.
    ///
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
    pub fn sort_by<F>(&mut self, mut compare: F)
        where F: FnMut(&T, &T) -> Ordering,
    {
        self.map.sort_by(move |a, _, b, _| compare(a, b));
    }

    /// Sort the values of the set and return a by value iterator of
    /// the values with the result.
    ///
    /// The sort is stable.
    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
        where F: FnMut(&T, &T) -> Ordering
    {
        IntoIter {
            iter: self.map.sorted_by(move |a, &(), b, &()| cmp(a, b)).iter,
        }
    }

    /// Clears the `OrderSet`, returning all values as a drain iterator.
    /// Keeps the allocated memory for reuse.
    pub fn drain(&mut self, range: RangeFull) -> Drain<T> {
        Drain {
            iter: self.map.drain(range).iter,
        }
    }
}

impl<T, S> OrderSet<T, S> {
    /// Get a value by index
    ///
    /// Valid indices are *0 <= index < self.len()*
    ///
    /// Computes in **O(1)** time.
    pub fn get_index(&self, index: usize) -> Option<&T> {
        self.map.get_index(index).map(|(x, &())| x)
    }

    /// Remove the key-value pair by index
    ///
    /// Valid indices are *0 <= index < self.len()*
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
        self.map.swap_remove_index(index).map(|(x, ())| x)
    }
}


pub struct IntoIter<T> {
    iter: vec::IntoIter<Bucket<T>>,
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;

    iterator_methods!(|entry| entry.key);
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|entry| entry.key)
    }
}

impl<T> ExactSizeIterator for IntoIter<T> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}


pub struct Iter<'a, T: 'a> {
    iter: slice::Iter<'a, Bucket<T>>,
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    iterator_methods!(|entry| &entry.key);
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|entry| &entry.key)
    }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

pub struct Drain<'a, T: 'a> {
    iter: vec::Drain<'a, Bucket<T>>,
}

impl<'a, T> Iterator for Drain<'a, T> {
    type Item = T;

    iterator_methods!(|bucket| bucket.key);
}

impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
    double_ended_iterator_methods!(|bucket| bucket.key);
}

impl<'a, T, S> IntoIterator for &'a OrderSet<T, S>
    where T: Hash + Eq,
          S: BuildHasher,
{
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<T, S> IntoIterator for OrderSet<T, S>
    where T: Hash + Eq,
          S: BuildHasher,
{
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            iter: self.map.into_iter().iter,
        }
    }
}

impl<T, S> FromIterator<T> for OrderSet<T, S>
    where T: Hash + Eq,
          S: BuildHasher + Default,
{
    fn from_iter<I: IntoIterator<Item=T>>(iterable: I) -> Self {
        let iter = iterable.into_iter().map(|x| (x, ()));
        OrderSet { map: OrderMap::from_iter(iter) }
    }
}

impl<T, S> Extend<T> for OrderSet<T, S>
    where T: Hash + Eq,
          S: BuildHasher,
{
    fn extend<I: IntoIterator<Item=T>>(&mut self, iterable: I) {
        let iter = iterable.into_iter().map(|x| (x, ()));
        self.map.extend(iter);
    }
}

impl<'a, T, S> Extend<&'a T> for OrderSet<T, S>
    where T: Hash + Eq + Copy,
          S: BuildHasher,
{
    fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iterable: I) {
        let iter = iterable.into_iter().map(|&x| x);
        self.extend(iter);
    }
}


impl<T, S> Default for OrderSet<T, S>
    where S: BuildHasher + Default,
{
    /// Return an empty `OrderSet`
    fn default() -> Self {
        OrderSet { map: OrderMap::default() }
    }
}

impl<T, S1, S2> PartialEq<OrderSet<T, S2>> for OrderSet<T, S1>
    where T: Hash + Eq,
          S1: BuildHasher,
          S2: BuildHasher
{
    fn eq(&self, other: &OrderSet<T, S2>) -> bool {
        self.len() == other.len() && self.is_subset(other)
    }
}

impl<T, S> Eq for OrderSet<T, S>
    where T: Eq + Hash,
          S: BuildHasher
{
}

impl<T, S> OrderSet<T, S>
    where T: Eq + Hash,
          S: BuildHasher
{
    /// Returns `true` if `self` has no elements in common with `other`.
    pub fn is_disjoint<S2>(&self, other: &OrderSet<T, S2>) -> bool
        where S2: BuildHasher
    {
        if self.len() <= other.len() {
            self.iter().all(move |value| !other.contains(value))
        } else {
            other.iter().all(move |value| !self.contains(value))
        }
    }

    /// Returns `true` if all elements of `self` are contained in `other`.
    pub fn is_subset<S2>(&self, other: &OrderSet<T, S2>) -> bool
        where S2: BuildHasher
    {
        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
    }

    /// Returns `true` if all elements of `other` are contained in `self`.
    pub fn is_superset<S2>(&self, other: &OrderSet<T, S2>) -> bool
        where S2: BuildHasher
    {
        other.is_subset(self)
    }
}


pub struct Difference<'a, T: 'a, S: 'a> {
    iter: Iter<'a, T>,
    other: &'a OrderSet<T, S>,
}

impl<'a, T, S> Iterator for Difference<'a, T, S>
    where T: Eq + Hash,
          S: BuildHasher
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(item) = self.iter.next() {
            if !self.other.contains(item) {
                return Some(item);
            }
        }
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, self.iter.size_hint().1)
    }
}

impl<'a, T, S> DoubleEndedIterator for Difference<'a, T, S>
    where T: Eq + Hash,
          S: BuildHasher
{
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some(item) = self.iter.next_back() {
            if !self.other.contains(item) {
                return Some(item);
            }
        }
        None
    }
}


pub struct Intersection<'a, T: 'a, S: 'a> {
    iter: Iter<'a, T>,
    other: &'a OrderSet<T, S>,
}

impl<'a, T, S> Iterator for Intersection<'a, T, S>
    where T: Eq + Hash,
          S: BuildHasher
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(item) = self.iter.next() {
            if self.other.contains(item) {
                return Some(item);
            }
        }
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, self.iter.size_hint().1)
    }
}

impl<'a, T, S> DoubleEndedIterator for Intersection<'a, T, S>
    where T: Eq + Hash,
          S: BuildHasher
{
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some(item) = self.iter.next_back() {
            if self.other.contains(item) {
                return Some(item);
            }
        }
        None
    }
}


pub struct SymmetricDifference<'a, T: 'a, S1: 'a, S2: 'a> {
    iter: Chain<Difference<'a, T, S2>, Difference<'a, T, S1>>,
}

impl<'a, T, S1, S2> Iterator for SymmetricDifference<'a, T, S1, S2>
    where T: Eq + Hash,
          S1: BuildHasher,
          S2: BuildHasher,
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    fn fold<B, F>(self, init: B, f: F) -> B
        where F: FnMut(B, Self::Item) -> B
    {
        self.iter.fold(init, f)
    }
}

impl<'a, T, S1, S2> DoubleEndedIterator for SymmetricDifference<'a, T, S1, S2>
    where T: Eq + Hash,
          S1: BuildHasher,
          S2: BuildHasher,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back()
    }
}


pub struct Union<'a, T: 'a, S: 'a> {
    iter: Chain<Iter<'a, T>, Difference<'a, T, S>>,
}

impl<'a, T, S> Iterator for Union<'a, T, S>
    where T: Eq + Hash,
          S: BuildHasher,
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    fn fold<B, F>(self, init: B, f: F) -> B
        where F: FnMut(B, Self::Item) -> B
    {
        self.iter.fold(init, f)
    }
}

impl<'a, T, S> DoubleEndedIterator for Union<'a, T, S>
    where T: Eq + Hash,
          S: BuildHasher,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back()
    }
}


impl<'a, 'b, T, S1, S2> BitAnd<&'b OrderSet<T, S2>> for &'a OrderSet<T, S1>
    where T: Eq + Hash + Clone,
          S1: BuildHasher + Default,
          S2: BuildHasher,
{
    type Output = OrderSet<T, S1>;

    /// Returns the set intersection, cloned into a new set.
    ///
    /// Values are collected in the same order that they appear in `self`.
    fn bitand(self, other: &'b OrderSet<T, S2>) -> Self::Output {
        self.intersection(other).cloned().collect()
    }
}

impl<'a, 'b, T, S1, S2> BitOr<&'b OrderSet<T, S2>> for &'a OrderSet<T, S1>
    where T: Eq + Hash + Clone,
          S1: BuildHasher + Default,
          S2: BuildHasher,
{
    type Output = OrderSet<T, S1>;

    /// Returns the set union, cloned into a new set.
    ///
    /// Values from `self` are collected in their original order, followed by
    /// values that are unique to `other` in their original order.
    fn bitor(self, other: &'b OrderSet<T, S2>) -> Self::Output {
        self.union(other).cloned().collect()
    }
}

impl<'a, 'b, T, S1, S2> BitXor<&'b OrderSet<T, S2>> for &'a OrderSet<T, S1>
    where T: Eq + Hash + Clone,
          S1: BuildHasher + Default,
          S2: BuildHasher,
{
    type Output = OrderSet<T, S1>;

    /// Returns the set symmetric-difference, cloned into a new set.
    ///
    /// Values from `self` are collected in their original order, followed by
    /// values from `other` in their original order.
    fn bitxor(self, other: &'b OrderSet<T, S2>) -> Self::Output {
        self.symmetric_difference(other).cloned().collect()
    }
}

impl<'a, 'b, T, S1, S2> Sub<&'b OrderSet<T, S2>> for &'a OrderSet<T, S1>
    where T: Eq + Hash + Clone,
          S1: BuildHasher + Default,
          S2: BuildHasher,
{
    type Output = OrderSet<T, S1>;

    /// Returns the set difference, cloned into a new set.
    ///
    /// Values are collected in the same order that they appear in `self`.
    fn sub(self, other: &'b OrderSet<T, S2>) -> Self::Output {
        self.difference(other).cloned().collect()
    }
}


#[cfg(test)]
mod tests {
    use super::*;
    use util::enumerate;

    #[test]
    fn it_works() {
        let mut set = OrderSet::new();
        assert_eq!(set.is_empty(), true);
        set.insert(1);
        set.insert(1);
        assert_eq!(set.len(), 1);
        assert!(set.get(&1).is_some());
        assert_eq!(set.is_empty(), false);
    }

    #[test]
    fn new() {
        let set = OrderSet::<String>::new();
        println!("{:?}", set);
        assert_eq!(set.capacity(), 0);
        assert_eq!(set.len(), 0);
        assert_eq!(set.is_empty(), true);
    }

    #[test]
    fn insert() {
        let insert = [0, 4, 2, 12, 8, 7, 11, 5];
        let not_present = [1, 3, 6, 9, 10];
        let mut set = OrderSet::with_capacity(insert.len());

        for (i, &elt) in enumerate(&insert) {
            assert_eq!(set.len(), i);
            set.insert(elt);
            assert_eq!(set.len(), i + 1);
            assert_eq!(set.get(&elt), Some(&elt));
        }
        println!("{:?}", set);

        for &elt in &not_present {
            assert!(set.get(&elt).is_none());
        }
    }

    #[test]
    fn insert_2() {
        let mut set = OrderSet::with_capacity(16);

        let mut values = vec![];
        values.extend(0..16);
        values.extend(128..267);

        for &i in &values {
            let old_set = set.clone();
            set.insert(i);
            for value in old_set.iter() {
                if !set.get(value).is_some() {
                    println!("old_set: {:?}", old_set);
                    println!("set: {:?}", set);
                    panic!("did not find {} in set", value);
                }
            }
        }

        for &i in &values {
            assert!(set.get(&i).is_some(), "did not find {}", i);
        }
    }

    #[test]
    fn insert_dup() {
        let mut elements = vec![0, 2, 4, 6, 8];
        let mut set: OrderSet<u8> = elements.drain(..).collect();
        {
            let (i, v) = set.get_full(&0).unwrap();
            assert_eq!(set.len(), 5);
            assert_eq!(i, 0);
            assert_eq!(*v, 0);
        }
        {
            let inserted = set.insert(0);
            let (i, v) = set.get_full(&0).unwrap();
            assert_eq!(set.len(), 5);
            assert_eq!(inserted, false);
            assert_eq!(i, 0);
            assert_eq!(*v, 0);
        }
    }

    #[test]
    fn insert_order() {
        let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
        let mut set = OrderSet::new();

        for &elt in &insert {
            set.insert(elt);
        }

        assert_eq!(set.iter().count(), set.len());
        assert_eq!(set.iter().count(), insert.len());
        for (a, b) in insert.iter().zip(set.iter()) {
            assert_eq!(a, b);
        }
        for (i, v) in (0..insert.len()).zip(set.iter()) {
            assert_eq!(set.get_index(i).unwrap(), v);
        }
    }

    #[test]
    fn grow() {
        let insert = [0, 4, 2, 12, 8, 7, 11];
        let not_present = [1, 3, 6, 9, 10];
        let mut set = OrderSet::with_capacity(insert.len());


        for (i, &elt) in enumerate(&insert) {
            assert_eq!(set.len(), i);
            set.insert(elt);
            assert_eq!(set.len(), i + 1);
            assert_eq!(set.get(&elt), Some(&elt));
        }

        println!("{:?}", set);
        for &elt in &insert {
            set.insert(elt * 10);
        }
        for &elt in &insert {
            set.insert(elt * 100);
        }
        for (i, &elt) in insert.iter().cycle().enumerate().take(100) {
            set.insert(elt * 100 + i as i32);
        }
        println!("{:?}", set);
        for &elt in &not_present {
            assert!(set.get(&elt).is_none());
        }
    }

    #[test]
    fn remove() {
        let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
        let mut set = OrderSet::new();

        for &elt in &insert {
            set.insert(elt);
        }

        assert_eq!(set.iter().count(), set.len());
        assert_eq!(set.iter().count(), insert.len());
        for (a, b) in insert.iter().zip(set.iter()) {
            assert_eq!(a, b);
        }

        let remove_fail = [99, 77];
        let remove = [4, 12, 8, 7];

        for &value in &remove_fail {
            assert!(set.swap_remove_full(&value).is_none());
        }
        println!("{:?}", set);
        for &value in &remove {
        //println!("{:?}", set);
            let index = set.get_full(&value).unwrap().0;
            assert_eq!(set.swap_remove_full(&value), Some((index, value)));
        }
        println!("{:?}", set);

        for value in &insert {
            assert_eq!(set.get(value).is_some(), !remove.contains(value));
        }
        assert_eq!(set.len(), insert.len() - remove.len());
        assert_eq!(set.iter().count(), insert.len() - remove.len());
    }

    #[test]
    fn swap_remove_index() {
        let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
        let mut set = OrderSet::new();

        for &elt in &insert {
            set.insert(elt);
        }

        let mut vector = insert.to_vec();
        let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1];

        // check that the same swap remove sequence on vec and set
        // have the same result.
        for &rm in remove_sequence {
            let out_vec = vector.swap_remove(rm);
            let out_set = set.swap_remove_index(rm).unwrap();
            assert_eq!(out_vec, out_set);
        }
        assert_eq!(vector.len(), set.len());
        for (a, b) in vector.iter().zip(set.iter()) {
            assert_eq!(a, b);
        }
    }

    #[test]
    fn partial_eq_and_eq() {
        let mut set_a = OrderSet::new();
        set_a.insert(1);
        set_a.insert(2);
        let mut set_b = set_a.clone();
        assert_eq!(set_a, set_b);
        set_b.remove(&1);
        assert_ne!(set_a, set_b);

        let set_c: OrderSet<_> = set_b.into_iter().collect();
        assert_ne!(set_a, set_c);
        assert_ne!(set_c, set_a);
    }

    #[test]
    fn extend() {
        let mut set = OrderSet::new();
        set.extend(vec![&1, &2, &3, &4]);
        set.extend(vec![5, 6]);
        assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![1, 2, 3, 4, 5, 6]);
    }

    #[test]
    fn comparisons() {
        let set_a: OrderSet<_> = (0..3).collect();
        let set_b: OrderSet<_> = (3..6).collect();
        let set_c: OrderSet<_> = (0..6).collect();
        let set_d: OrderSet<_> = (3..9).collect();

        assert!(!set_a.is_disjoint(&set_a));
        assert!(set_a.is_subset(&set_a));
        assert!(set_a.is_superset(&set_a));

        assert!(set_a.is_disjoint(&set_b));
        assert!(set_b.is_disjoint(&set_a));
        assert!(!set_a.is_subset(&set_b));
        assert!(!set_b.is_subset(&set_a));
        assert!(!set_a.is_superset(&set_b));
        assert!(!set_b.is_superset(&set_a));

        assert!(!set_a.is_disjoint(&set_c));
        assert!(!set_c.is_disjoint(&set_a));
        assert!(set_a.is_subset(&set_c));
        assert!(!set_c.is_subset(&set_a));
        assert!(!set_a.is_superset(&set_c));
        assert!(set_c.is_superset(&set_a));

        assert!(!set_c.is_disjoint(&set_d));
        assert!(!set_d.is_disjoint(&set_c));
        assert!(!set_c.is_subset(&set_d));
        assert!(!set_d.is_subset(&set_c));
        assert!(!set_c.is_superset(&set_d));
        assert!(!set_d.is_superset(&set_c));
    }

    #[test]
    fn iter_comparisons() {
        use std::iter::empty;

        fn check<'a, I1, I2>(iter1: I1, iter2: I2)
            where I1: Iterator<Item = &'a i32>,
                  I2: Iterator<Item = i32>,
        {
            assert!(iter1.cloned().eq(iter2));
        }

        let set_a: OrderSet<_> = (0..3).collect();
        let set_b: OrderSet<_> = (3..6).collect();
        let set_c: OrderSet<_> = (0..6).collect();
        let set_d: OrderSet<_> = (3..9).rev().collect();

        check(set_a.difference(&set_a), empty());
        check(set_a.symmetric_difference(&set_a), empty());
        check(set_a.intersection(&set_a), 0..3);
        check(set_a.union(&set_a), 0..3);

        check(set_a.difference(&set_b), 0..3);
        check(set_b.difference(&set_a), 3..6);
        check(set_a.symmetric_difference(&set_b), 0..6);
        check(set_b.symmetric_difference(&set_a), (3..6).chain(0..3));
        check(set_a.intersection(&set_b), empty());
        check(set_b.intersection(&set_a), empty());
        check(set_a.union(&set_b), 0..6);
        check(set_b.union(&set_a), (3..6).chain(0..3));

        check(set_a.difference(&set_c), empty());
        check(set_c.difference(&set_a), 3..6);
        check(set_a.symmetric_difference(&set_c), 3..6);
        check(set_c.symmetric_difference(&set_a), 3..6);
        check(set_a.intersection(&set_c), 0..3);
        check(set_c.intersection(&set_a), 0..3);
        check(set_a.union(&set_c), 0..6);
        check(set_c.union(&set_a), 0..6);

        check(set_c.difference(&set_d), 0..3);
        check(set_d.difference(&set_c), (6..9).rev());
        check(set_c.symmetric_difference(&set_d), (0..3).chain((6..9).rev()));
        check(set_d.symmetric_difference(&set_c), (6..9).rev().chain(0..3));
        check(set_c.intersection(&set_d), 3..6);
        check(set_d.intersection(&set_c), (3..6).rev());
        check(set_c.union(&set_d), (0..6).chain((6..9).rev()));
        check(set_d.union(&set_c), (3..9).rev().chain(0..3));
    }

    #[test]
    fn ops() {
        let empty = OrderSet::<i32>::new();
        let set_a: OrderSet<_> = (0..3).collect();
        let set_b: OrderSet<_> = (3..6).collect();
        let set_c: OrderSet<_> = (0..6).collect();
        let set_d: OrderSet<_> = (3..9).rev().collect();

        assert_eq!(&set_a & &set_a, set_a);
        assert_eq!(&set_a | &set_a, set_a);
        assert_eq!(&set_a ^ &set_a, empty);
        assert_eq!(&set_a - &set_a, empty);

        assert_eq!(&set_a & &set_b, empty);
        assert_eq!(&set_b & &set_a, empty);
        assert_eq!(&set_a | &set_b, set_c);
        assert_eq!(&set_b | &set_a, set_c);
        assert_eq!(&set_a ^ &set_b, set_c);
        assert_eq!(&set_b ^ &set_a, set_c);
        assert_eq!(&set_a - &set_b, set_a);
        assert_eq!(&set_b - &set_a, set_b);

        assert_eq!(&set_a & &set_c, set_a);
        assert_eq!(&set_c & &set_a, set_a);
        assert_eq!(&set_a | &set_c, set_c);
        assert_eq!(&set_c | &set_a, set_c);
        assert_eq!(&set_a ^ &set_c, set_b);
        assert_eq!(&set_c ^ &set_a, set_b);
        assert_eq!(&set_a - &set_c, empty);
        assert_eq!(&set_c - &set_a, set_b);

        assert_eq!(&set_c & &set_d, set_b);
        assert_eq!(&set_d & &set_c, set_b);
        assert_eq!(&set_c | &set_d, &set_a | &set_d);
        assert_eq!(&set_d | &set_c, &set_a | &set_d);
        assert_eq!(&set_c ^ &set_d, &set_a | &(&set_d - &set_b));
        assert_eq!(&set_d ^ &set_c, &set_a | &(&set_d - &set_b));
        assert_eq!(&set_c - &set_d, set_a);
        assert_eq!(&set_d - &set_c, &set_d - &set_b);
    }
}