1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
//! Streaming compression functionality.

use alloc::boxed::Box;
use core::convert::TryInto;
use core::{cmp, mem};

use super::super::*;
use super::deflate_flags::*;
use super::CompressionLevel;
use crate::deflate::buffer::{
    update_hash, HashBuffers, LocalBuf, LZ_CODE_BUF_SIZE, LZ_DICT_FULL_SIZE, LZ_HASH_BITS,
    LZ_HASH_SHIFT, LZ_HASH_SIZE, OUT_BUF_SIZE,
};
use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER, MZ_ADLER32_INIT};
use crate::DataFormat;

// Currently not bubbled up outside this module, so can fill in with more
// context eventually if needed.
type Result<T, E = Error> = core::result::Result<T, E>;
struct Error {}

const MAX_PROBES_MASK: i32 = 0xFFF;

const MAX_SUPPORTED_HUFF_CODESIZE: usize = 32;

/// Length code for length values.
#[rustfmt::skip]
const LEN_SYM: [u16; 256] = [
    257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, 268,
    269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, 272, 272,
    273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, 274, 274, 274,
    275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, 276, 276, 276, 276,
    277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277,
    278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278,
    279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279,
    280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280,
    281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
    281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
    282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
    282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
    283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
    283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
    284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
    284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 285
];

/// Number of extra bits for length values.
#[rustfmt::skip]
const LEN_EXTRA: [u8; 256] = [
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0
];

/// Distance codes for distances smaller than 512.
#[rustfmt::skip]
const SMALL_DIST_SYM: [u8; 512] = [
     0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,
     8,  8,  8,  8,  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
];

/// Number of extra bits for distances smaller than 512.
#[rustfmt::skip]
const SMALL_DIST_EXTRA: [u8; 512] = [
    0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
];

/// Base values to calculate distances above 512.
#[rustfmt::skip]
const LARGE_DIST_SYM: [u8; 128] = [
     0,  0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23,
    24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25,
    26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
    27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
    28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
    28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
    29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
    29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
];

/// Number of extra bits distances above 512.
#[rustfmt::skip]
const LARGE_DIST_EXTRA: [u8; 128] = [
     0,  0,  8,  8,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
];

#[rustfmt::skip]
const BITMASKS: [u32; 17] = [
    0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF
];

/// The maximum number of checks for matches in the hash table the compressor will make for each
/// compression level.
const NUM_PROBES: [u32; 11] = [0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500];

#[derive(Copy, Clone)]
struct SymFreq {
    key: u16,
    sym_index: u16,
}

pub mod deflate_flags {
    /// Whether to use a zlib wrapper.
    pub const TDEFL_WRITE_ZLIB_HEADER: u32 = 0x0000_1000;
    /// Should we compute the adler32 checksum.
    pub const TDEFL_COMPUTE_ADLER32: u32 = 0x0000_2000;
    /// Should we use greedy parsing (as opposed to lazy parsing where look ahead one or more
    /// bytes to check for better matches.)
    pub const TDEFL_GREEDY_PARSING_FLAG: u32 = 0x0000_4000;
    /// Used in miniz to skip zero-initializing hash and dict. We don't do this here, so
    /// this flag is ignored.
    pub const TDEFL_NONDETERMINISTIC_PARSING_FLAG: u32 = 0x0000_8000;
    /// Only look for matches with a distance of 0.
    pub const TDEFL_RLE_MATCHES: u32 = 0x0001_0000;
    /// Only use matches that are at least 6 bytes long.
    pub const TDEFL_FILTER_MATCHES: u32 = 0x0002_0000;
    /// Force the compressor to only output static blocks. (Blocks using the default huffman codes
    /// specified in the deflate specification.)
    pub const TDEFL_FORCE_ALL_STATIC_BLOCKS: u32 = 0x0004_0000;
    /// Force the compressor to only output raw/uncompressed blocks.
    pub const TDEFL_FORCE_ALL_RAW_BLOCKS: u32 = 0x0008_0000;
}

/// Strategy setting for compression.
///
/// The non-default settings offer some special-case compression variants.
#[repr(i32)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum CompressionStrategy {
    /// Don't use any of the special strategies.
    Default = 0,
    /// Only use matches that are at least 5 bytes long.
    Filtered = 1,
    /// Don't look for matches, only huffman encode the literals.
    HuffmanOnly = 2,
    /// Only look for matches with a distance of 1, i.e do run-length encoding only.
    RLE = 3,
    /// Only use static/fixed blocks. (Blocks using the default huffman codes
    /// specified in the deflate specification.)
    Fixed = 4,
}

impl From<CompressionStrategy> for i32 {
    #[inline(always)]
    fn from(value: CompressionStrategy) -> Self {
        value as i32
    }
}

/// A list of deflate flush types.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TDEFLFlush {
    /// Normal operation.
    ///
    /// Compress as much as there is space for, and then return waiting for more input.
    None = 0,

    /// Try to flush all the current data and output an empty raw block.
    Sync = 2,

    /// Same as [`Sync`][Self::Sync], but reset the dictionary so that the following data does not
    /// depend on previous data.
    Full = 3,

    /// Try to flush everything and end the deflate stream.
    ///
    /// On success this will yield a [`TDEFLStatus::Done`] return status.
    Finish = 4,
}

impl From<MZFlush> for TDEFLFlush {
    fn from(flush: MZFlush) -> Self {
        match flush {
            MZFlush::None => TDEFLFlush::None,
            MZFlush::Sync => TDEFLFlush::Sync,
            MZFlush::Full => TDEFLFlush::Full,
            MZFlush::Finish => TDEFLFlush::Finish,
            _ => TDEFLFlush::None, // TODO: ??? What to do ???
        }
    }
}

impl TDEFLFlush {
    pub const fn new(flush: i32) -> Result<Self, MZError> {
        match flush {
            0 => Ok(TDEFLFlush::None),
            2 => Ok(TDEFLFlush::Sync),
            3 => Ok(TDEFLFlush::Full),
            4 => Ok(TDEFLFlush::Finish),
            _ => Err(MZError::Param),
        }
    }
}

/// Return status of compression.
#[repr(i32)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TDEFLStatus {
    /// Usage error.
    ///
    /// This indicates that either the [`CompressorOxide`] experienced a previous error, or the
    /// stream has already been [`TDEFLFlush::Finish`]'d.
    BadParam = -2,

    /// Error putting data into output buffer.
    ///
    /// This usually indicates a too-small buffer.
    PutBufFailed = -1,

    /// Compression succeeded normally.
    Okay = 0,

    /// Compression succeeded and the deflate stream was ended.
    ///
    /// This is the result of calling compression with [`TDEFLFlush::Finish`].
    Done = 1,
}

const MAX_HUFF_SYMBOLS: usize = 288;
/// Size of hash chain for fast compression mode.
const LEVEL1_HASH_SIZE_MASK: u32 = 4095;
/// The number of huffman tables used by the compressor.
/// Literal/length, Distances and Length of the huffman codes for the other two tables.
const MAX_HUFF_TABLES: usize = 3;
/// Literal/length codes
const MAX_HUFF_SYMBOLS_0: usize = 288;
/// Distance codes.
const MAX_HUFF_SYMBOLS_1: usize = 32;
/// Huffman length values.
const MAX_HUFF_SYMBOLS_2: usize = 19;
/// Size of the chained hash table.
pub(crate) const LZ_DICT_SIZE: usize = 32_768;
/// Mask used when stepping through the hash chains.
const LZ_DICT_SIZE_MASK: usize = (LZ_DICT_SIZE as u32 - 1) as usize;
/// The minimum length of a match.
const MIN_MATCH_LEN: u8 = 3;
/// The maximum length of a match.
pub(crate) const MAX_MATCH_LEN: usize = 258;

const DEFAULT_FLAGS: u32 = NUM_PROBES[4] | TDEFL_WRITE_ZLIB_HEADER;

mod zlib {
    use super::{TDEFL_FORCE_ALL_RAW_BLOCKS, TDEFL_RLE_MATCHES};

    const DEFAULT_CM: u8 = 8;
    const DEFAULT_CINFO: u8 = 7 << 4;
    const _DEFAULT_FDICT: u8 = 0;
    const DEFAULT_CMF: u8 = DEFAULT_CM | DEFAULT_CINFO;
    // CMF used for RLE (technically it uses a window size of 0 but the lowest that can
    // be specified in the header corresponds to a window size of 1 << (0 + 8) aka 256.
    const MIN_CMF: u8 = DEFAULT_CM; // | 0
    /// The 16-bit value consisting of CMF and FLG must be divisible by this to be valid.
    const FCHECK_DIVISOR: u8 = 31;

    /// Generate FCHECK from CMF and FLG (without FCKECH )so that they are correct according to the
    /// specification, i.e (CMF*256 + FCHK) % 31 = 0.
    /// Returns flg with the FCHKECK bits added (any existing FCHECK bits are ignored).
    fn add_fcheck(cmf: u8, flg: u8) -> u8 {
        let rem = ((usize::from(cmf) * 256) + usize::from(flg)) % usize::from(FCHECK_DIVISOR);

        // Clear existing FCHECK if any
        let flg = flg & 0b11100000;

        // Casting is safe as rem can't overflow since it is a value mod 31
        // We can simply add the value to flg as (31 - rem) will never be above 2^5
        flg + (FCHECK_DIVISOR - rem as u8)
    }

    const fn zlib_level_from_flags(flags: u32) -> u8 {
        use super::NUM_PROBES;

        let num_probes = flags & (super::MAX_PROBES_MASK as u32);
        if (flags & super::TDEFL_GREEDY_PARSING_FLAG != 0)
            || (flags & super::TDEFL_RLE_MATCHES != 0)
        {
            if num_probes <= 1 {
                0
            } else {
                1
            }
        } else if num_probes >= NUM_PROBES[9] {
            3
        } else {
            2
        }
    }

    const fn cmf_from_flags(flags: u32) -> u8 {
        if (flags & TDEFL_RLE_MATCHES == 0) && (flags & TDEFL_FORCE_ALL_RAW_BLOCKS == 0) {
            DEFAULT_CMF
        // If we are using RLE encoding or no compression the window bits can be set as the
        // minimum.
        } else {
            MIN_CMF
        }
    }

    /// Get the zlib header for the level using the default window size and no
    /// dictionary.
    fn header_from_level(level: u8, flags: u32) -> [u8; 2] {
        let cmf = cmf_from_flags(flags);
        [cmf, add_fcheck(cmf, level << 6)]
    }

    /// Create a zlib header from the given compression flags.
    /// Only level is considered.
    pub fn header_from_flags(flags: u32) -> [u8; 2] {
        let level = zlib_level_from_flags(flags);
        header_from_level(level, flags)
    }

    #[cfg(test)]
    mod test {
        #[test]
        fn zlib() {
            use super::super::*;
            use super::*;

            let test_level = |level, expected| {
                let flags = create_comp_flags_from_zip_params(
                    level,
                    MZ_DEFAULT_WINDOW_BITS,
                    CompressionStrategy::Default as i32,
                );
                assert_eq!(zlib_level_from_flags(flags), expected);
            };

            assert_eq!(zlib_level_from_flags(DEFAULT_FLAGS), 2);
            test_level(0, 0);
            test_level(1, 0);
            test_level(2, 1);
            test_level(3, 1);
            for i in 4..=8 {
                test_level(i, 2)
            }
            test_level(9, 3);
            test_level(10, 3);
        }

        #[test]
        fn test_header() {
            let header = super::header_from_level(3, 0);
            assert_eq!(
                ((usize::from(header[0]) * 256) + usize::from(header[1])) % 31,
                0
            );
        }
    }
}

#[cfg(test)]
#[inline]
fn write_u16_le(val: u16, slice: &mut [u8], pos: usize) {
    slice[pos] = val as u8;
    slice[pos + 1] = (val >> 8) as u8;
}

// Read the two bytes starting at pos and interpret them as an u16.
#[inline]
const fn read_u16_le(slice: &[u8], pos: usize) -> u16 {
    // The compiler is smart enough to optimize this into an unaligned load.
    slice[pos] as u16 | ((slice[pos + 1] as u16) << 8)
}

/// Main compression struct.
pub struct CompressorOxide {
    lz: LZOxide,
    params: ParamsOxide,
    /// Put HuffmanOxide on the heap with default trick to avoid
    /// excessive stack copies.
    huff: Box<HuffmanOxide>,
    dict: DictOxide,
}

impl CompressorOxide {
    /// Create a new `CompressorOxide` with the given flags.
    ///
    /// # Notes
    /// This function may be changed to take different parameters in the future.
    pub fn new(flags: u32) -> Self {
        CompressorOxide {
            lz: LZOxide::new(),
            params: ParamsOxide::new(flags),
            huff: Box::default(),
            dict: DictOxide::new(flags),
        }
    }

    /// Get the adler32 checksum of the currently encoded data.
    pub const fn adler32(&self) -> u32 {
        self.params.adler32
    }

    /// Get the return status of the previous [`compress`](fn.compress.html)
    /// call with this compressor.
    pub const fn prev_return_status(&self) -> TDEFLStatus {
        self.params.prev_return_status
    }

    /// Get the raw compressor flags.
    ///
    /// # Notes
    /// This function may be deprecated or changed in the future to use more rust-style flags.
    pub const fn flags(&self) -> i32 {
        self.params.flags as i32
    }

    /// Returns whether the compressor is wrapping the data in a zlib format or not.
    pub const fn data_format(&self) -> DataFormat {
        if (self.params.flags & TDEFL_WRITE_ZLIB_HEADER) != 0 {
            DataFormat::Zlib
        } else {
            DataFormat::Raw
        }
    }

    /// Reset the state of the compressor, keeping the same parameters.
    ///
    /// This avoids re-allocating data.
    pub fn reset(&mut self) {
        // LZ buf and huffman has no settings or dynamic memory
        // that needs to be saved, so we simply replace them.
        self.lz = LZOxide::new();
        self.params.reset();
        *self.huff = HuffmanOxide::default();
        self.dict.reset();
    }

    /// Set the compression level of the compressor.
    ///
    /// Using this to change level after compression has started is supported.
    /// # Notes
    /// The compression strategy will be reset to the default one when this is called.
    pub fn set_compression_level(&mut self, level: CompressionLevel) {
        let format = self.data_format();
        self.set_format_and_level(format, level as u8);
    }

    /// Set the compression level of the compressor using an integer value.
    ///
    /// Using this to change level after compression has started is supported.
    /// # Notes
    /// The compression strategy will be reset to the default one when this is called.
    pub fn set_compression_level_raw(&mut self, level: u8) {
        let format = self.data_format();
        self.set_format_and_level(format, level);
    }

    /// Update the compression settings of the compressor.
    ///
    /// Changing the `DataFormat` after compression has started will result in
    /// a corrupted stream.
    ///
    /// # Notes
    /// This function mainly intended for setting the initial settings after e.g creating with
    /// `default` or after calling `CompressorOxide::reset()`, and behaviour may be changed
    /// to disallow calling it after starting compression in the future.
    pub fn set_format_and_level(&mut self, data_format: DataFormat, level: u8) {
        let flags = create_comp_flags_from_zip_params(
            level.into(),
            data_format.to_window_bits(),
            CompressionStrategy::Default as i32,
        );
        self.params.update_flags(flags);
        self.dict.update_flags(flags);
    }
}

impl Default for CompressorOxide {
    /// Initialize the compressor with a level of 4, zlib wrapper and
    /// the default strategy.
    fn default() -> Self {
        CompressorOxide {
            lz: LZOxide::new(),
            params: ParamsOxide::new(DEFAULT_FLAGS),
            huff: Box::default(),
            dict: DictOxide::new(DEFAULT_FLAGS),
        }
    }
}

/// Callback function and user used in `compress_to_output`.
pub struct CallbackFunc<'a> {
    pub put_buf_func: &'a mut dyn FnMut(&[u8]) -> bool,
}

impl CallbackFunc<'_> {
    fn flush_output(
        &mut self,
        saved_output: SavedOutputBufferOxide,
        params: &mut ParamsOxide,
    ) -> i32 {
        // TODO: As this could be unsafe since
        // we can't verify the function pointer
        // this whole function should maybe be unsafe as well.
        let call_success = (self.put_buf_func)(&params.local_buf.b[0..saved_output.pos]);

        if !call_success {
            params.prev_return_status = TDEFLStatus::PutBufFailed;
            return params.prev_return_status as i32;
        }

        params.flush_remaining as i32
    }
}

struct CallbackBuf<'a> {
    pub out_buf: &'a mut [u8],
}

impl CallbackBuf<'_> {
    fn flush_output(
        &mut self,
        saved_output: SavedOutputBufferOxide,
        params: &mut ParamsOxide,
    ) -> i32 {
        if saved_output.local {
            let n = cmp::min(saved_output.pos, self.out_buf.len() - params.out_buf_ofs);
            (self.out_buf[params.out_buf_ofs..params.out_buf_ofs + n])
                .copy_from_slice(&params.local_buf.b[..n]);

            params.out_buf_ofs += n;
            if saved_output.pos != n {
                params.flush_ofs = n as u32;
                params.flush_remaining = (saved_output.pos - n) as u32;
            }
        } else {
            params.out_buf_ofs += saved_output.pos;
        }

        params.flush_remaining as i32
    }
}

enum CallbackOut<'a> {
    Func(CallbackFunc<'a>),
    Buf(CallbackBuf<'a>),
}

impl CallbackOut<'_> {
    fn new_output_buffer<'b>(
        &'b mut self,
        local_buf: &'b mut [u8],
        out_buf_ofs: usize,
    ) -> OutputBufferOxide<'b> {
        let is_local;
        let buf_len = OUT_BUF_SIZE - 16;
        let chosen_buffer = match *self {
            CallbackOut::Buf(ref mut cb) if cb.out_buf.len() - out_buf_ofs >= OUT_BUF_SIZE => {
                is_local = false;
                &mut cb.out_buf[out_buf_ofs..out_buf_ofs + buf_len]
            }
            _ => {
                is_local = true;
                &mut local_buf[..buf_len]
            }
        };

        OutputBufferOxide {
            inner: chosen_buffer,
            inner_pos: 0,
            local: is_local,
            bit_buffer: 0,
            bits_in: 0,
        }
    }
}

struct CallbackOxide<'a> {
    in_buf: Option<&'a [u8]>,
    in_buf_size: Option<&'a mut usize>,
    out_buf_size: Option<&'a mut usize>,
    out: CallbackOut<'a>,
}

impl<'a> CallbackOxide<'a> {
    fn new_callback_buf(in_buf: &'a [u8], out_buf: &'a mut [u8]) -> Self {
        CallbackOxide {
            in_buf: Some(in_buf),
            in_buf_size: None,
            out_buf_size: None,
            out: CallbackOut::Buf(CallbackBuf { out_buf }),
        }
    }

    fn new_callback_func(in_buf: &'a [u8], callback_func: CallbackFunc<'a>) -> Self {
        CallbackOxide {
            in_buf: Some(in_buf),
            in_buf_size: None,
            out_buf_size: None,
            out: CallbackOut::Func(callback_func),
        }
    }

    fn update_size(&mut self, in_size: Option<usize>, out_size: Option<usize>) {
        if let (Some(in_size), Some(size)) = (in_size, self.in_buf_size.as_mut()) {
            **size = in_size;
        }

        if let (Some(out_size), Some(size)) = (out_size, self.out_buf_size.as_mut()) {
            **size = out_size
        }
    }

    fn flush_output(
        &mut self,
        saved_output: SavedOutputBufferOxide,
        params: &mut ParamsOxide,
    ) -> i32 {
        if saved_output.pos == 0 {
            return params.flush_remaining as i32;
        }

        self.update_size(Some(params.src_pos), None);
        match self.out {
            CallbackOut::Func(ref mut cf) => cf.flush_output(saved_output, params),
            CallbackOut::Buf(ref mut cb) => cb.flush_output(saved_output, params),
        }
    }
}

struct OutputBufferOxide<'a> {
    pub inner: &'a mut [u8],
    pub inner_pos: usize,
    pub local: bool,

    pub bit_buffer: u32,
    pub bits_in: u32,
}

impl OutputBufferOxide<'_> {
    fn put_bits(&mut self, bits: u32, len: u32) {
        // TODO: Removing this assertion worsens performance
        // Need to figure out why
        assert!(bits <= ((1u32 << len) - 1u32));
        self.bit_buffer |= bits << self.bits_in;
        self.bits_in += len;

        while self.bits_in >= 8 {
            self.inner[self.inner_pos] = self.bit_buffer as u8;
            self.inner_pos += 1;
            self.bit_buffer >>= 8;
            self.bits_in -= 8;
        }
    }

    const fn save(&self) -> SavedOutputBufferOxide {
        SavedOutputBufferOxide {
            pos: self.inner_pos,
            bit_buffer: self.bit_buffer,
            bits_in: self.bits_in,
            local: self.local,
        }
    }

    fn load(&mut self, saved: SavedOutputBufferOxide) {
        self.inner_pos = saved.pos;
        self.bit_buffer = saved.bit_buffer;
        self.bits_in = saved.bits_in;
        self.local = saved.local;
    }

    fn pad_to_bytes(&mut self) {
        if self.bits_in != 0 {
            let len = 8 - self.bits_in;
            self.put_bits(0, len);
        }
    }
}

struct SavedOutputBufferOxide {
    pub pos: usize,
    pub bit_buffer: u32,
    pub bits_in: u32,
    pub local: bool,
}

struct BitBuffer {
    pub bit_buffer: u64,
    pub bits_in: u32,
}

impl BitBuffer {
    fn put_fast(&mut self, bits: u64, len: u32) {
        self.bit_buffer |= bits << self.bits_in;
        self.bits_in += len;
    }

    fn flush(&mut self, output: &mut OutputBufferOxide) -> Result<()> {
        let pos = output.inner_pos;
        {
            // isolation to please borrow checker
            let inner = &mut output.inner[pos..pos + 8];
            let bytes = u64::to_le_bytes(self.bit_buffer);
            inner.copy_from_slice(&bytes);
        }
        match output.inner_pos.checked_add((self.bits_in >> 3) as usize) {
            Some(n) if n <= output.inner.len() => output.inner_pos = n,
            _ => return Err(Error {}),
        }
        self.bit_buffer >>= self.bits_in & !7;
        self.bits_in &= 7;
        Ok(())
    }
}

/// A struct containing data about huffman codes and symbol frequencies.
///
/// NOTE: Only the literal/lengths have enough symbols to actually use
/// the full array. It's unclear why it's defined like this in miniz,
/// it could be for cache/alignment reasons.
struct HuffmanOxide {
    /// Number of occurrences of each symbol.
    pub count: [[u16; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES],
    /// The bits of the huffman code assigned to the symbol
    pub codes: [[u16; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES],
    /// The length of the huffman code assigned to the symbol.
    pub code_sizes: [[u8; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES],
}

/// Tables used for literal/lengths in `HuffmanOxide`.
const LITLEN_TABLE: usize = 0;
/// Tables for distances.
const DIST_TABLE: usize = 1;
/// Tables for the run-length encoded huffman lengths for literals/lengths/distances.
const HUFF_CODES_TABLE: usize = 2;

/// Status of RLE encoding of huffman code lengths.
struct Rle {
    pub z_count: u32,
    pub repeat_count: u16,
    pub prev_code_size: u8,
}

impl Rle {
    fn prev_code_size(
        &mut self,
        packed_code_sizes: &mut [u8],
        packed_pos: &mut usize,
        h: &mut HuffmanOxide,
    ) -> Result<()> {
        let mut write = |buf| write(buf, packed_code_sizes, packed_pos);
        let counts = &mut h.count[HUFF_CODES_TABLE];
        if self.repeat_count != 0 {
            if self.repeat_count < 3 {
                counts[self.prev_code_size as usize] =
                    counts[self.prev_code_size as usize].wrapping_add(self.repeat_count);
                let code = self.prev_code_size;
                write(&[code, code, code][..self.repeat_count as usize])?;
            } else {
                counts[16] = counts[16].wrapping_add(1);
                write(&[16, (self.repeat_count - 3) as u8][..])?;
            }
            self.repeat_count = 0;
        }

        Ok(())
    }

    fn zero_code_size(
        &mut self,
        packed_code_sizes: &mut [u8],
        packed_pos: &mut usize,
        h: &mut HuffmanOxide,
    ) -> Result<()> {
        let mut write = |buf| write(buf, packed_code_sizes, packed_pos);
        let counts = &mut h.count[HUFF_CODES_TABLE];
        if self.z_count != 0 {
            if self.z_count < 3 {
                counts[0] = counts[0].wrapping_add(self.z_count as u16);
                write(&[0, 0, 0][..self.z_count as usize])?;
            } else if self.z_count <= 10 {
                counts[17] = counts[17].wrapping_add(1);
                write(&[17, (self.z_count - 3) as u8][..])?;
            } else {
                counts[18] = counts[18].wrapping_add(1);
                write(&[18, (self.z_count - 11) as u8][..])?;
            }
            self.z_count = 0;
        }

        Ok(())
    }
}

fn write(src: &[u8], dst: &mut [u8], dst_pos: &mut usize) -> Result<()> {
    match dst.get_mut(*dst_pos..*dst_pos + src.len()) {
        Some(s) => s.copy_from_slice(src),
        None => return Err(Error {}),
    }
    *dst_pos += src.len();
    Ok(())
}

impl Default for HuffmanOxide {
    fn default() -> Self {
        HuffmanOxide {
            count: [[0; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES],
            codes: [[0; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES],
            code_sizes: [[0; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES],
        }
    }
}

impl HuffmanOxide {
    fn radix_sort_symbols<'a>(
        symbols0: &'a mut [SymFreq],
        symbols1: &'a mut [SymFreq],
    ) -> &'a mut [SymFreq] {
        let mut hist = [[0; 256]; 2];

        for freq in symbols0.iter() {
            hist[0][(freq.key & 0xFF) as usize] += 1;
            hist[1][((freq.key >> 8) & 0xFF) as usize] += 1;
        }

        let mut n_passes = 2;
        if symbols0.len() == hist[1][0] {
            n_passes -= 1;
        }

        let mut current_symbols = symbols0;
        let mut new_symbols = symbols1;

        for (pass, hist_item) in hist.iter().enumerate().take(n_passes) {
            let mut offsets = [0; 256];
            let mut offset = 0;
            for i in 0..256 {
                offsets[i] = offset;
                offset += hist_item[i];
            }

            for sym in current_symbols.iter() {
                let j = ((sym.key >> (pass * 8)) & 0xFF) as usize;
                new_symbols[offsets[j]] = *sym;
                offsets[j] += 1;
            }

            mem::swap(&mut current_symbols, &mut new_symbols);
        }

        current_symbols
    }

    fn calculate_minimum_redundancy(symbols: &mut [SymFreq]) {
        match symbols.len() {
            0 => (),
            1 => symbols[0].key = 1,
            n => {
                symbols[0].key += symbols[1].key;
                let mut root = 0;
                let mut leaf = 2;
                for next in 1..n - 1 {
                    if (leaf >= n) || (symbols[root].key < symbols[leaf].key) {
                        symbols[next].key = symbols[root].key;
                        symbols[root].key = next as u16;
                        root += 1;
                    } else {
                        symbols[next].key = symbols[leaf].key;
                        leaf += 1;
                    }

                    if (leaf >= n) || (root < next && symbols[root].key < symbols[leaf].key) {
                        symbols[next].key = symbols[next].key.wrapping_add(symbols[root].key);
                        symbols[root].key = next as u16;
                        root += 1;
                    } else {
                        symbols[next].key = symbols[next].key.wrapping_add(symbols[leaf].key);
                        leaf += 1;
                    }
                }

                symbols[n - 2].key = 0;
                for next in (0..n - 2).rev() {
                    symbols[next].key = symbols[symbols[next].key as usize].key + 1;
                }

                let mut avbl = 1;
                let mut used = 0;
                let mut dpth = 0;
                let mut root = (n - 2) as i32;
                let mut next = (n - 1) as i32;
                while avbl > 0 {
                    while (root >= 0) && (symbols[root as usize].key == dpth) {
                        used += 1;
                        root -= 1;
                    }
                    while avbl > used {
                        symbols[next as usize].key = dpth;
                        next -= 1;
                        avbl -= 1;
                    }
                    avbl = 2 * used;
                    dpth += 1;
                    used = 0;
                }
            }
        }
    }

    fn enforce_max_code_size(num_codes: &mut [i32], code_list_len: usize, max_code_size: usize) {
        if code_list_len <= 1 {
            return;
        }

        num_codes[max_code_size] += num_codes[max_code_size + 1..].iter().sum::<i32>();
        let total = num_codes[1..=max_code_size]
            .iter()
            .rev()
            .enumerate()
            .fold(0u32, |total, (i, &x)| total + ((x as u32) << i));

        for _ in (1 << max_code_size)..total {
            num_codes[max_code_size] -= 1;
            for i in (1..max_code_size).rev() {
                if num_codes[i] != 0 {
                    num_codes[i] -= 1;
                    num_codes[i + 1] += 2;
                    break;
                }
            }
        }
    }

    fn optimize_table(
        &mut self,
        table_num: usize,
        table_len: usize,
        code_size_limit: usize,
        static_table: bool,
    ) {
        let mut num_codes = [0i32; MAX_SUPPORTED_HUFF_CODESIZE + 1];
        let mut next_code = [0u32; MAX_SUPPORTED_HUFF_CODESIZE + 1];

        if static_table {
            for &code_size in &self.code_sizes[table_num][..table_len] {
                num_codes[code_size as usize] += 1;
            }
        } else {
            let mut symbols0 = [SymFreq {
                key: 0,
                sym_index: 0,
            }; MAX_HUFF_SYMBOLS];
            let mut symbols1 = [SymFreq {
                key: 0,
                sym_index: 0,
            }; MAX_HUFF_SYMBOLS];

            let mut num_used_symbols = 0;
            for i in 0..table_len {
                if self.count[table_num][i] != 0 {
                    symbols0[num_used_symbols] = SymFreq {
                        key: self.count[table_num][i],
                        sym_index: i as u16,
                    };
                    num_used_symbols += 1;
                }
            }

            let symbols = Self::radix_sort_symbols(
                &mut symbols0[..num_used_symbols],
                &mut symbols1[..num_used_symbols],
            );
            Self::calculate_minimum_redundancy(symbols);

            for symbol in symbols.iter() {
                num_codes[symbol.key as usize] += 1;
            }

            Self::enforce_max_code_size(&mut num_codes, num_used_symbols, code_size_limit);

            self.code_sizes[table_num].fill(0);
            self.codes[table_num].fill(0);

            let mut last = num_used_symbols;
            for (i, &num_item) in num_codes
                .iter()
                .enumerate()
                .take(code_size_limit + 1)
                .skip(1)
            {
                let first = last - num_item as usize;
                for symbol in &symbols[first..last] {
                    self.code_sizes[table_num][symbol.sym_index as usize] = i as u8;
                }
                last = first;
            }
        }

        let mut j = 0;
        next_code[1] = 0;
        for i in 2..=code_size_limit {
            j = (j + num_codes[i - 1]) << 1;
            next_code[i] = j as u32;
        }

        for (&code_size, huff_code) in self.code_sizes[table_num]
            .iter()
            .take(table_len)
            .zip(self.codes[table_num].iter_mut().take(table_len))
        {
            if code_size == 0 {
                continue;
            }

            let mut code = next_code[code_size as usize];
            next_code[code_size as usize] += 1;

            let mut rev_code = 0;
            for _ in 0..code_size {
                rev_code = (rev_code << 1) | (code & 1);
                code >>= 1;
            }
            *huff_code = rev_code as u16;
        }
    }

    fn start_static_block(&mut self, output: &mut OutputBufferOxide) {
        self.code_sizes[LITLEN_TABLE][0..144].fill(8);
        self.code_sizes[LITLEN_TABLE][144..256].fill(9);
        self.code_sizes[LITLEN_TABLE][256..280].fill(7);
        self.code_sizes[LITLEN_TABLE][280..288].fill(8);

        self.code_sizes[DIST_TABLE][..32].fill(5);

        self.optimize_table(LITLEN_TABLE, 288, 15, true);
        self.optimize_table(DIST_TABLE, 32, 15, true);

        output.put_bits(0b01, 2)
    }

    fn start_dynamic_block(&mut self, output: &mut OutputBufferOxide) -> Result<()> {
        // There will always be one, and only one end of block code.
        self.count[0][256] = 1;

        self.optimize_table(0, MAX_HUFF_SYMBOLS_0, 15, false);
        self.optimize_table(1, MAX_HUFF_SYMBOLS_1, 15, false);

        let num_lit_codes = 286
            - &self.code_sizes[0][257..286]
                .iter()
                .rev()
                .take_while(|&x| *x == 0)
                .count();

        let num_dist_codes = 30
            - &self.code_sizes[1][1..30]
                .iter()
                .rev()
                .take_while(|&x| *x == 0)
                .count();

        let mut code_sizes_to_pack = [0u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1];
        let mut packed_code_sizes = [0u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1];

        let total_code_sizes_to_pack = num_lit_codes + num_dist_codes;

        code_sizes_to_pack[..num_lit_codes].copy_from_slice(&self.code_sizes[0][..num_lit_codes]);

        code_sizes_to_pack[num_lit_codes..total_code_sizes_to_pack]
            .copy_from_slice(&self.code_sizes[1][..num_dist_codes]);

        let mut rle = Rle {
            z_count: 0,
            repeat_count: 0,
            prev_code_size: 0xFF,
        };

        self.count[HUFF_CODES_TABLE][..MAX_HUFF_SYMBOLS_2].fill(0);

        let mut packed_pos = 0;
        for &code_size in &code_sizes_to_pack[..total_code_sizes_to_pack] {
            if code_size == 0 {
                rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
                rle.z_count += 1;
                if rle.z_count == 138 {
                    rle.zero_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
                }
            } else {
                rle.zero_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
                if code_size != rle.prev_code_size {
                    rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
                    self.count[HUFF_CODES_TABLE][code_size as usize] =
                        self.count[HUFF_CODES_TABLE][code_size as usize].wrapping_add(1);
                    write(&[code_size], &mut packed_code_sizes, &mut packed_pos)?;
                } else {
                    rle.repeat_count += 1;
                    if rle.repeat_count == 6 {
                        rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
                    }
                }
            }
            rle.prev_code_size = code_size;
        }

        if rle.repeat_count != 0 {
            rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
        } else {
            rle.zero_code_size(&mut packed_code_sizes, &mut packed_pos, self)?;
        }

        self.optimize_table(2, MAX_HUFF_SYMBOLS_2, 7, false);

        output.put_bits(2, 2);

        output.put_bits((num_lit_codes - 257) as u32, 5);
        output.put_bits((num_dist_codes - 1) as u32, 5);

        let mut num_bit_lengths = 18
            - HUFFMAN_LENGTH_ORDER
                .iter()
                .rev()
                .take_while(|&swizzle| self.code_sizes[HUFF_CODES_TABLE][*swizzle as usize] == 0)
                .count();

        num_bit_lengths = cmp::max(4, num_bit_lengths + 1);
        output.put_bits(num_bit_lengths as u32 - 4, 4);
        for &swizzle in &HUFFMAN_LENGTH_ORDER[..num_bit_lengths] {
            output.put_bits(
                u32::from(self.code_sizes[HUFF_CODES_TABLE][swizzle as usize]),
                3,
            );
        }

        let mut packed_code_size_index = 0;
        while packed_code_size_index < packed_pos {
            let code = packed_code_sizes[packed_code_size_index] as usize;
            packed_code_size_index += 1;
            assert!(code < MAX_HUFF_SYMBOLS_2);
            output.put_bits(
                u32::from(self.codes[HUFF_CODES_TABLE][code]),
                u32::from(self.code_sizes[HUFF_CODES_TABLE][code]),
            );
            if code >= 16 {
                output.put_bits(
                    u32::from(packed_code_sizes[packed_code_size_index]),
                    [2, 3, 7][code - 16],
                );
                packed_code_size_index += 1;
            }
        }

        Ok(())
    }
}

struct DictOxide {
    /// The maximum number of checks in the hash chain, for the initial,
    /// and the lazy match respectively.
    pub max_probes: [u32; 2],
    /// Buffer of input data.
    /// Padded with 1 byte to simplify matching code in `compress_fast`.
    pub b: Box<HashBuffers>,

    pub code_buf_dict_pos: usize,
    pub lookahead_size: usize,
    pub lookahead_pos: usize,
    pub size: usize,
}

const fn probes_from_flags(flags: u32) -> [u32; 2] {
    [
        1 + ((flags & 0xFFF) + 2) / 3,
        1 + (((flags & 0xFFF) >> 2) + 2) / 3,
    ]
}

impl DictOxide {
    fn new(flags: u32) -> Self {
        DictOxide {
            max_probes: probes_from_flags(flags),
            b: Box::default(),
            code_buf_dict_pos: 0,
            lookahead_size: 0,
            lookahead_pos: 0,
            size: 0,
        }
    }

    fn update_flags(&mut self, flags: u32) {
        self.max_probes = probes_from_flags(flags);
    }

    fn reset(&mut self) {
        self.b.reset();
        self.code_buf_dict_pos = 0;
        self.lookahead_size = 0;
        self.lookahead_pos = 0;
        self.size = 0;
    }

    /// Do an unaligned read of the data at `pos` in the dictionary and treat it as if it was of
    /// type T.
    #[inline]
    fn read_unaligned_u32(&self, pos: usize) -> u32 {
        // Masking the value here helps avoid bounds checks.
        let pos = pos & LZ_DICT_SIZE_MASK;
        let end = pos + 4;
        // Somehow this assertion makes things faster.
        // TODO: as of may 2024 this does not seem to make any difference
        // so consider removing.
        assert!(end < LZ_DICT_FULL_SIZE);

        let bytes: [u8; 4] = self.b.dict[pos..end].try_into().unwrap();
        u32::from_le_bytes(bytes)
    }

    /// Do an unaligned read of the data at `pos` in the dictionary and treat it as if it was of
    /// type T.
    #[inline]
    fn read_unaligned_u64(&self, pos: usize) -> u64 {
        // Help evade bounds/panic code check by masking the position value
        // This provides a small speedup at the cost of an instruction or two instead of
        // having to use unsafe.
        let pos = pos & LZ_DICT_SIZE_MASK;
        let bytes: [u8; 8] = self.b.dict[pos..pos + 8].try_into().unwrap();
        u64::from_le_bytes(bytes)
    }

    /// Do an unaligned read of the data at `pos` in the dictionary and treat it as if it was of
    /// type T.
    #[inline]
    fn read_as_u16(&self, pos: usize) -> u16 {
        read_u16_le(&self.b.dict[..], pos)
    }

    /// Try to find a match for the data at lookahead_pos in the dictionary that is
    /// longer than `match_len`.
    /// Returns a tuple containing (match_distance, match_length). Will be equal to the input
    /// values if no better matches were found.
    fn find_match(
        &self,
        lookahead_pos: usize,
        max_dist: usize,
        max_match_len: u32,
        mut match_dist: u32,
        mut match_len: u32,
    ) -> (u32, u32) {
        // Clamp the match len and max_match_len to be valid. (It should be when this is called, but
        // do it for now just in case for safety reasons.)
        // This should normally end up as at worst conditional moves,
        // so it shouldn't slow us down much.
        // TODO: Statically verify these so we don't need to do this.
        let max_match_len = cmp::min(MAX_MATCH_LEN as u32, max_match_len);
        match_len = cmp::max(match_len, 1);

        let pos = lookahead_pos & LZ_DICT_SIZE_MASK;
        let mut probe_pos = pos;
        // Number of probes into the hash chains.
        let mut num_probes_left = self.max_probes[(match_len >= 32) as usize];

        // If we already have a match of the full length don't bother searching for another one.
        if max_match_len <= match_len {
            return (match_dist, match_len);
        }

        // Read the last byte of the current match, and the next one, used to compare matches.
        let mut c01: u16 = self.read_as_u16(pos + match_len as usize - 1);
        // Read the two bytes at the end position of the current match.
        let s01: u16 = self.read_as_u16(pos);

        'outer: loop {
            let mut dist;
            'found: loop {
                num_probes_left -= 1;
                if num_probes_left == 0 {
                    // We have done as many probes in the hash chain as the current compression
                    // settings allow, so return the best match we found, if any.
                    return (match_dist, match_len);
                }

                for _ in 0..3 {
                    let next_probe_pos = self.b.next[probe_pos] as usize;

                    dist = (lookahead_pos - next_probe_pos) & 0xFFFF;
                    if next_probe_pos == 0 || dist > max_dist {
                        // We reached the end of the hash chain, or the next value is further away
                        // than the maximum allowed distance, so return the best match we found, if
                        // any.
                        return (match_dist, match_len);
                    }

                    // Mask the position value to get the position in the hash chain of the next
                    // position to match against.
                    probe_pos = next_probe_pos & LZ_DICT_SIZE_MASK;

                    if self.read_as_u16(probe_pos + match_len as usize - 1) == c01 {
                        break 'found;
                    }
                }
            }

            if dist == 0 {
                // We've looked through the whole match range, so return the best match we
                // found.
                return (match_dist, match_len);
            }

            // Check if the two first bytes match.
            if self.read_as_u16(probe_pos) != s01 {
                continue;
            }

            let mut p = pos + 2;
            let mut q = probe_pos + 2;
            // The first two bytes matched, so check the full length of the match.
            for _ in 0..32 {
                let p_data: u64 = self.read_unaligned_u64(p);
                let q_data: u64 = self.read_unaligned_u64(q);
                // Compare of 8 bytes at a time by using unaligned loads of 64-bit integers.
                let xor_data = p_data ^ q_data;
                if xor_data == 0 {
                    p += 8;
                    q += 8;
                } else {
                    // If not all of the last 8 bytes matched, check how may of them did.
                    let trailing = xor_data.trailing_zeros();

                    let probe_len = p - pos + (trailing as usize >> 3);
                    if probe_len > match_len as usize {
                        match_dist = dist as u32;
                        match_len = cmp::min(max_match_len, probe_len as u32);
                        if match_len == max_match_len {
                            // We found a match that had the maximum allowed length,
                            // so there is now point searching further.
                            return (match_dist, match_len);
                        }
                        // We found a better match, so save the last two bytes for further match
                        // comparisons.
                        c01 = self.read_as_u16(pos + match_len as usize - 1)
                    }
                    continue 'outer;
                }
            }

            return (dist as u32, cmp::min(max_match_len, MAX_MATCH_LEN as u32));
        }
    }
}

struct ParamsOxide {
    pub flags: u32,
    pub greedy_parsing: bool,
    pub block_index: u32,

    pub saved_match_dist: u32,
    pub saved_match_len: u32,
    pub saved_lit: u8,

    pub flush: TDEFLFlush,
    pub flush_ofs: u32,
    pub flush_remaining: u32,
    pub finished: bool,

    pub adler32: u32,

    pub src_pos: usize,

    pub out_buf_ofs: usize,
    pub prev_return_status: TDEFLStatus,

    pub saved_bit_buffer: u32,
    pub saved_bits_in: u32,

    pub local_buf: Box<LocalBuf>,
}

impl ParamsOxide {
    fn new(flags: u32) -> Self {
        ParamsOxide {
            flags,
            greedy_parsing: flags & TDEFL_GREEDY_PARSING_FLAG != 0,
            block_index: 0,
            saved_match_dist: 0,
            saved_match_len: 0,
            saved_lit: 0,
            flush: TDEFLFlush::None,
            flush_ofs: 0,
            flush_remaining: 0,
            finished: false,
            adler32: MZ_ADLER32_INIT,
            src_pos: 0,
            out_buf_ofs: 0,
            prev_return_status: TDEFLStatus::Okay,
            saved_bit_buffer: 0,
            saved_bits_in: 0,
            local_buf: Box::default(),
        }
    }

    fn update_flags(&mut self, flags: u32) {
        self.flags = flags;
        self.greedy_parsing = self.flags & TDEFL_GREEDY_PARSING_FLAG != 0;
    }

    /// Reset state, saving settings.
    fn reset(&mut self) {
        self.block_index = 0;
        self.saved_match_len = 0;
        self.saved_match_dist = 0;
        self.saved_lit = 0;
        self.flush = TDEFLFlush::None;
        self.flush_ofs = 0;
        self.flush_remaining = 0;
        self.finished = false;
        self.adler32 = MZ_ADLER32_INIT;
        self.src_pos = 0;
        self.out_buf_ofs = 0;
        self.prev_return_status = TDEFLStatus::Okay;
        self.saved_bit_buffer = 0;
        self.saved_bits_in = 0;
        self.local_buf.b = [0; OUT_BUF_SIZE];
    }
}

struct LZOxide {
    pub codes: [u8; LZ_CODE_BUF_SIZE],
    pub code_position: usize,
    pub flag_position: usize,

    // The total number of bytes in the current block.
    pub total_bytes: u32,
    pub num_flags_left: u32,
}

impl LZOxide {
    const fn new() -> Self {
        LZOxide {
            codes: [0; LZ_CODE_BUF_SIZE],
            code_position: 1,
            flag_position: 0,
            total_bytes: 0,
            num_flags_left: 8,
        }
    }

    fn write_code(&mut self, val: u8) {
        // Perf - go via u16 to help evade bounds check
        // TODO: see if we can use u16 for flag_position in general.
        self.codes[usize::from(self.code_position as u16)] = val;
        self.code_position += 1;
    }

    fn init_flag(&mut self) {
        if self.num_flags_left == 8 {
            *self.get_flag() = 0;
            self.code_position -= 1;
        } else {
            *self.get_flag() >>= self.num_flags_left;
        }
    }

    fn get_flag(&mut self) -> &mut u8 {
        // Perf - go via u16 to help evade bounds check
        // TODO: see if we can use u16 for flag_position in general.
        &mut self.codes[usize::from(self.flag_position as u16)]
    }

    fn plant_flag(&mut self) {
        self.flag_position = self.code_position;
        self.code_position += 1;
    }

    fn consume_flag(&mut self) {
        self.num_flags_left -= 1;
        if self.num_flags_left == 0 {
            self.num_flags_left = 8;
            self.plant_flag();
        }
    }
}

fn compress_lz_codes(
    huff: &HuffmanOxide,
    output: &mut OutputBufferOxide,
    lz_code_buf: &[u8],
) -> Result<bool> {
    let mut flags = 1;
    let mut bb = BitBuffer {
        bit_buffer: u64::from(output.bit_buffer),
        bits_in: output.bits_in,
    };

    let mut i: usize = 0;
    while i < lz_code_buf.len() {
        if flags == 1 {
            flags = u32::from(lz_code_buf[i]) | 0x100;
            i += 1;
        }

        // The lz code was a length code
        if flags & 1 == 1 {
            flags >>= 1;

            let sym;
            let num_extra_bits;

            let match_len = lz_code_buf[i] as usize;

            let match_dist = read_u16_le(lz_code_buf, i + 1);

            i += 3;

            debug_assert!(huff.code_sizes[0][LEN_SYM[match_len] as usize] != 0);
            bb.put_fast(
                u64::from(huff.codes[0][LEN_SYM[match_len] as usize]),
                u32::from(huff.code_sizes[0][LEN_SYM[match_len] as usize]),
            );
            bb.put_fast(
                match_len as u64 & u64::from(BITMASKS[LEN_EXTRA[match_len] as usize]),
                u32::from(LEN_EXTRA[match_len]),
            );

            if match_dist < 512 {
                sym = SMALL_DIST_SYM[match_dist as usize] as usize;
                num_extra_bits = SMALL_DIST_EXTRA[match_dist as usize] as usize;
            } else {
                sym = LARGE_DIST_SYM[(match_dist >> 8) as usize] as usize;
                num_extra_bits = LARGE_DIST_EXTRA[(match_dist >> 8) as usize] as usize;
            }

            debug_assert!(huff.code_sizes[1][sym] != 0);
            bb.put_fast(
                u64::from(huff.codes[1][sym]),
                u32::from(huff.code_sizes[1][sym]),
            );
            bb.put_fast(
                u64::from(match_dist) & u64::from(BITMASKS[num_extra_bits]),
                num_extra_bits as u32,
            );
        } else {
            // The lz code was a literal
            for _ in 0..3 {
                flags >>= 1;
                let lit = lz_code_buf[i];
                i += 1;

                debug_assert!(huff.code_sizes[0][lit as usize] != 0);
                bb.put_fast(
                    u64::from(huff.codes[0][lit as usize]),
                    u32::from(huff.code_sizes[0][lit as usize]),
                );

                if flags & 1 == 1 || i >= lz_code_buf.len() {
                    break;
                }
            }
        }

        bb.flush(output)?;
    }

    output.bits_in = 0;
    output.bit_buffer = 0;
    while bb.bits_in != 0 {
        let n = cmp::min(bb.bits_in, 16);
        output.put_bits(bb.bit_buffer as u32 & BITMASKS[n as usize], n);
        bb.bit_buffer >>= n;
        bb.bits_in -= n;
    }

    // Output the end of block symbol.
    output.put_bits(
        u32::from(huff.codes[0][256]),
        u32::from(huff.code_sizes[0][256]),
    );

    Ok(true)
}

fn compress_block(
    huff: &mut HuffmanOxide,
    output: &mut OutputBufferOxide,
    lz: &LZOxide,
    static_block: bool,
) -> Result<bool> {
    if static_block {
        huff.start_static_block(output);
    } else {
        huff.start_dynamic_block(output)?;
    }

    compress_lz_codes(huff, output, &lz.codes[..lz.code_position])
}

fn flush_block(
    d: &mut CompressorOxide,
    callback: &mut CallbackOxide,
    flush: TDEFLFlush,
) -> Result<i32> {
    let mut saved_buffer;
    {
        let mut output = callback
            .out
            .new_output_buffer(&mut d.params.local_buf.b, d.params.out_buf_ofs);
        output.bit_buffer = d.params.saved_bit_buffer;
        output.bits_in = d.params.saved_bits_in;

        let use_raw_block = (d.params.flags & TDEFL_FORCE_ALL_RAW_BLOCKS != 0)
            && (d.dict.lookahead_pos - d.dict.code_buf_dict_pos) <= d.dict.size;

        assert!(d.params.flush_remaining == 0);
        d.params.flush_ofs = 0;
        d.params.flush_remaining = 0;

        d.lz.init_flag();

        // If we are at the start of the stream, write the zlib header if requested.
        if d.params.flags & TDEFL_WRITE_ZLIB_HEADER != 0 && d.params.block_index == 0 {
            let header = zlib::header_from_flags(d.params.flags);
            output.put_bits(header[0].into(), 8);
            output.put_bits(header[1].into(), 8);
        }

        // Output the block header.
        output.put_bits((flush == TDEFLFlush::Finish) as u32, 1);

        saved_buffer = output.save();

        let comp_success = if !use_raw_block {
            let use_static =
                (d.params.flags & TDEFL_FORCE_ALL_STATIC_BLOCKS != 0) || (d.lz.total_bytes < 48);
            compress_block(&mut d.huff, &mut output, &d.lz, use_static)?
        } else {
            false
        };

        // If we failed to compress anything and the output would take up more space than the output
        // data, output a stored block instead, which has at most 5 bytes of overhead.
        // We only use some simple heuristics for now.
        // A stored block will have an overhead of at least 4 bytes containing the block length
        // but usually more due to the length parameters having to start at a byte boundary and thus
        // requiring up to 5 bytes of padding.
        // As a static block will have an overhead of at most 1 bit per byte
        // (as literals are either 8 or 9 bytes), a raw block will
        // never take up less space if the number of input bytes are less than 32.
        let expanded = (d.lz.total_bytes > 32)
            && (output.inner_pos - saved_buffer.pos + 1 >= (d.lz.total_bytes as usize))
            && (d.dict.lookahead_pos - d.dict.code_buf_dict_pos <= d.dict.size);

        if use_raw_block || expanded {
            output.load(saved_buffer);

            // Block header.
            output.put_bits(0, 2);

            // Block length has to start on a byte boundary, s opad.
            output.pad_to_bytes();

            // Block length and ones complement of block length.
            output.put_bits(d.lz.total_bytes & 0xFFFF, 16);
            output.put_bits(!d.lz.total_bytes & 0xFFFF, 16);

            // Write the actual bytes.
            for i in 0..d.lz.total_bytes {
                let pos = (d.dict.code_buf_dict_pos + i as usize) & LZ_DICT_SIZE_MASK;
                output.put_bits(u32::from(d.dict.b.dict[pos]), 8);
            }
        } else if !comp_success {
            output.load(saved_buffer);
            compress_block(&mut d.huff, &mut output, &d.lz, true)?;
        }

        if flush != TDEFLFlush::None {
            if flush == TDEFLFlush::Finish {
                output.pad_to_bytes();
                if d.params.flags & TDEFL_WRITE_ZLIB_HEADER != 0 {
                    let mut adler = d.params.adler32;
                    for _ in 0..4 {
                        output.put_bits((adler >> 24) & 0xFF, 8);
                        adler <<= 8;
                    }
                }
            } else {
                // Sync or Full flush.
                // Output an empty raw block.
                output.put_bits(0, 3);
                output.pad_to_bytes();
                output.put_bits(0, 16);
                output.put_bits(0xFFFF, 16);
            }
        }

        d.huff.count[0][..MAX_HUFF_SYMBOLS_0].fill(0);
        d.huff.count[1][..MAX_HUFF_SYMBOLS_1].fill(0);

        d.lz.code_position = 1;
        d.lz.flag_position = 0;
        d.lz.num_flags_left = 8;
        d.dict.code_buf_dict_pos += d.lz.total_bytes as usize;
        d.lz.total_bytes = 0;
        d.params.block_index += 1;

        saved_buffer = output.save();

        d.params.saved_bit_buffer = saved_buffer.bit_buffer;
        d.params.saved_bits_in = saved_buffer.bits_in;
    }

    Ok(callback.flush_output(saved_buffer, &mut d.params))
}

fn record_literal(h: &mut HuffmanOxide, lz: &mut LZOxide, lit: u8) {
    lz.total_bytes += 1;
    lz.write_code(lit);

    *lz.get_flag() >>= 1;
    lz.consume_flag();

    h.count[0][lit as usize] += 1;
}

fn record_match(h: &mut HuffmanOxide, lz: &mut LZOxide, mut match_len: u32, mut match_dist: u32) {
    debug_assert!(match_len >= MIN_MATCH_LEN.into());
    debug_assert!(match_dist >= 1);
    debug_assert!(match_dist as usize <= LZ_DICT_SIZE);

    lz.total_bytes += match_len;
    match_dist -= 1;
    match_len -= u32::from(MIN_MATCH_LEN);
    lz.write_code(match_len as u8);
    lz.write_code(match_dist as u8);
    lz.write_code((match_dist >> 8) as u8);

    *lz.get_flag() >>= 1;
    *lz.get_flag() |= 0x80;
    lz.consume_flag();

    let symbol = if match_dist < 512 {
        SMALL_DIST_SYM[match_dist as usize]
    } else {
        LARGE_DIST_SYM[((match_dist >> 8) & 127) as usize]
    } as usize;
    h.count[1][symbol] += 1;
    // Perf - go via u8 to help optimize out bounds check.
    h.count[0][LEN_SYM[usize::from(match_len as u8)] as usize] += 1;
}

fn compress_normal(d: &mut CompressorOxide, callback: &mut CallbackOxide) -> bool {
    let mut src_pos = d.params.src_pos;
    let in_buf = match callback.in_buf {
        None => return true,
        Some(in_buf) => in_buf,
    };

    let mut lookahead_size = d.dict.lookahead_size;
    let mut lookahead_pos = d.dict.lookahead_pos;
    let mut saved_lit = d.params.saved_lit;
    let mut saved_match_dist = d.params.saved_match_dist;
    let mut saved_match_len = d.params.saved_match_len;

    while src_pos < in_buf.len() || (d.params.flush != TDEFLFlush::None && lookahead_size != 0) {
        let src_buf_left = in_buf.len() - src_pos;
        let num_bytes_to_process = cmp::min(src_buf_left, MAX_MATCH_LEN - lookahead_size);

        if lookahead_size + d.dict.size >= usize::from(MIN_MATCH_LEN) - 1
            && num_bytes_to_process > 0
        {
            let dictb = &mut d.dict.b;

            let mut dst_pos = (lookahead_pos + lookahead_size) & LZ_DICT_SIZE_MASK;
            let mut ins_pos = lookahead_pos + lookahead_size - 2;
            // Start the hash value from the first two bytes
            let mut hash = update_hash(
                u16::from(dictb.dict[ins_pos & LZ_DICT_SIZE_MASK]),
                dictb.dict[(ins_pos + 1) & LZ_DICT_SIZE_MASK],
            );

            lookahead_size += num_bytes_to_process;

            for &c in &in_buf[src_pos..src_pos + num_bytes_to_process] {
                // Add byte to input buffer.
                dictb.dict[dst_pos] = c;
                if dst_pos < MAX_MATCH_LEN - 1 {
                    dictb.dict[LZ_DICT_SIZE + dst_pos] = c;
                }

                // Generate hash from the current byte,
                hash = update_hash(hash, c);
                dictb.next[ins_pos & LZ_DICT_SIZE_MASK] = dictb.hash[hash as usize];
                // and insert it into the hash chain.
                dictb.hash[hash as usize] = ins_pos as u16;
                dst_pos = (dst_pos + 1) & LZ_DICT_SIZE_MASK;
                ins_pos += 1;
            }
            src_pos += num_bytes_to_process;
        } else {
            let dictb = &mut d.dict.b;
            for &c in &in_buf[src_pos..src_pos + num_bytes_to_process] {
                let dst_pos = (lookahead_pos + lookahead_size) & LZ_DICT_SIZE_MASK;
                dictb.dict[dst_pos] = c;
                if dst_pos < MAX_MATCH_LEN - 1 {
                    dictb.dict[LZ_DICT_SIZE + dst_pos] = c;
                }

                lookahead_size += 1;
                if lookahead_size + d.dict.size >= MIN_MATCH_LEN.into() {
                    let ins_pos = lookahead_pos + lookahead_size - 3;
                    let hash = ((u32::from(dictb.dict[ins_pos & LZ_DICT_SIZE_MASK])
                        << (LZ_HASH_SHIFT * 2))
                        ^ ((u32::from(dictb.dict[(ins_pos + 1) & LZ_DICT_SIZE_MASK])
                            << LZ_HASH_SHIFT)
                            ^ u32::from(c)))
                        & (LZ_HASH_SIZE as u32 - 1);

                    dictb.next[ins_pos & LZ_DICT_SIZE_MASK] = dictb.hash[hash as usize];
                    dictb.hash[hash as usize] = ins_pos as u16;
                }
            }

            src_pos += num_bytes_to_process;
        }

        d.dict.size = cmp::min(LZ_DICT_SIZE - lookahead_size, d.dict.size);
        if d.params.flush == TDEFLFlush::None && lookahead_size < MAX_MATCH_LEN {
            break;
        }

        let mut len_to_move = 1;
        let mut cur_match_dist = 0;
        let mut cur_match_len = if saved_match_len != 0 {
            saved_match_len
        } else {
            u32::from(MIN_MATCH_LEN) - 1
        };
        let cur_pos = lookahead_pos & LZ_DICT_SIZE_MASK;
        if d.params.flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS) != 0 {
            // If TDEFL_RLE_MATCHES is set, we only look for repeating sequences of the current byte.
            if d.dict.size != 0 && d.params.flags & TDEFL_FORCE_ALL_RAW_BLOCKS == 0 {
                let c = d.dict.b.dict[(cur_pos.wrapping_sub(1)) & LZ_DICT_SIZE_MASK];
                cur_match_len = d.dict.b.dict[cur_pos..(cur_pos + lookahead_size)]
                    .iter()
                    .take_while(|&x| *x == c)
                    .count() as u32;
                if cur_match_len < MIN_MATCH_LEN.into() {
                    cur_match_len = 0
                } else {
                    cur_match_dist = 1
                }
            }
        } else {
            // Try to find a match for the bytes at the current position.
            let dist_len = d.dict.find_match(
                lookahead_pos,
                d.dict.size,
                lookahead_size as u32,
                cur_match_dist,
                cur_match_len,
            );
            cur_match_dist = dist_len.0;
            cur_match_len = dist_len.1;
        }

        let far_and_small = cur_match_len == MIN_MATCH_LEN.into() && cur_match_dist >= 8 * 1024;
        let filter_small = d.params.flags & TDEFL_FILTER_MATCHES != 0 && cur_match_len <= 5;
        if far_and_small || filter_small || cur_pos == cur_match_dist as usize {
            cur_match_dist = 0;
            cur_match_len = 0;
        }

        if saved_match_len != 0 {
            if cur_match_len > saved_match_len {
                record_literal(&mut d.huff, &mut d.lz, saved_lit);
                if cur_match_len >= 128 {
                    record_match(&mut d.huff, &mut d.lz, cur_match_len, cur_match_dist);
                    saved_match_len = 0;
                    len_to_move = cur_match_len as usize;
                } else {
                    saved_lit = d.dict.b.dict[cur_pos];
                    saved_match_dist = cur_match_dist;
                    saved_match_len = cur_match_len;
                }
            } else {
                record_match(&mut d.huff, &mut d.lz, saved_match_len, saved_match_dist);
                len_to_move = (saved_match_len - 1) as usize;
                saved_match_len = 0;
            }
        } else if cur_match_dist == 0 {
            record_literal(
                &mut d.huff,
                &mut d.lz,
                d.dict.b.dict[cmp::min(cur_pos, d.dict.b.dict.len() - 1)],
            );
        } else if d.params.greedy_parsing
            || (d.params.flags & TDEFL_RLE_MATCHES != 0)
            || cur_match_len >= 128
        {
            // If we are using lazy matching, check for matches at the next byte if the current
            // match was shorter than 128 bytes.
            record_match(&mut d.huff, &mut d.lz, cur_match_len, cur_match_dist);
            len_to_move = cur_match_len as usize;
        } else {
            saved_lit = d.dict.b.dict[cmp::min(cur_pos, d.dict.b.dict.len() - 1)];
            saved_match_dist = cur_match_dist;
            saved_match_len = cur_match_len;
        }

        lookahead_pos += len_to_move;
        assert!(lookahead_size >= len_to_move);
        lookahead_size -= len_to_move;
        d.dict.size = cmp::min(d.dict.size + len_to_move, LZ_DICT_SIZE);

        let lz_buf_tight = d.lz.code_position > LZ_CODE_BUF_SIZE - 8;
        let raw = d.params.flags & TDEFL_FORCE_ALL_RAW_BLOCKS != 0;
        let fat = ((d.lz.code_position * 115) >> 7) >= d.lz.total_bytes as usize;
        let fat_or_raw = (d.lz.total_bytes > 31 * 1024) && (fat || raw);

        if lz_buf_tight || fat_or_raw {
            d.params.src_pos = src_pos;
            // These values are used in flush_block, so we need to write them back here.
            d.dict.lookahead_size = lookahead_size;
            d.dict.lookahead_pos = lookahead_pos;

            let n = flush_block(d, callback, TDEFLFlush::None)
                .unwrap_or(TDEFLStatus::PutBufFailed as i32);
            if n != 0 {
                d.params.saved_lit = saved_lit;
                d.params.saved_match_dist = saved_match_dist;
                d.params.saved_match_len = saved_match_len;
                return n > 0;
            }
        }
    }

    d.params.src_pos = src_pos;
    d.dict.lookahead_size = lookahead_size;
    d.dict.lookahead_pos = lookahead_pos;
    d.params.saved_lit = saved_lit;
    d.params.saved_match_dist = saved_match_dist;
    d.params.saved_match_len = saved_match_len;
    true
}

const COMP_FAST_LOOKAHEAD_SIZE: usize = 4096;

fn compress_fast(d: &mut CompressorOxide, callback: &mut CallbackOxide) -> bool {
    let mut src_pos = d.params.src_pos;
    let mut lookahead_size = d.dict.lookahead_size;
    let mut lookahead_pos = d.dict.lookahead_pos;

    let mut cur_pos = lookahead_pos & LZ_DICT_SIZE_MASK;
    let in_buf = match callback.in_buf {
        None => return true,
        Some(in_buf) => in_buf,
    };

    debug_assert!(d.lz.code_position < LZ_CODE_BUF_SIZE - 2);

    while src_pos < in_buf.len() || (d.params.flush != TDEFLFlush::None && lookahead_size > 0) {
        let mut dst_pos = (lookahead_pos + lookahead_size) & LZ_DICT_SIZE_MASK;
        let mut num_bytes_to_process = cmp::min(
            in_buf.len() - src_pos,
            COMP_FAST_LOOKAHEAD_SIZE - lookahead_size,
        );
        lookahead_size += num_bytes_to_process;

        while num_bytes_to_process != 0 {
            let n = cmp::min(LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
            d.dict.b.dict[dst_pos..dst_pos + n].copy_from_slice(&in_buf[src_pos..src_pos + n]);

            if dst_pos < MAX_MATCH_LEN - 1 {
                let m = cmp::min(n, MAX_MATCH_LEN - 1 - dst_pos);
                d.dict.b.dict[dst_pos + LZ_DICT_SIZE..dst_pos + LZ_DICT_SIZE + m]
                    .copy_from_slice(&in_buf[src_pos..src_pos + m]);
            }

            src_pos += n;
            dst_pos = (dst_pos + n) & LZ_DICT_SIZE_MASK;
            num_bytes_to_process -= n;
        }

        d.dict.size = cmp::min(LZ_DICT_SIZE - lookahead_size, d.dict.size);
        if d.params.flush == TDEFLFlush::None && lookahead_size < COMP_FAST_LOOKAHEAD_SIZE {
            break;
        }

        while lookahead_size >= 4 {
            let mut cur_match_len = 1;

            let first_trigram = d.dict.read_unaligned_u32(cur_pos) & 0xFF_FFFF;

            let hash = (first_trigram ^ (first_trigram >> (24 - (LZ_HASH_BITS - 8))))
                & LEVEL1_HASH_SIZE_MASK;

            let mut probe_pos = usize::from(d.dict.b.hash[hash as usize]);
            d.dict.b.hash[hash as usize] = lookahead_pos as u16;

            let mut cur_match_dist = (lookahead_pos - probe_pos) as u16;
            if cur_match_dist as usize <= d.dict.size {
                probe_pos &= LZ_DICT_SIZE_MASK;

                let trigram = d.dict.read_unaligned_u32(probe_pos) & 0xFF_FFFF;

                if first_trigram == trigram {
                    // Trigram was tested, so we can start with "+ 3" displacement.
                    let mut p = cur_pos + 3;
                    let mut q = probe_pos + 3;
                    cur_match_len = (|| {
                        for _ in 0..32 {
                            let p_data: u64 = d.dict.read_unaligned_u64(p);
                            let q_data: u64 = d.dict.read_unaligned_u64(q);
                            let xor_data = p_data ^ q_data;
                            if xor_data == 0 {
                                p += 8;
                                q += 8;
                            } else {
                                let trailing = xor_data.trailing_zeros();
                                return p as u32 - cur_pos as u32 + (trailing >> 3);
                            }
                        }

                        if cur_match_dist == 0 {
                            0
                        } else {
                            MAX_MATCH_LEN as u32
                        }
                    })();

                    if cur_match_len < MIN_MATCH_LEN.into()
                        || (cur_match_len == MIN_MATCH_LEN.into() && cur_match_dist >= 8 * 1024)
                    {
                        let lit = first_trigram as u8;
                        cur_match_len = 1;
                        d.lz.write_code(lit);
                        *d.lz.get_flag() >>= 1;
                        d.huff.count[0][lit as usize] += 1;
                    } else {
                        // Limit the match to the length of the lookahead so we don't create a match
                        // that ends after the end of the input data.
                        cur_match_len = cmp::min(cur_match_len, lookahead_size as u32);
                        debug_assert!(cur_match_len >= MIN_MATCH_LEN.into());
                        debug_assert!(cur_match_dist >= 1);
                        debug_assert!(cur_match_dist as usize <= LZ_DICT_SIZE);
                        cur_match_dist -= 1;

                        d.lz.write_code((cur_match_len - u32::from(MIN_MATCH_LEN)) as u8);
                        d.lz.write_code(cur_match_dist as u8);
                        d.lz.write_code((cur_match_dist >> 8) as u8);

                        *d.lz.get_flag() >>= 1;
                        *d.lz.get_flag() |= 0x80;
                        if cur_match_dist < 512 {
                            d.huff.count[1][SMALL_DIST_SYM[cur_match_dist as usize] as usize] += 1;
                        } else {
                            d.huff.count[1]
                                [LARGE_DIST_SYM[(cur_match_dist >> 8) as usize] as usize] += 1;
                        }

                        d.huff.count[0][LEN_SYM[(cur_match_len - u32::from(MIN_MATCH_LEN)) as usize]
                            as usize] += 1;
                    }
                } else {
                    d.lz.write_code(first_trigram as u8);
                    *d.lz.get_flag() >>= 1;
                    d.huff.count[0][first_trigram as u8 as usize] += 1;
                }

                d.lz.consume_flag();
                d.lz.total_bytes += cur_match_len;
                lookahead_pos += cur_match_len as usize;
                d.dict.size = cmp::min(d.dict.size + cur_match_len as usize, LZ_DICT_SIZE);
                cur_pos = (cur_pos + cur_match_len as usize) & LZ_DICT_SIZE_MASK;
                lookahead_size -= cur_match_len as usize;

                if d.lz.code_position > LZ_CODE_BUF_SIZE - 8 {
                    // These values are used in flush_block, so we need to write them back here.
                    d.dict.lookahead_size = lookahead_size;
                    d.dict.lookahead_pos = lookahead_pos;

                    let n = match flush_block(d, callback, TDEFLFlush::None) {
                        Err(_) => {
                            d.params.src_pos = src_pos;
                            d.params.prev_return_status = TDEFLStatus::PutBufFailed;
                            return false;
                        }
                        Ok(status) => status,
                    };
                    if n != 0 {
                        d.params.src_pos = src_pos;
                        return n > 0;
                    }
                    debug_assert!(d.lz.code_position < LZ_CODE_BUF_SIZE - 2);

                    lookahead_size = d.dict.lookahead_size;
                    lookahead_pos = d.dict.lookahead_pos;
                }
            }
        }

        while lookahead_size != 0 {
            let lit = d.dict.b.dict[cur_pos];
            d.lz.total_bytes += 1;
            d.lz.write_code(lit);
            *d.lz.get_flag() >>= 1;
            d.lz.consume_flag();

            d.huff.count[0][lit as usize] += 1;
            lookahead_pos += 1;
            d.dict.size = cmp::min(d.dict.size + 1, LZ_DICT_SIZE);
            cur_pos = (cur_pos + 1) & LZ_DICT_SIZE_MASK;
            lookahead_size -= 1;

            if d.lz.code_position > LZ_CODE_BUF_SIZE - 8 {
                // These values are used in flush_block, so we need to write them back here.
                d.dict.lookahead_size = lookahead_size;
                d.dict.lookahead_pos = lookahead_pos;

                let n = match flush_block(d, callback, TDEFLFlush::None) {
                    Err(_) => {
                        d.params.prev_return_status = TDEFLStatus::PutBufFailed;
                        d.params.src_pos = src_pos;
                        return false;
                    }
                    Ok(status) => status,
                };
                if n != 0 {
                    d.params.src_pos = src_pos;
                    return n > 0;
                }

                lookahead_size = d.dict.lookahead_size;
                lookahead_pos = d.dict.lookahead_pos;
            }
        }
    }

    d.params.src_pos = src_pos;
    d.dict.lookahead_size = lookahead_size;
    d.dict.lookahead_pos = lookahead_pos;
    true
}

fn flush_output_buffer(c: &mut CallbackOxide, p: &mut ParamsOxide) -> (TDEFLStatus, usize, usize) {
    let mut res = (TDEFLStatus::Okay, p.src_pos, 0);
    if let CallbackOut::Buf(ref mut cb) = c.out {
        let n = cmp::min(cb.out_buf.len() - p.out_buf_ofs, p.flush_remaining as usize);
        if n != 0 {
            cb.out_buf[p.out_buf_ofs..p.out_buf_ofs + n]
                .copy_from_slice(&p.local_buf.b[p.flush_ofs as usize..p.flush_ofs as usize + n]);
        }
        p.flush_ofs += n as u32;
        p.flush_remaining -= n as u32;
        p.out_buf_ofs += n;
        res.2 = p.out_buf_ofs;
    }

    if p.finished && p.flush_remaining == 0 {
        res.0 = TDEFLStatus::Done
    }
    res
}

/// Main compression function. Tries to compress as much as possible from `in_buf` and
/// puts compressed output into `out_buf`.
///
/// The value of `flush` determines if the compressor should attempt to flush all output
/// and alternatively try to finish the stream.
///
/// Use [`TDEFLFlush::Finish`] on the final call to signal that the stream is finishing.
///
/// Note that this function does not keep track of whether a flush marker has been output, so
/// if called using [`TDEFLFlush::Sync`], the caller needs to ensure there is enough space in the
/// output buffer if they want to avoid repeated flush markers.
/// See #105 for details.
///
/// # Returns
/// Returns a tuple containing the current status of the compressor, the current position
/// in the input buffer and the current position in the output buffer.
pub fn compress(
    d: &mut CompressorOxide,
    in_buf: &[u8],
    out_buf: &mut [u8],
    flush: TDEFLFlush,
) -> (TDEFLStatus, usize, usize) {
    compress_inner(
        d,
        &mut CallbackOxide::new_callback_buf(in_buf, out_buf),
        flush,
    )
}

/// Main compression function. Callbacks output.
///
/// # Returns
/// Returns a tuple containing the current status of the compressor, the current position
/// in the input buffer.
///
/// The caller is responsible for ensuring the `CallbackFunc` struct will not cause undefined
/// behaviour.
pub fn compress_to_output(
    d: &mut CompressorOxide,
    in_buf: &[u8],
    flush: TDEFLFlush,
    mut callback_func: impl FnMut(&[u8]) -> bool,
) -> (TDEFLStatus, usize) {
    let res = compress_inner(
        d,
        &mut CallbackOxide::new_callback_func(
            in_buf,
            CallbackFunc {
                put_buf_func: &mut callback_func,
            },
        ),
        flush,
    );

    (res.0, res.1)
}

fn compress_inner(
    d: &mut CompressorOxide,
    callback: &mut CallbackOxide,
    flush: TDEFLFlush,
) -> (TDEFLStatus, usize, usize) {
    d.params.out_buf_ofs = 0;
    d.params.src_pos = 0;

    let prev_ok = d.params.prev_return_status == TDEFLStatus::Okay;
    let flush_finish_once = d.params.flush != TDEFLFlush::Finish || flush == TDEFLFlush::Finish;

    d.params.flush = flush;
    if !prev_ok || !flush_finish_once {
        d.params.prev_return_status = TDEFLStatus::BadParam;
        return (d.params.prev_return_status, 0, 0);
    }

    if d.params.flush_remaining != 0 || d.params.finished {
        let res = flush_output_buffer(callback, &mut d.params);
        d.params.prev_return_status = res.0;
        return res;
    }

    let one_probe = d.params.flags & MAX_PROBES_MASK as u32 == 1;
    let greedy = d.params.flags & TDEFL_GREEDY_PARSING_FLAG != 0;
    let filter_or_rle_or_raw = d.params.flags
        & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)
        != 0;

    let compress_success = if one_probe && greedy && !filter_or_rle_or_raw {
        compress_fast(d, callback)
    } else {
        compress_normal(d, callback)
    };

    if !compress_success {
        return (
            d.params.prev_return_status,
            d.params.src_pos,
            d.params.out_buf_ofs,
        );
    }

    if let Some(in_buf) = callback.in_buf {
        if d.params.flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32) != 0 {
            d.params.adler32 = update_adler32(d.params.adler32, &in_buf[..d.params.src_pos]);
        }
    }

    let flush_none = d.params.flush == TDEFLFlush::None;
    let in_left = callback.in_buf.map_or(0, |buf| buf.len()) - d.params.src_pos;
    let remaining = in_left != 0 || d.params.flush_remaining != 0;
    if !flush_none && d.dict.lookahead_size == 0 && !remaining {
        let flush = d.params.flush;
        match flush_block(d, callback, flush) {
            Err(_) => {
                d.params.prev_return_status = TDEFLStatus::PutBufFailed;
                return (
                    d.params.prev_return_status,
                    d.params.src_pos,
                    d.params.out_buf_ofs,
                );
            }
            Ok(x) if x < 0 => {
                return (
                    d.params.prev_return_status,
                    d.params.src_pos,
                    d.params.out_buf_ofs,
                )
            }
            _ => {
                d.params.finished = d.params.flush == TDEFLFlush::Finish;
                if d.params.flush == TDEFLFlush::Full {
                    d.dict.b.hash.fill(0);
                    d.dict.b.next.fill(0);
                    d.dict.size = 0;
                }
            }
        }
    }

    let res = flush_output_buffer(callback, &mut d.params);
    d.params.prev_return_status = res.0;

    res
}

/// Create a set of compression flags using parameters used by zlib and other compressors.
/// Mainly intended for use with transition from c libraries as it deals with raw integers.
///
/// # Parameters
/// `level` determines compression level. Clamped to maximum of 10. Negative values result in
/// `CompressionLevel::DefaultLevel`.
/// `window_bits`: Above 0, wraps the stream in a zlib wrapper, 0 or negative for a raw deflate
/// stream.
/// `strategy`: Sets the strategy if this conforms to any of the values in `CompressionStrategy`.
///
/// # Notes
/// This function may be removed or moved to the `miniz_oxide_c_api` in the future.
pub fn create_comp_flags_from_zip_params(level: i32, window_bits: i32, strategy: i32) -> u32 {
    let num_probes = (if level >= 0 {
        cmp::min(10, level)
    } else {
        CompressionLevel::DefaultLevel as i32
    }) as usize;
    let greedy = if level <= 3 {
        TDEFL_GREEDY_PARSING_FLAG
    } else {
        0
    };
    let mut comp_flags = NUM_PROBES[num_probes] | greedy;

    if window_bits > 0 {
        comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
    }

    if level == 0 {
        comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
    } else if strategy == CompressionStrategy::Filtered as i32 {
        comp_flags |= TDEFL_FILTER_MATCHES;
    } else if strategy == CompressionStrategy::HuffmanOnly as i32 {
        comp_flags &= !MAX_PROBES_MASK as u32;
    } else if strategy == CompressionStrategy::Fixed as i32 {
        comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
    } else if strategy == CompressionStrategy::RLE as i32 {
        comp_flags |= TDEFL_RLE_MATCHES;
    }

    comp_flags
}

#[cfg(test)]
mod test {
    use super::{
        compress_to_output, create_comp_flags_from_zip_params, read_u16_le, write_u16_le,
        CompressionStrategy, CompressorOxide, TDEFLFlush, TDEFLStatus, DEFAULT_FLAGS,
        MZ_DEFAULT_WINDOW_BITS,
    };
    use crate::inflate::decompress_to_vec;
    use alloc::vec;

    #[test]
    fn u16_to_slice() {
        let mut slice = [0, 0];
        write_u16_le(2000, &mut slice, 0);
        assert_eq!(slice, [208, 7]);
    }

    #[test]
    fn u16_from_slice() {
        let slice = [208, 7];
        assert_eq!(read_u16_le(&slice, 0), 2000);
    }

    #[test]
    fn compress_output() {
        assert_eq!(
            DEFAULT_FLAGS,
            create_comp_flags_from_zip_params(
                4,
                MZ_DEFAULT_WINDOW_BITS,
                CompressionStrategy::Default as i32
            )
        );

        let slice = [
            1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3,
        ];
        let mut encoded = vec![];
        let flags = create_comp_flags_from_zip_params(6, 0, 0);
        let mut d = CompressorOxide::new(flags);
        let (status, in_consumed) =
            compress_to_output(&mut d, &slice, TDEFLFlush::Finish, |out: &[u8]| {
                encoded.extend_from_slice(out);
                true
            });

        assert_eq!(status, TDEFLStatus::Done);
        assert_eq!(in_consumed, slice.len());

        let decoded = decompress_to_vec(&encoded[..]).unwrap();
        assert_eq!(&decoded[..], &slice[..]);
    }

    #[test]
    /// Check fast compress mode
    fn compress_fast() {
        let slice = [
            1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3,
        ];
        let mut encoded = vec![];
        let flags = create_comp_flags_from_zip_params(1, 0, 0);
        let mut d = CompressorOxide::new(flags);
        let (status, in_consumed) =
            compress_to_output(&mut d, &slice, TDEFLFlush::Finish, |out: &[u8]| {
                encoded.extend_from_slice(out);
                true
            });

        assert_eq!(status, TDEFLStatus::Done);
        assert_eq!(in_consumed, slice.len());

        // Needs to be altered if algorithm improves.
        assert_eq!(
            &encoded[..],
            [99, 100, 98, 102, 1, 98, 48, 98, 3, 147, 204, 76, 204, 140, 76, 204, 0]
        );

        let decoded = decompress_to_vec(&encoded[..]).unwrap();
        assert_eq!(&decoded[..], &slice[..]);
    }

    #[test]
    fn zlib_window_bits() {
        use crate::inflate::stream::{inflate, InflateState};
        use crate::DataFormat;
        use alloc::boxed::Box;
        let slice = [
            1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 35, 22, 22, 2,
            6, 2, 6,
        ];
        let mut encoded = vec![];
        let flags = create_comp_flags_from_zip_params(2, 1, CompressionStrategy::RLE.into());
        let mut d = CompressorOxide::new(flags);
        let (status, in_consumed) =
            compress_to_output(&mut d, &slice, TDEFLFlush::Finish, |out: &[u8]| {
                encoded.extend_from_slice(out);
                true
            });

        assert_eq!(status, TDEFLStatus::Done);
        assert_eq!(in_consumed, slice.len());

        let mut output = vec![0; slice.len()];

        let mut decompressor = Box::new(InflateState::new(DataFormat::Zlib));

        let mut out_slice = output.as_mut_slice();
        // Feed 1 byte at a time and no back buffer to test that RLE encoding has been used.
        for i in 0..encoded.len() {
            let result = inflate(
                &mut decompressor,
                &encoded[i..i + 1],
                out_slice,
                crate::MZFlush::None,
            );
            out_slice = &mut out_slice[result.bytes_written..];
        }
        let cmf = decompressor.decompressor().zlib_header().0;
        assert_eq!(cmf, 8);
        assert_eq!(output, slice)
    }
}