mod huffman;
mod wavelet;
use crate::prelude::*;
use crate::io::Data;
use crate::meta::attribute::*;
use crate::compression::{ByteVec, Bytes, mod_p};
use crate::error::{usize_to_i32, usize_to_u16};
use std::convert::TryFrom;
const U16_RANGE: usize = (1_i32 << 16_i32) as usize;
const BITMAP_SIZE: usize = (U16_RANGE as i32 >> 3_i32) as usize;
#[derive(Debug)]
struct ChannelData {
tmp_start_index: usize,
tmp_end_index: usize,
resolution: Vec2<usize>,
y_sampling: usize,
samples_per_pixel: usize,
}
pub fn decompress(
channels: &ChannelList,
compressed: ByteVec,
rectangle: IntegerBounds,
expected_byte_size: usize, pedantic: bool
) -> Result<ByteVec>
{
let expected_u16_count = expected_byte_size / 2;
debug_assert_eq!(expected_byte_size, rectangle.size.area() * channels.bytes_per_pixel);
debug_assert!(!channels.list.is_empty());
if compressed.is_empty() {
return Ok(Vec::new());
}
debug_assert_ne!(expected_u16_count, 0);
let mut bitmap = vec![0_u8; BITMAP_SIZE]; let mut remaining_input = compressed.as_slice();
let min_non_zero = u16::read(&mut remaining_input)? as usize;
let max_non_zero = u16::read(&mut remaining_input)? as usize;
if max_non_zero >= BITMAP_SIZE || min_non_zero >= BITMAP_SIZE {
return Err(Error::invalid("compression data"));
}
if min_non_zero <= max_non_zero {
u8::read_slice(&mut remaining_input, &mut bitmap[min_non_zero ..= max_non_zero])?;
}
let (lookup_table, max_value) = reverse_lookup_table_from_bitmap(&bitmap);
{
let length = i32::read(&mut remaining_input)?;
if pedantic && length as i64 != remaining_input.len() as i64 {
return Err(Error::invalid("compression data"));
}
}
let mut tmp_u16_buffer = huffman::decompress(remaining_input, expected_u16_count)?;
let mut channel_data: SmallVec<[ChannelData; 6]> = {
let mut tmp_read_index = 0;
let channel_data = channels.list.iter().map(|channel| {
let channel_data = ChannelData {
tmp_start_index: tmp_read_index,
tmp_end_index: tmp_read_index,
y_sampling: channel.sampling.y(),
resolution: channel.subsampled_resolution(rectangle.size),
samples_per_pixel: channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample()
};
tmp_read_index += channel_data.resolution.area() * channel_data.samples_per_pixel;
channel_data
}).collect();
debug_assert_eq!(tmp_read_index, expected_u16_count);
channel_data
};
for channel in &channel_data {
let u16_count = channel.resolution.area() * channel.samples_per_pixel;
let u16s = &mut tmp_u16_buffer[channel.tmp_start_index .. channel.tmp_start_index + u16_count];
for offset in 0..channel.samples_per_pixel { wavelet::decode(
&mut u16s[offset..],
channel.resolution,
Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel),
max_value
)?;
}
}
apply_lookup_table(&mut tmp_u16_buffer, &lookup_table);
let mut out = Vec::with_capacity(expected_byte_size);
for y in rectangle.position.y() .. rectangle.end().y() {
for channel in &mut channel_data {
if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
continue;
}
let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel;
let next_tmp_end_index = channel.tmp_end_index + u16s_per_line;
let values = &tmp_u16_buffer[channel.tmp_end_index .. next_tmp_end_index];
channel.tmp_end_index = next_tmp_end_index;
u16::write_slice(&mut out, values).expect("write to in-memory failed");
}
}
for (previous, current) in channel_data.iter().zip(channel_data.iter().skip(1)) {
debug_assert_eq!(previous.tmp_end_index, current.tmp_start_index);
}
debug_assert_eq!(channel_data.last().unwrap().tmp_end_index, tmp_u16_buffer.len());
debug_assert_eq!(out.len(), expected_byte_size);
Ok(super::convert_little_endian_to_current(out, channels, rectangle))
}
pub fn compress(
channels: &ChannelList,
uncompressed: ByteVec,
rectangle: IntegerBounds
) -> Result<ByteVec>
{
if uncompressed.is_empty() {
return Ok(Vec::new());
}
let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle);
let uncompressed = uncompressed.as_slice();let mut tmp = vec![0_u16; uncompressed.len() / 2 ];
let mut channel_data: SmallVec<[ChannelData; 6]> = {
let mut tmp_end_index = 0;
let vec = channels.list.iter().map(|channel| {
let number_samples = channel.subsampled_resolution(rectangle.size);
let byte_size = channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample();
let byte_count = byte_size * number_samples.area();
let channel = ChannelData {
tmp_end_index,
tmp_start_index: tmp_end_index,
y_sampling: channel.sampling.y(),
resolution: number_samples,
samples_per_pixel: byte_size,
};
tmp_end_index += byte_count;
channel
}).collect();
debug_assert_eq!(tmp_end_index, tmp.len());
vec
};
let mut remaining_uncompressed_bytes = uncompressed;
for y in rectangle.position.y() .. rectangle.end().y() {
for channel in &mut channel_data {
if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; }
let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel;
let next_tmp_end_index = channel.tmp_end_index + u16s_per_line;
let target = &mut tmp[channel.tmp_end_index .. next_tmp_end_index];
channel.tmp_end_index = next_tmp_end_index;
u16::read_slice(&mut remaining_uncompressed_bytes, target).expect("in-memory read failed");
}
}
let (min_non_zero, max_non_zero, bitmap) = bitmap_from_data(&tmp);
let (max_value, table) = forward_lookup_table_from_bitmap(&bitmap);
apply_lookup_table(&mut tmp, &table);
let mut piz_compressed = Vec::with_capacity(uncompressed.len() / 2);
u16::try_from(min_non_zero)?.write(&mut piz_compressed)?;
u16::try_from(max_non_zero)?.write(&mut piz_compressed)?;
if min_non_zero <= max_non_zero {
piz_compressed.extend_from_slice(&bitmap[min_non_zero ..= max_non_zero]);
}
for channel in channel_data {
for offset in 0 .. channel.samples_per_pixel {
wavelet::encode(
&mut tmp[channel.tmp_start_index + offset .. channel.tmp_end_index],
channel.resolution,
Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel),
max_value
)?;
}
}
let huffman_compressed: Vec<u8> = huffman::compress(&tmp)?;
u8::write_i32_sized_slice(&mut piz_compressed, &huffman_compressed).expect("in-memory write failed");
Ok(piz_compressed)
}
pub fn bitmap_from_data(data: &[u16]) -> (usize, usize, Vec<u8>) {
let mut bitmap = vec![0_u8; BITMAP_SIZE];
for value in data {
bitmap[*value as usize >> 3] |= 1 << (*value as u8 & 7);
}
bitmap[0] = bitmap[0] & !1; let min_index = bitmap.iter().position(|&value| value != 0);
let max_index = min_index.map(|min| min + bitmap[min..].iter().rposition(|&value| value != 0).expect("[min] not found")
);
(min_index.unwrap_or(0), max_index.unwrap_or(0), bitmap)
}
pub fn forward_lookup_table_from_bitmap(bitmap: &[u8]) -> (u16, Vec<u16>) {
debug_assert_eq!(bitmap.len(), BITMAP_SIZE);
let mut table = vec![0_u16; U16_RANGE];
let mut count = 0_usize;
for (index, entry) in table.iter_mut().enumerate() {
if index == 0 || bitmap[index >> 3] as usize & (1 << (index & 7)) != 0 {
*entry = usize_to_u16(count).unwrap();
count += 1;
}
}
(usize_to_u16(count - 1).unwrap(), table)
}
fn reverse_lookup_table_from_bitmap(bitmap: Bytes<'_>) -> (Vec<u16>, u16) {
let mut table = Vec::with_capacity(U16_RANGE);
for index in 0 .. U16_RANGE { if index == 0 || ((bitmap[index >> 3] as usize & (1 << (index & 7))) != 0) {
table.push(usize_to_u16(index).unwrap());
}
}
debug_assert!(!table.is_empty());
let max_value = usize_to_u16(table.len() - 1).unwrap();
assert!(table.len() <= U16_RANGE);
table.resize(U16_RANGE, 0);
(table, max_value)
}
fn apply_lookup_table(data: &mut [u16], table: &[u16]) {
for data in data {
*data = table[*data as usize];
}
}
#[cfg(test)]
mod test {
use crate::prelude::*;
use crate::compression::ByteVec;
use crate::compression::piz;
use crate::meta::attribute::*;
fn test_roundtrip_noise_with(channels: ChannelList, rectangle: IntegerBounds){
let pixel_bytes: ByteVec = (0 .. 37).map(|_| rand::random()).collect::<Vec<u8>>().into_iter()
.cycle().take(channels.bytes_per_pixel * rectangle.size.area())
.collect();
let compressed = piz::compress(&channels, pixel_bytes.clone(), rectangle).unwrap();
let decompressed = piz::decompress(&channels, compressed, rectangle, pixel_bytes.len(), true).unwrap();
assert_eq!(pixel_bytes, decompressed);
}
#[test]
fn roundtrip_any_sample_type(){
for &sample_type in &[SampleType::F16, SampleType::F32, SampleType::U32] {
let channel = ChannelDescription {
sample_type,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
};
let channels = ChannelList::new(smallvec![ channel.clone(), channel ]);
let rectangle = IntegerBounds {
position: Vec2(-30, 100),
size: Vec2(1080, 720),
};
test_roundtrip_noise_with(channels, rectangle);
}
}
#[test]
fn roundtrip_two_channels(){
let channel = ChannelDescription {
sample_type: SampleType::F16,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
};
let channel2 = ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
};
let channels = ChannelList::new(smallvec![ channel, channel2 ]);
let rectangle = IntegerBounds {
position: Vec2(-3, 1),
size: Vec2(223, 3132),
};
test_roundtrip_noise_with(channels, rectangle);
}
#[test]
fn roundtrip_seven_channels(){
let channels = ChannelList::new(smallvec![
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
ChannelDescription {
sample_type: SampleType::F16,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
ChannelDescription {
sample_type: SampleType::U32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1,1)
},
]);
let rectangle = IntegerBounds {
position: Vec2(-3, 1),
size: Vec2(1323, 132),
};
test_roundtrip_noise_with(channels, rectangle);
}
}