1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
use crate::astronomy::{self, Astronomical, Location, MEAN_SYNODIC_MONTH, MEAN_TROPICAL_YEAR};
use crate::helpers::i64_to_i32;
use crate::iso::{fixed_from_iso, iso_from_fixed};
use crate::rata_die::{Moment, RataDie};
use core::num::NonZeroU8;
#[allow(unused_imports)]
use core_maths::*;
// Don't iterate more than 14 times (which accounts for checking for 13 months)
const MAX_ITERS_FOR_MONTHS_OF_YEAR: u8 = 14;
/// The trait ChineseBased is used by Chinese-based calendars to perform computations shared by such calendar.
/// To do so, calendars should:
///
/// - Implement `fn location` by providing a location at which observations of the moon are recorded, which
/// may change over time (the zone is important, long, lat, and elevation are not relevant for these calculations)
/// - Define `const EPOCH` as a `RataDie` marking the start date of the era of the Calendar for internal use,
/// which may not accurately reflect how years or eras are marked traditionally or seen by end-users
pub trait ChineseBased {
/// Given a fixed date, return the location used for observations of the new moon in order to
/// calculate the beginning of months. For multiple Chinese-based lunar calendars, this has
/// changed over the years, and can cause differences in calendar date.
fn location(fixed: RataDie) -> Location;
/// The RataDie of the beginning of the epoch used for internal computation; this may not
/// reflect traditional methods of year-tracking or eras, since Chinese-based calendars
/// may not track years ordinally in the same way many western calendars do.
const EPOCH: RataDie;
/// The ISO year that corresponds to year 1
const EPOCH_ISO: i32;
/// The name of the calendar for debugging.
const DEBUG_NAME: &'static str;
/// Given an ISO year, return the extended year
fn extended_from_iso(iso_year: i32) -> i32 {
iso_year - Self::EPOCH_ISO + 1
}
/// Given an extended year, return the ISO year
fn iso_from_extended(extended_year: i32) -> i32 {
extended_year - 1 + Self::EPOCH_ISO
}
}
// The equivalent first day in the Chinese calendar (based on inception of the calendar)
const CHINESE_EPOCH: RataDie = RataDie::new(-963099); // Feb. 15, 2637 BCE (-2636)
const CHINESE_EPOCH_ISO: i32 = -2636;
/// The Chinese calendar relies on knowing the current day at the moment of a new moon;
/// however, this can vary depending on location. As such, new moon calculations are based
/// on the time in Beijing. Before 1929, local time was used, represented as UTC+(1397/180 h).
/// In 1929, China adopted a standard time zone based on 120 degrees of longitude, meaning
/// from 1929 onward, all new moon calculations are based on UTC+8h.
///
/// Offsets are not given in hours, but in partial days (1 hour = 1 / 24 day)
const UTC_OFFSET_PRE_1929: f64 = (1397.0 / 180.0) / 24.0;
const UTC_OFFSET_POST_1929: f64 = 8.0 / 24.0;
const CHINESE_LOCATION_PRE_1929: Location =
Location::new_unchecked(39.0, 116.0, 43.5, UTC_OFFSET_PRE_1929);
const CHINESE_LOCATION_POST_1929: Location =
Location::new_unchecked(39.0, 116.0, 43.5, UTC_OFFSET_POST_1929);
// The first day in the Korean Dangi calendar (based on the founding of Gojoseon)
const KOREAN_EPOCH: RataDie = RataDie::new(-852065); // Lunar new year 2333 BCE (-2332 ISO)
const KOREAN_EPOCH_ISO: i32 = -2332; // Lunar new year 2333 BCE (-2332 ISO)
/// The Korean Dangi calendar relies on knowing the current day at the moment of a new moon;
/// however, this can vary depending on location. As such, new moon calculations are based on
/// the time in Seoul. Before 1908, local time was used, represented as UTC+(3809/450 h).
/// This changed multiple times as different standard timezones were adopted in Korea.
/// Currently, UTC+9h is used.
///
/// Offsets are not given in hours, but in partial days (1 hour = 1 / 24 day).
const UTC_OFFSET_ORIGINAL: f64 = (3809.0 / 450.0) / 24.0;
const UTC_OFFSET_1908: f64 = 8.5 / 24.0;
const UTC_OFFSET_1912: f64 = 9.0 / 24.0;
const UTC_OFFSET_1954: f64 = 8.5 / 24.0;
const UTC_OFFSET_1961: f64 = 9.0 / 24.0;
const FIXED_1908: RataDie = RataDie::new(696608); // Apr 1, 1908
const FIXED_1912: RataDie = RataDie::new(697978); // Jan 1, 1912
const FIXED_1954: RataDie = RataDie::new(713398); // Mar 21, 1954
const FIXED_1961: RataDie = RataDie::new(716097); // Aug 10, 1961
const KOREAN_LATITUDE: f64 = 37.0 + (34.0 / 60.0);
const KOREAN_LONGITUDE: f64 = 126.0 + (58.0 / 60.0);
const KOREAN_ELEVATION: f64 = 0.0;
const KOREAN_LOCATION_ORIGINAL: Location = Location::new_unchecked(
KOREAN_LATITUDE,
KOREAN_LONGITUDE,
KOREAN_ELEVATION,
UTC_OFFSET_ORIGINAL,
);
const KOREAN_LOCATION_1908: Location = Location::new_unchecked(
KOREAN_LATITUDE,
KOREAN_LONGITUDE,
KOREAN_ELEVATION,
UTC_OFFSET_1908,
);
const KOREAN_LOCATION_1912: Location = Location::new_unchecked(
KOREAN_LATITUDE,
KOREAN_LONGITUDE,
KOREAN_ELEVATION,
UTC_OFFSET_1912,
);
const KOREAN_LOCATION_1954: Location = Location::new_unchecked(
KOREAN_LATITUDE,
KOREAN_LONGITUDE,
KOREAN_ELEVATION,
UTC_OFFSET_1954,
);
const KOREAN_LOCATION_1961: Location = Location::new_unchecked(
KOREAN_LATITUDE,
KOREAN_LONGITUDE,
KOREAN_ELEVATION,
UTC_OFFSET_1961,
);
/// A type implementing [`ChineseBased`] for the Chinese calendar
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Default, Hash)]
#[allow(clippy::exhaustive_structs)] // newtype
pub struct Chinese;
/// A type implementing [`ChineseBased`] for the Dangi (Korean) calendar
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Default, Hash)]
#[allow(clippy::exhaustive_structs)] // newtype
pub struct Dangi;
impl ChineseBased for Chinese {
fn location(fixed: RataDie) -> Location {
let year = crate::iso::iso_year_from_fixed(fixed);
if year < 1929 {
CHINESE_LOCATION_PRE_1929
} else {
CHINESE_LOCATION_POST_1929
}
}
const EPOCH: RataDie = CHINESE_EPOCH;
const EPOCH_ISO: i32 = CHINESE_EPOCH_ISO;
const DEBUG_NAME: &'static str = "chinese";
}
impl ChineseBased for Dangi {
fn location(fixed: RataDie) -> Location {
if fixed < FIXED_1908 {
KOREAN_LOCATION_ORIGINAL
} else if fixed < FIXED_1912 {
KOREAN_LOCATION_1908
} else if fixed < FIXED_1954 {
KOREAN_LOCATION_1912
} else if fixed < FIXED_1961 {
KOREAN_LOCATION_1954
} else {
KOREAN_LOCATION_1961
}
}
const EPOCH: RataDie = KOREAN_EPOCH;
const EPOCH_ISO: i32 = KOREAN_EPOCH_ISO;
const DEBUG_NAME: &'static str = "dangi";
}
/// Marks the bounds of a lunar year
#[derive(Debug, Copy, Clone)]
#[allow(clippy::exhaustive_structs)] // we're comfortable making frequent breaking changes to this crate
pub struct YearBounds {
/// The date marking the start of the current lunar year
pub new_year: RataDie,
/// The date marking the start of the next lunar year
pub next_new_year: RataDie,
}
impl YearBounds {
/// Compute the YearBounds for the lunar year (年) containing `date`,
/// as well as the corresponding solar year (歲). Note that since the two
/// years overlap significantly but not entirely, the solstice bounds for the solar
/// year *may* not include `date`.
#[inline]
pub fn compute<C: ChineseBased>(date: RataDie) -> Self {
let prev_solstice = winter_solstice_on_or_before::<C>(date);
let (new_year, next_solstice) = new_year_on_or_before_fixed_date::<C>(date, prev_solstice);
// Using 400 here since new years can be up to 390 days apart, and we add some padding
let next_new_year = new_year_on_or_before_fixed_date::<C>(new_year + 400, next_solstice).0;
Self {
new_year,
next_new_year,
}
}
/// The number of days in this year
pub fn count_days(self) -> u16 {
let result = self.next_new_year - self.new_year;
debug_assert!(
((u16::MIN as i64)..=(u16::MAX as i64)).contains(&result),
"Days in year should be in range of u16."
);
result as u16
}
/// Whether or not this is a leap year
pub fn is_leap(self) -> bool {
let difference = self.next_new_year - self.new_year;
difference > 365
}
}
/// Get the current major solar term of a fixed date, output as an integer from 1..=12.
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5273-L5281
pub(crate) fn major_solar_term_from_fixed<C: ChineseBased>(date: RataDie) -> u32 {
let moment: Moment = date.as_moment();
let location = C::location(date);
let universal: Moment = Location::universal_from_standard(moment, location);
let solar_longitude =
i64_to_i32(Astronomical::solar_longitude(Astronomical::julian_centuries(universal)) as i64);
debug_assert!(
solar_longitude.is_ok(),
"Solar longitude should be in range of i32"
);
let s = solar_longitude.unwrap_or_else(|e| e.saturate());
let result_signed = (2 + s.div_euclid(30) - 1).rem_euclid(12) + 1;
debug_assert!(result_signed >= 0);
result_signed as u32
}
/// The fixed date in standard time at the observation location of the next new moon on or after a given Moment.
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5329-L5338
pub(crate) fn new_moon_on_or_after<C: ChineseBased>(moment: Moment) -> RataDie {
let new_moon_moment = Astronomical::new_moon_at_or_after(midnight::<C>(moment));
let location = C::location(new_moon_moment.as_rata_die());
Location::standard_from_universal(new_moon_moment, location).as_rata_die()
}
/// The fixed date in standard time at the observation location of the previous new moon before a given Moment.
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5318-L5327
pub(crate) fn new_moon_before<C: ChineseBased>(moment: Moment) -> RataDie {
let new_moon_moment = Astronomical::new_moon_before(midnight::<C>(moment));
let location = C::location(new_moon_moment.as_rata_die());
Location::standard_from_universal(new_moon_moment, location).as_rata_die()
}
/// Universal time of midnight at start of a Moment's day at the observation location
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5353-L5357
pub(crate) fn midnight<C: ChineseBased>(moment: Moment) -> Moment {
Location::universal_from_standard(moment, C::location(moment.as_rata_die()))
}
/// Determines the fixed date of the lunar new year given the start of its corresponding solar year (歲), which is
/// also the winter solstice
///
/// Calls to `no_major_solar_term` have been inlined for increased efficiency.
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5370-L5394
pub(crate) fn new_year_in_sui<C: ChineseBased>(prior_solstice: RataDie) -> (RataDie, RataDie) {
// s1 is prior_solstice
// Using 370 here since solstices are ~365 days apart
// Both solstices should fall on December 20, 21, 22, or 23. The calendrical calculations
// drift away from this for large positive and negative years, so we artifically bind them
// to this range in order for other code invariants to be upheld.
let prior_solstice = bind_winter_solstice::<C>(prior_solstice);
let following_solstice =
bind_winter_solstice::<C>(winter_solstice_on_or_before::<C>(prior_solstice + 370)); // s2
let month_after_eleventh = new_moon_on_or_after::<C>((prior_solstice + 1).as_moment()); // m12
debug_assert!(month_after_eleventh - prior_solstice >= 0);
let month_after_twelfth = new_moon_on_or_after::<C>((month_after_eleventh + 1).as_moment()); // m13
let month_after_thirteenth = new_moon_on_or_after::<C>((month_after_twelfth + 1).as_moment());
debug_assert!(month_after_twelfth - month_after_eleventh >= 29);
let next_eleventh_month = new_moon_before::<C>((following_solstice + 1).as_moment()); // next-m11
let lhs_argument =
((next_eleventh_month - month_after_eleventh) as f64 / MEAN_SYNODIC_MONTH).round() as i64;
let solar_term_a = major_solar_term_from_fixed::<C>(month_after_eleventh);
let solar_term_b = major_solar_term_from_fixed::<C>(month_after_twelfth);
let solar_term_c = major_solar_term_from_fixed::<C>(month_after_thirteenth);
if lhs_argument == 12 && (solar_term_a == solar_term_b || solar_term_b == solar_term_c) {
(month_after_thirteenth, following_solstice)
} else {
(month_after_twelfth, following_solstice)
}
}
/// This function forces the RataDie to be on December 20, 21, 22, or 23. It was
/// created for practical considerations and is not in the text.
///
/// See: <https://github.com/unicode-org/icu4x/pull/4904>
fn bind_winter_solstice<C: ChineseBased>(solstice: RataDie) -> RataDie {
let (iso_year, iso_month, iso_day) = match iso_from_fixed(solstice) {
Ok(ymd) => ymd,
Err(_) => {
debug_assert!(false, "Solstice REALLY out of bounds: {solstice:?}");
return solstice;
}
};
let resolved_solstice = if iso_month < 12 || iso_day < 20 {
fixed_from_iso(iso_year, 12, 20)
} else if iso_day > 23 {
fixed_from_iso(iso_year, 12, 23)
} else {
solstice
};
if resolved_solstice != solstice {
if !(0..=4000).contains(&iso_year) {
#[cfg(feature = "logging")]
log::trace!("({}) Solstice out of bounds: {solstice:?}", C::DEBUG_NAME);
} else {
debug_assert!(
false,
"({}) Solstice out of bounds: {solstice:?}",
C::DEBUG_NAME
);
}
}
resolved_solstice
}
/// Get the fixed date of the nearest winter solstice, in the Chinese time zone,
/// on or before a given fixed date.
///
/// This is valid for several thousand years, but it drifts for large positive
/// and negative years. See [`bind_winter_solstice`].
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5359-L5368
pub(crate) fn winter_solstice_on_or_before<C: ChineseBased>(date: RataDie) -> RataDie {
let approx = Astronomical::estimate_prior_solar_longitude(
astronomy::WINTER,
midnight::<C>((date + 1).as_moment()),
);
let mut iters = 0;
let mut day = Moment::new((approx.inner() - 1.0).floor());
while iters < MAX_ITERS_FOR_MONTHS_OF_YEAR
&& astronomy::WINTER
>= Astronomical::solar_longitude(Astronomical::julian_centuries(midnight::<C>(
day + 1.0,
)))
{
iters += 1;
day += 1.0;
}
debug_assert!(
iters < MAX_ITERS_FOR_MONTHS_OF_YEAR,
"Number of iterations was higher than expected"
);
day.as_rata_die()
}
/// Get the fixed date of the nearest Lunar New Year on or before a given fixed date.
/// This function also returns the solstice following a given date for optimization (see #3743).
///
/// To call this function you must precompute the value of the prior solstice, which
/// is the result of winter_solstice_on_or_before
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5396-L5405
pub(crate) fn new_year_on_or_before_fixed_date<C: ChineseBased>(
date: RataDie,
prior_solstice: RataDie,
) -> (RataDie, RataDie) {
let new_year = new_year_in_sui::<C>(prior_solstice);
if date >= new_year.0 {
new_year
} else {
// This happens when we're at the end of the current lunar year
// and the solstice has already happened. Thus the relevant solstice
// for the current lunar year is the previous one, which we calculate by offsetting
// back by a year.
let date_in_last_sui = date - 180; // This date is in the current lunar year, but the last solar year
let prior_solstice = winter_solstice_on_or_before::<C>(date_in_last_sui);
new_year_in_sui::<C>(prior_solstice)
}
}
/// Get a RataDie in the middle of a year; this is not necessarily meant for direct use in
/// calculations; rather, it is useful for getting a RataDie guaranteed to be in a given year
/// as input for other calculations like calculating the leap month in a year.
///
/// Based on functions from _Calendrical Calculations_ by Reingold & Dershowitz
/// Lisp reference code: <https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5469-L5475>
pub fn fixed_mid_year_from_year<C: ChineseBased>(elapsed_years: i32) -> RataDie {
let cycle = (elapsed_years - 1).div_euclid(60) + 1;
let year = (elapsed_years - 1).rem_euclid(60) + 1;
C::EPOCH + ((((cycle - 1) * 60 + year - 1) as f64 + 0.5) * MEAN_TROPICAL_YEAR) as i64
}
/// Whether this year is a leap year
pub fn is_leap_year<C: ChineseBased>(year: i32) -> bool {
let mid_year = fixed_mid_year_from_year::<C>(year);
YearBounds::compute::<C>(mid_year).is_leap()
}
/// The last month and day in this year
pub fn last_month_day_in_year<C: ChineseBased>(year: i32) -> (u8, u8) {
let mid_year = fixed_mid_year_from_year::<C>(year);
let year_bounds = YearBounds::compute::<C>(mid_year);
let last_day = year_bounds.next_new_year - 1;
let month = if year_bounds.is_leap() { 13 } else { 12 };
let day = last_day - new_moon_before::<C>(last_day.as_moment()) + 1;
(month, day as u8)
}
/// Calculated the numbers of days in the given year
pub fn days_in_provided_year<C: ChineseBased>(year: i32) -> u16 {
let mid_year = fixed_mid_year_from_year::<C>(year);
let bounds = YearBounds::compute::<C>(mid_year);
bounds.count_days()
}
/// chinese_based_date_from_fixed returns extra things for use in caching
#[derive(Debug)]
#[non_exhaustive]
pub struct ChineseFromFixedResult {
/// The chinese year
pub year: i32,
/// The chinese month
pub month: u8,
/// The chinese day
pub day: u8,
/// The bounds of the current lunar year
pub year_bounds: YearBounds,
/// The index of the leap month, if any
pub leap_month: Option<NonZeroU8>,
}
/// Get a chinese based date from a fixed date, with the related ISO year
///
/// Months are calculated by iterating through the dates of new moons until finding the last month which
/// does not exceed the given fixed date. The day of month is calculated by subtracting the fixed date
/// from the fixed date of the beginning of the month.
///
/// The calculation for `elapsed_years` and `month` in this function are based on code from _Calendrical Calculations_ by Reingold & Dershowitz.
/// Lisp reference code: <https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5414-L5459>
pub fn chinese_based_date_from_fixed<C: ChineseBased>(date: RataDie) -> ChineseFromFixedResult {
let year_bounds = YearBounds::compute::<C>(date);
let first_day_of_year = year_bounds.new_year;
let year_float =
(1.5 - 1.0 / 12.0 + ((first_day_of_year - C::EPOCH) as f64) / MEAN_TROPICAL_YEAR).floor();
let year_int = i64_to_i32(year_float as i64);
debug_assert!(year_int.is_ok(), "Year should be in range of i32");
let year = year_int.unwrap_or_else(|e| e.saturate());
let new_moon = new_moon_before::<C>((date + 1).as_moment());
let month_i64 = ((new_moon - first_day_of_year) as f64 / MEAN_SYNODIC_MONTH).round() as i64 + 1;
debug_assert!(
((u8::MIN as i64)..=(u8::MAX as i64)).contains(&month_i64),
"Month should be in range of u8! Value {month_i64} failed for RD {date:?}"
);
let month = month_i64 as u8;
let day_i64 = date - new_moon + 1;
debug_assert!(
((u8::MIN as i64)..=(u8::MAX as i64)).contains(&month_i64),
"Day should be in range of u8! Value {month_i64} failed for RD {date:?}"
);
let day = day_i64 as u8;
let leap_month = if year_bounds.is_leap() {
// This doesn't need to be checked for `None`, since `get_leap_month_from_new_year`
// will always return a number greater than or equal to 1, and less than 14.
NonZeroU8::new(get_leap_month_from_new_year::<C>(first_day_of_year))
} else {
None
};
ChineseFromFixedResult {
year,
month,
day,
year_bounds,
leap_month,
}
}
/// Given that `new_year` is the first day of a leap year, find which month in the year is a leap month.
/// Since the first month in which there are no major solar terms is a leap month, this function
/// cycles through months until it finds the leap month, then returns the number of that month. This
/// function assumes the date passed in is in a leap year and tests to ensure this is the case in debug
/// mode by asserting that no more than thirteen months are analyzed.
///
/// Calls to `no_major_solar_term` have been inlined for increased efficiency.
///
/// Conceptually similar to code from _Calendrical Calculations_ by Reingold & Dershowitz
/// Lisp reference code: <https://github.com/EdReingold/calendar-code2/blob/main/calendar.l#L5443-L5450>
pub fn get_leap_month_from_new_year<C: ChineseBased>(new_year: RataDie) -> u8 {
let mut cur = new_year;
let mut result = 1;
let mut solar_term = major_solar_term_from_fixed::<C>(cur);
loop {
let next = new_moon_on_or_after::<C>((cur + 1).as_moment());
let next_solar_term = major_solar_term_from_fixed::<C>(next);
if result >= MAX_ITERS_FOR_MONTHS_OF_YEAR || solar_term == next_solar_term {
break;
}
cur = next;
solar_term = next_solar_term;
result += 1;
}
debug_assert!(result < MAX_ITERS_FOR_MONTHS_OF_YEAR, "The given year was not a leap year and an unexpected number of iterations occurred searching for a leap month.");
result
}
/// Returns the number of days in the given (year, month). In the Chinese calendar, months start at each
/// new moon, so this function finds the number of days between the new moon at the beginning of the given
/// month and the new moon at the beginning of the next month.
pub fn month_days<C: ChineseBased>(year: i32, month: u8) -> u8 {
let mid_year = fixed_mid_year_from_year::<C>(year);
let prev_solstice = winter_solstice_on_or_before::<C>(mid_year);
let new_year = new_year_on_or_before_fixed_date::<C>(mid_year, prev_solstice).0;
days_in_month::<C>(month, new_year, None).0
}
/// Returns the number of days in the given `month` after the given `new_year`.
/// Also returns the RataDie of the new moon beginning the next month.
pub fn days_in_month<C: ChineseBased>(
month: u8,
new_year: RataDie,
prev_new_moon: Option<RataDie>,
) -> (u8, RataDie) {
let approx = new_year + ((month - 1) as i64 * 29);
let prev_new_moon = if let Some(prev_moon) = prev_new_moon {
prev_moon
} else {
new_moon_before::<C>((approx + 15).as_moment())
};
let next_new_moon = new_moon_on_or_after::<C>((approx + 15).as_moment());
let result = (next_new_moon - prev_new_moon) as u8;
debug_assert!(result == 29 || result == 30);
(result, next_new_moon)
}
/// Given a new year, calculate the number of days in the previous year
pub fn days_in_prev_year<C: ChineseBased>(new_year: RataDie) -> u16 {
let date = new_year - 300;
let prev_solstice = winter_solstice_on_or_before::<C>(date);
let (prev_new_year, _) = new_year_on_or_before_fixed_date::<C>(date, prev_solstice);
u16::try_from(new_year - prev_new_year).unwrap_or(360)
}
/// Returns the length of each month in the year, as well as a leap month index (1-indexed) if any.
/// Month lengths are stored as true for 30-day, false for 29-day.
/// In the case of no leap months, month 13 will have value false.
pub fn month_structure_for_year<C: ChineseBased>(
new_year: RataDie,
next_new_year: RataDie,
) -> ([bool; 13], Option<NonZeroU8>) {
let mut ret = [false; 13];
let mut current_month_start = new_year;
let mut current_month_major_solar_term = major_solar_term_from_fixed::<C>(new_year);
let mut leap_month_index = None;
for i in 0u8..12 {
let next_month_start = new_moon_on_or_after::<C>((current_month_start + 28).as_moment());
let next_month_major_solar_term = major_solar_term_from_fixed::<C>(next_month_start);
if next_month_major_solar_term == current_month_major_solar_term {
leap_month_index = NonZeroU8::new(i + 1);
}
let diff = next_month_start - current_month_start;
debug_assert!(diff == 29 || diff == 30);
#[allow(clippy::indexing_slicing)] // array is of length 13, we iterate till i=11
if diff == 30 {
ret[usize::from(i)] = true;
}
current_month_start = next_month_start;
current_month_major_solar_term = next_month_major_solar_term;
}
if current_month_start == next_new_year {
// not all months without solar terms are leap months; they are only leap months if
// the year can admit them
//
// From Reingold & Dershowitz (p 311):
//
// The leap month of a 13-month winter-solstice-to-winter-solstice period is the first month
// that does not contain a major solar term — that is, the first lunar month that is wholly within a solar month.
//
// As such, if a month without a solar term is found in a non-leap year, we just ingnore it.
leap_month_index = None;
} else {
let diff = next_new_year - current_month_start;
debug_assert!(diff == 29 || diff == 30);
if diff == 30 {
ret[12] = true;
}
}
if current_month_start != next_new_year && leap_month_index.is_none() {
leap_month_index = NonZeroU8::new(13); // The last month is a leap month
debug_assert!(
major_solar_term_from_fixed::<C>(current_month_start) == current_month_major_solar_term,
"A leap month is required here, but it had a major solar term!"
);
}
(ret, leap_month_index)
}
/// Given the new year and a month/day pair, calculate the number of days until the first day of the given month
pub fn days_until_month<C: ChineseBased>(new_year: RataDie, month: u8) -> u16 {
let month_approx = 28_u16.saturating_mul(u16::from(month) - 1);
let new_moon = new_moon_on_or_after::<C>(new_year.as_moment() + (month_approx as f64));
let result = new_moon - new_year;
debug_assert!(((u16::MIN as i64)..=(u16::MAX as i64)).contains(&result), "Result {result} from new moon: {new_moon:?} and new year: {new_year:?} should be in range of u16!");
result as u16
}
#[cfg(test)]
mod test {
use super::*;
use crate::rata_die::Moment;
#[test]
fn test_chinese_new_moon_directionality() {
for i in (-1000..1000).step_by(31) {
let moment = Moment::new(i as f64);
let before = new_moon_before::<Chinese>(moment);
let after = new_moon_on_or_after::<Chinese>(moment);
assert!(before < after, "Chinese new moon directionality failed for Moment: {moment:?}, with:\n\tBefore: {before:?}\n\tAfter: {after:?}");
}
}
#[test]
fn test_chinese_new_year_on_or_before() {
let fixed = crate::iso::fixed_from_iso(2023, 6, 22);
let prev_solstice = winter_solstice_on_or_before::<Chinese>(fixed);
let result_fixed = new_year_on_or_before_fixed_date::<Chinese>(fixed, prev_solstice).0;
let (y, m, d) = crate::iso::iso_from_fixed(result_fixed).unwrap();
assert_eq!(y, 2023);
assert_eq!(m, 1);
assert_eq!(d, 22);
}
fn seollal_on_or_before(fixed: RataDie) -> RataDie {
let prev_solstice = winter_solstice_on_or_before::<Dangi>(fixed);
new_year_on_or_before_fixed_date::<Dangi>(fixed, prev_solstice).0
}
#[test]
fn test_month_structure() {
// Mostly just tests that the assertions aren't hit
for year in 1900..2050 {
let fixed = crate::iso::fixed_from_iso(year, 1, 1);
let chinese_year = chinese_based_date_from_fixed::<Chinese>(fixed);
let (month_lengths, leap) = month_structure_for_year::<Chinese>(
chinese_year.year_bounds.new_year,
chinese_year.year_bounds.next_new_year,
);
for (i, month_is_30) in month_lengths.into_iter().enumerate() {
if leap.is_none() && i == 12 {
// month_days has no defined behavior for month 13 on non-leap-years
continue;
}
let month_len = 29 + i32::from(month_is_30);
let month_days = month_days::<Chinese>(chinese_year.year, i as u8 + 1);
assert_eq!(
month_len,
i32::from(month_days),
"Month length for month {} must be the same",
i + 1
);
}
println!(
"{year} (chinese {}): {month_lengths:?} {leap:?}",
chinese_year.year
);
}
}
#[test]
fn test_seollal() {
#[derive(Debug)]
struct TestCase {
iso_year: i32,
iso_month: u8,
iso_day: u8,
expected_year: i32,
expected_month: u8,
expected_day: u8,
}
let cases = [
TestCase {
iso_year: 2024,
iso_month: 6,
iso_day: 6,
expected_year: 2024,
expected_month: 2,
expected_day: 10,
},
TestCase {
iso_year: 2024,
iso_month: 2,
iso_day: 9,
expected_year: 2023,
expected_month: 1,
expected_day: 22,
},
TestCase {
iso_year: 2023,
iso_month: 1,
iso_day: 22,
expected_year: 2023,
expected_month: 1,
expected_day: 22,
},
TestCase {
iso_year: 2023,
iso_month: 1,
iso_day: 21,
expected_year: 2022,
expected_month: 2,
expected_day: 1,
},
TestCase {
iso_year: 2022,
iso_month: 6,
iso_day: 6,
expected_year: 2022,
expected_month: 2,
expected_day: 1,
},
TestCase {
iso_year: 2021,
iso_month: 6,
iso_day: 6,
expected_year: 2021,
expected_month: 2,
expected_day: 12,
},
TestCase {
iso_year: 2020,
iso_month: 6,
iso_day: 6,
expected_year: 2020,
expected_month: 1,
expected_day: 25,
},
TestCase {
iso_year: 2019,
iso_month: 6,
iso_day: 6,
expected_year: 2019,
expected_month: 2,
expected_day: 5,
},
TestCase {
iso_year: 2018,
iso_month: 6,
iso_day: 6,
expected_year: 2018,
expected_month: 2,
expected_day: 16,
},
TestCase {
iso_year: 2025,
iso_month: 6,
iso_day: 6,
expected_year: 2025,
expected_month: 1,
expected_day: 29,
},
TestCase {
iso_year: 2026,
iso_month: 8,
iso_day: 8,
expected_year: 2026,
expected_month: 2,
expected_day: 17,
},
TestCase {
iso_year: 2027,
iso_month: 4,
iso_day: 4,
expected_year: 2027,
expected_month: 2,
expected_day: 7,
},
TestCase {
iso_year: 2028,
iso_month: 9,
iso_day: 21,
expected_year: 2028,
expected_month: 1,
expected_day: 27,
},
];
for case in cases {
let fixed = crate::iso::fixed_from_iso(case.iso_year, case.iso_month, case.iso_day);
let seollal = seollal_on_or_before(fixed);
let (y, m, d) = crate::iso::iso_from_fixed(seollal).unwrap();
assert_eq!(
y, case.expected_year,
"Year check failed for case: {case:?}"
);
assert_eq!(
m, case.expected_month,
"Month check failed for case: {case:?}"
);
assert_eq!(d, case.expected_day, "Day check failed for case: {case:?}");
}
}
}