petgraph/isomorphism.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
use std::marker;
use fixedbitset::FixedBitSet;
use super::{
EdgeType,
Incoming,
};
use super::graph::{
Graph,
IndexType,
NodeIndex,
};
use super::visit::GetAdjacencyMatrix;
#[derive(Debug)]
struct Vf2State<Ty, Ix> {
/// The current mapping M(s) of nodes from G0 → G1 and G1 → G0,
/// NodeIndex::end() for no mapping.
mapping: Vec<NodeIndex<Ix>>,
/// out[i] is non-zero if i is in either M_0(s) or Tout_0(s)
/// These are all the next vertices that are not mapped yet, but
/// have an outgoing edge from the mapping.
out: Vec<usize>,
/// ins[i] is non-zero if i is in either M_0(s) or Tin_0(s)
/// These are all the incoming vertices, those not mapped yet, but
/// have an edge from them into the mapping.
/// Unused if graph is undirected -- it's identical with out in that case.
ins: Vec<usize>,
out_size: usize,
ins_size: usize,
adjacency_matrix: FixedBitSet,
generation: usize,
_etype: marker::PhantomData<Ty>,
}
impl<Ty, Ix> Vf2State<Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
pub fn new<N, E>(g: &Graph<N, E, Ty, Ix>) -> Self {
let c0 = g.node_count();
let mut state = Vf2State {
mapping: Vec::with_capacity(c0),
out: Vec::with_capacity(c0),
ins: Vec::with_capacity(c0 * (g.is_directed() as usize)),
out_size: 0,
ins_size: 0,
adjacency_matrix: g.adjacency_matrix(),
generation: 0,
_etype: marker::PhantomData,
};
for _ in 0..c0 {
state.mapping.push(NodeIndex::end());
state.out.push(0);
if Ty::is_directed() {
state.ins.push(0);
}
}
state
}
/// Return **true** if we have a complete mapping
pub fn is_complete(&self) -> bool {
self.generation == self.mapping.len()
}
/// Add mapping **from** <-> **to** to the state.
pub fn push_mapping<N, E>(&mut self, from: NodeIndex<Ix>, to: NodeIndex<Ix>,
g: &Graph<N, E, Ty, Ix>)
{
self.generation += 1;
let s = self.generation;
self.mapping[from.index()] = to;
// update T0 & T1 ins/outs
// T0out: Node in G0 not in M0 but successor of a node in M0.
// st.out[0]: Node either in M0 or successor of M0
for ix in g.neighbors(from) {
if self.out[ix.index()] == 0 {
self.out[ix.index()] = s;
self.out_size += 1;
}
}
if g.is_directed() {
for ix in g.neighbors_directed(from, Incoming) {
if self.ins[ix.index()] == 0 {
self.ins[ix.index()] = s;
self.ins_size += 1;
}
}
}
}
/// Restore the state to before the last added mapping
pub fn pop_mapping<N, E>(&mut self, from: NodeIndex<Ix>,
g: &Graph<N, E, Ty, Ix>)
{
let s = self.generation;
self.generation -= 1;
// undo (n, m) mapping
self.mapping[from.index()] = NodeIndex::end();
// unmark in ins and outs
for ix in g.neighbors(from) {
if self.out[ix.index()] == s {
self.out[ix.index()] = 0;
self.out_size -= 1;
}
}
if g.is_directed() {
for ix in g.neighbors_directed(from, Incoming) {
if self.ins[ix.index()] == s {
self.ins[ix.index()] = 0;
self.ins_size -= 1;
}
}
}
}
/// Find the next (least) node in the Tout set.
pub fn next_out_index(&self, from_index: usize) -> Option<usize>
{
self.out[from_index..].iter()
.enumerate()
.find(move |&(index, elt)| *elt > 0 &&
self.mapping[from_index + index] == NodeIndex::end())
.map(|(index, _)| index)
}
/// Find the next (least) node in the Tin set.
pub fn next_in_index(&self, from_index: usize) -> Option<usize>
{
if !Ty::is_directed() {
return None
}
self.ins[from_index..].iter()
.enumerate()
.find(move |&(index, elt)| *elt > 0
&& self.mapping[from_index + index] == NodeIndex::end())
.map(|(index, _)| index)
}
/// Find the next (least) node in the N - M set.
pub fn next_rest_index(&self, from_index: usize) -> Option<usize>
{
self.mapping[from_index..].iter()
.enumerate()
.find(|&(_, elt)| *elt == NodeIndex::end())
.map(|(index, _)| index)
}
}
/// [Graph] Return `true` if the graphs `g0` and `g1` are isomorphic.
///
/// Using the VF2 algorithm, only matching graph syntactically (graph
/// structure).
///
/// The graphs should not be multigraphs.
///
/// **Reference**
///
/// * Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento;
/// *A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs*
pub fn is_isomorphic<N, E, Ty, Ix>(g0: &Graph<N, E, Ty, Ix>,
g1: &Graph<N, E, Ty, Ix>) -> bool
where Ty: EdgeType,
Ix: IndexType,
{
if g0.node_count() != g1.node_count() || g0.edge_count() != g1.edge_count() {
return false
}
let mut st = [Vf2State::new(g0), Vf2State::new(g1)];
try_match(&mut st, g0, g1, &mut NoSemanticMatch, &mut NoSemanticMatch).unwrap_or(false)
}
/// [Graph] Return `true` if the graphs `g0` and `g1` are isomorphic.
///
/// Using the VF2 algorithm, examining both syntactic and semantic
/// graph isomorphism (graph structure and matching node and edge weights).
///
/// The graphs should not be multigraphs.
pub fn is_isomorphic_matching<N, E, Ty, Ix, F, G>(g0: &Graph<N, E, Ty, Ix>,
g1: &Graph<N, E, Ty, Ix>,
mut node_match: F,
mut edge_match: G) -> bool
where Ty: EdgeType,
Ix: IndexType,
F: FnMut(&N, &N) -> bool,
G: FnMut(&E, &E) -> bool,
{
if g0.node_count() != g1.node_count() || g0.edge_count() != g1.edge_count() {
return false
}
let mut st = [Vf2State::new(g0), Vf2State::new(g1)];
try_match(&mut st, g0, g1, &mut node_match, &mut edge_match).unwrap_or(false)
}
trait SemanticMatcher<T> {
fn enabled() -> bool;
fn eq(&mut self, &T, &T) -> bool;
}
struct NoSemanticMatch;
impl<T> SemanticMatcher<T> for NoSemanticMatch {
#[inline]
fn enabled() -> bool { false }
#[inline]
fn eq(&mut self, _: &T, _: &T) -> bool { true }
}
impl<T, F> SemanticMatcher<T> for F where F: FnMut(&T, &T) -> bool {
#[inline]
fn enabled() -> bool { true }
#[inline]
fn eq(&mut self, a: &T, b: &T) -> bool { self(a, b) }
}
/// Return Some(bool) if isomorphism is decided, else None.
fn try_match<N, E, Ty, Ix, F, G>(st: &mut [Vf2State<Ty, Ix>; 2],
g0: &Graph<N, E, Ty, Ix>,
g1: &Graph<N, E, Ty, Ix>,
node_match: &mut F,
edge_match: &mut G)
-> Option<bool>
where Ty: EdgeType,
Ix: IndexType,
F: SemanticMatcher<N>,
G: SemanticMatcher<E>,
{
let g = [g0, g1];
let graph_indices = 0..2;
let end = NodeIndex::end();
// if all are mapped -- we are done and have an iso
if st[0].is_complete() {
return Some(true)
}
// A "depth first" search of a valid mapping from graph 1 to graph 2
// F(s, n, m) -- evaluate state s and add mapping n <-> m
// Find least T1out node (in st.out[1] but not in M[1])
#[derive(Copy, Clone, PartialEq, Debug)]
enum OpenList {
Out,
In,
Other,
}
let mut open_list = OpenList::Out;
let mut to_index;
let mut from_index = None;
// Try the out list
to_index = st[1].next_out_index(0);
if to_index.is_some() {
from_index = st[0].next_out_index(0);
open_list = OpenList::Out;
}
// Try the in list
if to_index.is_none() || from_index.is_none() {
to_index = st[1].next_in_index(0);
if to_index.is_some() {
from_index = st[0].next_in_index(0);
open_list = OpenList::In;
}
}
// Try the other list -- disconnected graph
if to_index.is_none() || from_index.is_none() {
to_index = st[1].next_rest_index(0);
if to_index.is_some() {
from_index = st[0].next_rest_index(0);
open_list = OpenList::Other;
}
}
let (cand0, cand1) = match (from_index, to_index) {
(Some(n), Some(m)) => (n, m),
// No more candidates
_ => return None,
};
let mut nx = NodeIndex::new(cand0);
let mx = NodeIndex::new(cand1);
let mut first = true;
'candidates: loop {
if !first {
// Find the next node index to try on the `from` side of the mapping
let start = nx.index() + 1;
let cand0 = match open_list {
OpenList::Out => st[0].next_out_index(start),
OpenList::In => st[0].next_in_index(start),
OpenList::Other => st[0].next_rest_index(start),
}.map(|c| c + start); // compensate for start offset.
nx = match cand0 {
None => break, // no more candidates
Some(ix) => NodeIndex::new(ix),
};
debug_assert!(nx.index() >= start);
}
first = false;
let nodes = [nx, mx];
// Check syntactic feasibility of mapping by ensuring adjacencies
// of nx map to adjacencies of mx.
//
// nx == map to => mx
//
// R_succ
//
// Check that every neighbor of nx is mapped to a neighbor of mx,
// then check the reverse, from mx to nx. Check that they have the same
// count of edges.
//
// Note: We want to check the lookahead measures here if we can,
// R_out: Equal for G0, G1: Card(Succ(G, n) ^ Tout); for both Succ and Pred
// R_in: Same with Tin
// R_new: Equal for G0, G1: Ñ n Pred(G, n); both Succ and Pred,
// Ñ is G0 - M - Tin - Tout
// last attempt to add these did not speed up any of the testcases
let mut succ_count = [0, 0];
for j in graph_indices.clone() {
for n_neigh in g[j].neighbors(nodes[j]) {
succ_count[j] += 1;
// handle the self loop case; it's not in the mapping (yet)
let m_neigh = if nodes[j] != n_neigh {
st[j].mapping[n_neigh.index()]
} else {
nodes[1 - j]
};
if m_neigh == end {
continue;
}
let has_edge = g[1-j].is_adjacent(&st[1-j].adjacency_matrix, nodes[1-j], m_neigh);
if !has_edge {
continue 'candidates;
}
}
}
if succ_count[0] != succ_count[1] {
continue 'candidates;
}
// R_pred
if g[0].is_directed() {
let mut pred_count = [0, 0];
for j in graph_indices.clone() {
for n_neigh in g[j].neighbors_directed(nodes[j], Incoming) {
pred_count[j] += 1;
// the self loop case is handled in outgoing
let m_neigh = st[j].mapping[n_neigh.index()];
if m_neigh == end {
continue;
}
let has_edge = g[1-j].is_adjacent(&st[1-j].adjacency_matrix, m_neigh, nodes[1-j]);
if !has_edge {
continue 'candidates;
}
}
}
if pred_count[0] != pred_count[1] {
continue 'candidates;
}
}
// semantic feasibility: compare associated data for nodes
if F::enabled() && !node_match.eq(&g[0][nodes[0]], &g[1][nodes[1]]) {
continue 'candidates;
}
// semantic feasibility: compare associated data for edges
if G::enabled() {
// outgoing edges
for j in graph_indices.clone() {
let mut edges = g[j].neighbors(nodes[j]).detach();
while let Some((n_edge, n_neigh)) = edges.next(g[j]) {
// handle the self loop case; it's not in the mapping (yet)
let m_neigh = if nodes[j] != n_neigh {
st[j].mapping[n_neigh.index()]
} else {
nodes[1 - j]
};
if m_neigh == end {
continue;
}
match g[1-j].find_edge(nodes[1 - j], m_neigh) {
Some(m_edge) => {
if !edge_match.eq(&g[j][n_edge], &g[1-j][m_edge]) {
continue 'candidates;
}
}
None => unreachable!() // covered by syntactic check
}
}
}
// incoming edges
if g[0].is_directed() {
for j in graph_indices.clone() {
let mut edges = g[j].neighbors_directed(nodes[j], Incoming).detach();
while let Some((n_edge, n_neigh)) = edges.next(g[j]) {
// the self loop case is handled in outgoing
let m_neigh = st[j].mapping[n_neigh.index()];
if m_neigh == end {
continue;
}
match g[1-j].find_edge(m_neigh, nodes[1-j]) {
Some(m_edge) => {
if !edge_match.eq(&g[j][n_edge], &g[1-j][m_edge]) {
continue 'candidates;
}
}
None => unreachable!() // covered by syntactic check
}
}
}
}
}
// Add mapping nx <-> mx to the state
for j in graph_indices.clone() {
st[j].push_mapping(nodes[j], nodes[1-j], g[j]);
}
// Check cardinalities of Tin, Tout sets
if st[0].out_size == st[1].out_size &&
st[0].ins_size == st[1].ins_size
{
// Recurse
match try_match(st, g0, g1, node_match, edge_match) {
None => {}
result => return result,
}
}
// Restore state.
for j in graph_indices.clone() {
st[j].pop_mapping(nodes[j], g[j]);
}
}
None
}