font_kit/outline.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
// font-kit/src/outline.rs
//
// Copyright © 2020 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Bézier paths.
use pathfinder_geometry::line_segment::LineSegment2F;
use pathfinder_geometry::vector::Vector2F;
use std::mem;
/// Receives Bézier path rendering commands.
pub trait OutlineSink {
/// Moves the pen to a point.
fn move_to(&mut self, to: Vector2F);
/// Draws a line to a point.
fn line_to(&mut self, to: Vector2F);
/// Draws a quadratic Bézier curve to a point.
fn quadratic_curve_to(&mut self, ctrl: Vector2F, to: Vector2F);
/// Draws a cubic Bézier curve to a point.
fn cubic_curve_to(&mut self, ctrl: LineSegment2F, to: Vector2F);
/// Closes the path, returning to the first point in it.
fn close(&mut self);
}
/// A glyph vector outline or path.
#[derive(Clone, PartialEq, Debug)]
pub struct Outline {
/// The individual subpaths that make up this outline.
pub contours: Vec<Contour>,
}
/// A single curve or subpath within a glyph outline.
#[derive(Clone, PartialEq, Debug)]
pub struct Contour {
/// Positions of each point.
///
/// This must have the same length as the `flags` field.
pub positions: Vec<Vector2F>,
/// Flags that specify what type of point the corresponding position represents.
///
/// This must have the same length as the `positions` field.
pub flags: Vec<PointFlags>,
}
bitflags! {
/// Flags that specify what type of point the corresponding position represents.
#[derive(Clone, Debug, PartialEq)]
pub struct PointFlags: u8 {
/// This point is the control point of a quadratic Bézier curve or the first control point
/// of a cubic Bézier curve.
///
/// This flag is mutually exclusive with `CONTROL_POINT_1`.
const CONTROL_POINT_0 = 0x01;
/// This point is the second control point of a cubic Bézier curve.
///
/// This flag is mutually exclusive with `CONTROL_POINT_0`.
const CONTROL_POINT_1 = 0x02;
}
}
/// Accumulates Bézier path rendering commands into an `Outline` structure.
#[derive(Clone, Debug)]
pub struct OutlineBuilder {
outline: Outline,
current_contour: Contour,
}
impl Default for Outline {
fn default() -> Self {
Self::new()
}
}
impl Outline {
/// Creates a new empty outline.
#[inline]
pub fn new() -> Outline {
Outline { contours: vec![] }
}
/// Sends this outline to an `OutlineSink`.
pub fn copy_to<S>(&self, sink: &mut S)
where
S: OutlineSink,
{
for contour in &self.contours {
contour.copy_to(sink);
}
}
}
impl Default for Contour {
fn default() -> Self {
Self::new()
}
}
impl Contour {
/// Creates a new empty contour.
#[inline]
pub fn new() -> Contour {
Contour {
positions: vec![],
flags: vec![],
}
}
/// Adds a new point with the given flags to the contour.
#[inline]
pub fn push(&mut self, position: Vector2F, flags: PointFlags) {
self.positions.push(position);
self.flags.push(flags);
}
/// Sends this contour to an `OutlineSink`.
pub fn copy_to<S>(&self, sink: &mut S)
where
S: OutlineSink,
{
debug_assert_eq!(self.positions.len(), self.flags.len());
if self.positions.is_empty() {
return;
}
sink.move_to(self.positions[0]);
let mut iter = self.positions[1..].iter().zip(self.flags[1..].iter());
while let Some((&position_0, flags_0)) = iter.next() {
if flags_0.is_empty() {
sink.line_to(position_0);
continue;
}
let (&position_1, flags_1) = iter.next().expect("Invalid outline!");
if flags_1.is_empty() {
sink.quadratic_curve_to(position_0, position_1);
continue;
}
let (&position_2, flags_2) = iter.next().expect("Invalid outline!");
debug_assert!(flags_2.is_empty());
sink.cubic_curve_to(LineSegment2F::new(position_0, position_1), position_2);
}
sink.close();
}
}
impl Default for OutlineBuilder {
fn default() -> Self {
Self::new()
}
}
impl OutlineBuilder {
/// Creates a new empty `OutlineBuilder`.
#[inline]
pub fn new() -> OutlineBuilder {
OutlineBuilder {
outline: Outline::new(),
current_contour: Contour::new(),
}
}
/// Consumes this outline builder and returns the resulting outline.
#[inline]
pub fn into_outline(self) -> Outline {
self.outline
}
/// Resets the outline builder and returns the old outline.
#[inline]
pub fn take_outline(&mut self) -> Outline {
assert!(self.current_contour.positions.is_empty());
self.current_contour = Contour::new();
mem::replace(&mut self.outline, Outline::new())
}
}
impl OutlineSink for OutlineBuilder {
#[inline]
fn move_to(&mut self, to: Vector2F) {
self.current_contour.push(to, PointFlags::empty());
}
#[inline]
fn line_to(&mut self, to: Vector2F) {
self.current_contour.push(to, PointFlags::empty());
}
#[inline]
fn quadratic_curve_to(&mut self, ctrl: Vector2F, to: Vector2F) {
self.current_contour.push(ctrl, PointFlags::CONTROL_POINT_0);
self.current_contour.push(to, PointFlags::empty());
}
#[inline]
fn cubic_curve_to(&mut self, ctrl: LineSegment2F, to: Vector2F) {
self.current_contour
.push(ctrl.from(), PointFlags::CONTROL_POINT_0);
self.current_contour
.push(ctrl.to(), PointFlags::CONTROL_POINT_1);
self.current_contour.push(to, PointFlags::empty());
}
#[inline]
fn close(&mut self) {
self.outline
.contours
.push(mem::replace(&mut self.current_contour, Contour::new()));
}
}