1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use api::{AlphaType, PremultipliedColorF, YuvFormat, YuvRangedColorSpace};
use api::units::*;
use crate::composite::CompositeFeatures;
use crate::segment::EdgeAaSegmentMask;
use crate::spatial_tree::{SpatialTree, SpatialNodeIndex};
use crate::gpu_cache::{GpuCacheAddress, GpuDataRequest};
use crate::internal_types::FastHashMap;
use crate::prim_store::ClipData;
use crate::render_task::RenderTaskAddress;
use crate::render_task_graph::RenderTaskId;
use crate::renderer::{ShaderColorMode, GpuBufferAddress};
use std::i32;
use crate::util::{TransformedRectKind, MatrixHelpers};
use glyph_rasterizer::SubpixelDirection;
use crate::util::{ScaleOffset, pack_as_float};

// Contains type that must exactly match the same structures declared in GLSL.

pub const VECS_PER_TRANSFORM: usize = 8;

#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ZBufferId(pub i32);

impl ZBufferId {
    pub fn invalid() -> Self {
        ZBufferId(i32::MAX)
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ZBufferIdGenerator {
    next: i32,
    max_depth_ids: i32,
}

impl ZBufferIdGenerator {
    pub fn new(max_depth_ids: i32) -> Self {
        ZBufferIdGenerator {
            next: 0,
            max_depth_ids,
        }
    }

    pub fn next(&mut self) -> ZBufferId {
        debug_assert!(self.next < self.max_depth_ids);
        let id = ZBufferId(self.next);
        self.next += 1;
        id
    }
}

#[derive(Clone, Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CopyInstance {
    pub src_rect: DeviceRect,
    pub dst_rect: DeviceRect,
    pub dst_texture_size: DeviceSize,
}

#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub enum RasterizationSpace {
    Local = 0,
    Screen = 1,
}

#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub enum BoxShadowStretchMode {
    Stretch = 0,
    Simple = 1,
}

#[repr(i32)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum BlurDirection {
    Horizontal = 0,
    Vertical,
}

impl BlurDirection {
    pub fn as_int(self) -> i32 {
        match self {
            BlurDirection::Horizontal => 0,
            BlurDirection::Vertical => 1,
        }
    }
}

#[derive(Clone, Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BlurInstance {
    pub task_address: RenderTaskAddress,
    pub src_task_address: RenderTaskAddress,
    pub blur_direction: i32,
    pub blur_std_deviation: f32,
    pub blur_region: DeviceSize,
}

#[derive(Clone, Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ScalingInstance {
    pub target_rect: DeviceRect,
    pub source_rect: DeviceRect,
}

#[derive(Clone, Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SvgFilterInstance {
    pub task_address: RenderTaskAddress,
    pub input_1_task_address: RenderTaskAddress,
    pub input_2_task_address: RenderTaskAddress,
    pub kind: u16,
    pub input_count: u16,
    pub generic_int: u16,
    pub padding: u16,
    pub extra_data_address: GpuCacheAddress,
}

#[derive(Clone, Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SVGFEFilterInstance {
    pub target_rect: DeviceRect,
    pub input_1_content_scale_and_offset: [f32; 4],
    pub input_2_content_scale_and_offset: [f32; 4],
    pub input_1_task_address: RenderTaskAddress,
    pub input_2_task_address: RenderTaskAddress,
    pub kind: u16,
    pub input_count: u16,
    pub extra_data_address: GpuCacheAddress,
}

#[derive(Copy, Clone, Debug, Hash, MallocSizeOf, PartialEq, Eq)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum BorderSegment {
    TopLeft,
    TopRight,
    BottomRight,
    BottomLeft,
    Left,
    Top,
    Right,
    Bottom,
}

#[derive(Debug, Clone)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BorderInstance {
    pub task_origin: DevicePoint,
    pub local_rect: DeviceRect,
    pub color0: PremultipliedColorF,
    pub color1: PremultipliedColorF,
    pub flags: i32,
    pub widths: DeviceSize,
    pub radius: DeviceSize,
    pub clip_params: [f32; 8],
}

#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub struct ClipMaskInstanceCommon {
    pub sub_rect: DeviceRect,
    pub task_origin: DevicePoint,
    pub screen_origin: DevicePoint,
    pub device_pixel_scale: f32,
    pub clip_transform_id: TransformPaletteId,
    pub prim_transform_id: TransformPaletteId,
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub struct ClipMaskInstanceRect {
    pub common: ClipMaskInstanceCommon,
    pub local_pos: LayoutPoint,
    pub clip_data: ClipData,
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub struct BoxShadowData {
    pub src_rect_size: LayoutSize,
    pub clip_mode: i32,
    pub stretch_mode_x: i32,
    pub stretch_mode_y: i32,
    pub dest_rect: LayoutRect,
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub struct ClipMaskInstanceBoxShadow {
    pub common: ClipMaskInstanceCommon,
    pub resource_address: GpuCacheAddress,
    pub shadow_data: BoxShadowData,
}

// 16 bytes per instance should be enough for anyone!
#[repr(C)]
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveInstanceData {
    data: [i32; 4],
}

/// Specifies that an RGB CompositeInstance's UV coordinates are normalized.
const UV_TYPE_NORMALIZED: u32 = 0;
/// Specifies that an RGB CompositeInstance's UV coordinates are not normalized.
const UV_TYPE_UNNORMALIZED: u32 = 1;

/// A GPU-friendly representation of the `ScaleOffset` type
#[derive(Clone, Debug)]
#[repr(C)]
pub struct CompositorTransform {
    pub sx: f32,
    pub sy: f32,
    pub tx: f32,
    pub ty: f32,
}

impl From<ScaleOffset> for CompositorTransform {
    fn from(scale_offset: ScaleOffset) -> Self {
        CompositorTransform {
            sx: scale_offset.scale.x,
            sy: scale_offset.scale.y,
            tx: scale_offset.offset.x,
            ty: scale_offset.offset.y,
        }
    }
}

/// Vertex format for picture cache composite shader.
/// When editing the members, update desc::COMPOSITE
/// so its list of instance_attributes matches:
#[derive(Clone, Debug)]
#[repr(C)]
pub struct CompositeInstance {
    // Device space destination rectangle of surface
    rect: DeviceRect,
    // Device space destination clip rect for this surface
    clip_rect: DeviceRect,
    // Color for solid color tiles, white otherwise
    color: PremultipliedColorF,

    // Packed into a single vec4 (aParams)
    _padding: f32,
    color_space_or_uv_type: f32, // YuvColorSpace for YUV;
                                 // UV coordinate space for RGB
    yuv_format: f32,            // YuvFormat
    yuv_channel_bit_depth: f32,

    // UV rectangles (pixel space) for color / yuv texture planes
    uv_rects: [TexelRect; 3],

    // Whether to flip the x and y axis respectively, where 0.0 is no-flip and 1.0 is flip.
    flip: (f32, f32),
}

impl CompositeInstance {
    pub fn new(
        rect: DeviceRect,
        clip_rect: DeviceRect,
        color: PremultipliedColorF,
        flip: (bool, bool),
    ) -> Self {
        let uv = TexelRect::new(0.0, 0.0, 1.0, 1.0);
        CompositeInstance {
            rect,
            clip_rect,
            color,
            _padding: 0.0,
            color_space_or_uv_type: pack_as_float(UV_TYPE_NORMALIZED),
            yuv_format: 0.0,
            yuv_channel_bit_depth: 0.0,
            uv_rects: [uv, uv, uv],
            flip: (flip.0.into(), flip.1.into()),
        }
    }

    pub fn new_rgb(
        rect: DeviceRect,
        clip_rect: DeviceRect,
        color: PremultipliedColorF,
        uv_rect: TexelRect,
        flip: (bool, bool),
    ) -> Self {
        CompositeInstance {
            rect,
            clip_rect,
            color,
            _padding: 0.0,
            color_space_or_uv_type: pack_as_float(UV_TYPE_UNNORMALIZED),
            yuv_format: 0.0,
            yuv_channel_bit_depth: 0.0,
            uv_rects: [uv_rect, uv_rect, uv_rect],
            flip: (flip.0.into(), flip.1.into()),
        }
    }

    pub fn new_yuv(
        rect: DeviceRect,
        clip_rect: DeviceRect,
        yuv_color_space: YuvRangedColorSpace,
        yuv_format: YuvFormat,
        yuv_channel_bit_depth: u32,
        uv_rects: [TexelRect; 3],
        flip: (bool, bool),
    ) -> Self {
        CompositeInstance {
            rect,
            clip_rect,
            color: PremultipliedColorF::WHITE,
            _padding: 0.0,
            color_space_or_uv_type: pack_as_float(yuv_color_space as u32),
            yuv_format: pack_as_float(yuv_format as u32),
            yuv_channel_bit_depth: pack_as_float(yuv_channel_bit_depth),
            uv_rects,
            flip: (flip.0.into(), flip.1.into()),
        }
    }

    // Returns the CompositeFeatures that can be used to composite
    // this RGB instance.
    pub fn get_rgb_features(&self) -> CompositeFeatures {
        let mut features = CompositeFeatures::empty();

        // If the UV rect covers the entire texture then we can avoid UV clamping.
        // We should try harder to determine this for unnormalized UVs too.
        if self.color_space_or_uv_type == pack_as_float(UV_TYPE_NORMALIZED)
            && self.uv_rects[0] == TexelRect::new(0.0, 0.0, 1.0, 1.0)
        {
            features |= CompositeFeatures::NO_UV_CLAMP;
        }

        if self.color == PremultipliedColorF::WHITE {
            features |= CompositeFeatures::NO_COLOR_MODULATION
        }

        features
    }
}

/// Vertex format for issuing colored quads.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct ClearInstance {
    pub rect: [f32; 4],
    pub color: [f32; 4],
}

#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveHeaderIndex(pub i32);

#[derive(Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveHeaders {
    // The integer-type headers for a primitive.
    pub headers_int: Vec<PrimitiveHeaderI>,
    // The float-type headers for a primitive.
    pub headers_float: Vec<PrimitiveHeaderF>,
}

impl PrimitiveHeaders {
    pub fn new() -> PrimitiveHeaders {
        PrimitiveHeaders {
            headers_int: Vec::new(),
            headers_float: Vec::new(),
        }
    }

    // Add a new primitive header.
    pub fn push(
        &mut self,
        prim_header: &PrimitiveHeader,
        z: ZBufferId,
        render_task_address: RenderTaskAddress,
        user_data: [i32; 4],
    ) -> PrimitiveHeaderIndex {
        debug_assert_eq!(self.headers_int.len(), self.headers_float.len());
        let id = self.headers_float.len();

        self.headers_float.push(PrimitiveHeaderF {
            local_rect: prim_header.local_rect,
            local_clip_rect: prim_header.local_clip_rect,
        });

        self.headers_int.push(PrimitiveHeaderI {
            z,
            render_task_address,
            specific_prim_address: prim_header.specific_prim_address.as_int(),
            transform_id: prim_header.transform_id,
            user_data,
        });

        PrimitiveHeaderIndex(id as i32)
    }
}

// This is a convenience type used to make it easier to pass
// the common parts around during batching.
#[derive(Debug)]
pub struct PrimitiveHeader {
    pub local_rect: LayoutRect,
    pub local_clip_rect: LayoutRect,
    pub specific_prim_address: GpuCacheAddress,
    pub transform_id: TransformPaletteId,
}

// f32 parts of a primitive header
#[derive(Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveHeaderF {
    pub local_rect: LayoutRect,
    pub local_clip_rect: LayoutRect,
}

// i32 parts of a primitive header
// TODO(gw): Compress parts of these down to u16
#[derive(Debug)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveHeaderI {
    pub z: ZBufferId,
    pub specific_prim_address: i32,
    pub transform_id: TransformPaletteId,
    pub render_task_address: RenderTaskAddress,
    pub user_data: [i32; 4],
}

pub struct GlyphInstance {
    pub prim_header_index: PrimitiveHeaderIndex,
}

impl GlyphInstance {
    pub fn new(
        prim_header_index: PrimitiveHeaderIndex,
    ) -> Self {
        GlyphInstance {
            prim_header_index,
        }
    }

    // TODO(gw): Some of these fields can be moved to the primitive
    //           header since they are constant, and some can be
    //           compressed to a smaller size.
    pub fn build(&self,
        clip_task: RenderTaskAddress,
        subpx_dir: SubpixelDirection,
        glyph_index_in_text_run: i32,
        glyph_uv_rect: GpuCacheAddress,
        color_mode: ShaderColorMode,
    ) -> PrimitiveInstanceData {
        PrimitiveInstanceData {
            data: [
                self.prim_header_index.0 as i32,
                clip_task.0 as i32,
                (subpx_dir as u32 as i32) << 24
                | (color_mode as u32 as i32) << 16
                | glyph_index_in_text_run,
                glyph_uv_rect.as_int(),
            ],
        }
    }
}

pub struct SplitCompositeInstance {
    pub prim_header_index: PrimitiveHeaderIndex,
    pub polygons_address: i32,
    pub z: ZBufferId,
    pub render_task_address: RenderTaskAddress,
}

impl From<SplitCompositeInstance> for PrimitiveInstanceData {
    fn from(instance: SplitCompositeInstance) -> Self {
        PrimitiveInstanceData {
            data: [
                instance.prim_header_index.0,
                instance.polygons_address,
                instance.z.0,
                instance.render_task_address.0,
            ],
        }
    }
}

#[derive(Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct QuadInstance {
    pub dst_task_address: RenderTaskAddress,
    pub prim_address_i: GpuBufferAddress,
    pub prim_address_f: GpuBufferAddress,
    pub quad_flags: u8,
    pub edge_flags: u8,
    pub part_index: u8,
    pub segment_index: u8,
}

impl From<QuadInstance> for PrimitiveInstanceData {
    fn from(instance: QuadInstance) -> Self {
        /*
            [32 prim address_i]
            [32 prim address_f]
            [8888 qf ef pi si]
            [32 render task address]
        */

        PrimitiveInstanceData {
            data: [
                instance.prim_address_i.as_int(),
                instance.prim_address_f.as_int(),

                ((instance.quad_flags as i32)    << 24) |
                ((instance.edge_flags as i32)    << 16) |
                ((instance.part_index as i32)    <<  8) |
                ((instance.segment_index as i32) <<  0),

                instance.dst_task_address.0,
            ],
        }
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct QuadSegment {
    pub rect: LayoutRect,
    pub task_id: RenderTaskId,
}

#[derive(Copy, Debug, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(u32)]
pub enum ClipSpace {
    Raster = 0,
    Primitive = 1,
}

impl ClipSpace {
    pub fn as_int(self) -> u32 {
        match self {
            ClipSpace::Raster => 0,
            ClipSpace::Primitive => 1,
        }
    }
}

#[repr(C)]
#[derive(Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct MaskInstance {
    pub prim: PrimitiveInstanceData,
    pub clip_transform_id: TransformPaletteId,
    pub clip_address: i32,
    pub clip_space: u32,
    pub unused: i32,
}


// Note: This can use up to 12 bits due to how it will
// be packed in the instance data.

/// Flags that define how the common brush shader
/// code should process this instance.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash, MallocSizeOf)]
pub struct BrushFlags(u16);

bitflags! {
    impl BrushFlags: u16 {
        /// Apply perspective interpolation to UVs
        const PERSPECTIVE_INTERPOLATION = 1;
        /// Do interpolation relative to segment rect,
        /// rather than primitive rect.
        const SEGMENT_RELATIVE = 2;
        /// Repeat UVs horizontally.
        const SEGMENT_REPEAT_X = 4;
        /// Repeat UVs vertically.
        const SEGMENT_REPEAT_Y = 8;
        /// Horizontally follow border-image-repeat: round.
        const SEGMENT_REPEAT_X_ROUND = 16;
        /// Vertically follow border-image-repeat: round.
        const SEGMENT_REPEAT_Y_ROUND = 32;
        /// Whether to position the repetitions so that the middle tile
        /// is horizontally centered.
        const SEGMENT_REPEAT_X_CENTERED = 64;
        /// Whether to position the repetitions so that the middle tile
        /// is vertically centered.
        const SEGMENT_REPEAT_Y_CENTERED = 128;
        /// Middle (fill) area of a border-image-repeat.
        const SEGMENT_NINEPATCH_MIDDLE = 256;
        /// The extra segment data is a texel rect.
        const SEGMENT_TEXEL_RECT = 512;
        /// Whether to force the anti-aliasing when the primitive
        /// is axis-aligned.
        const FORCE_AA = 1024;
    }
}

impl core::fmt::Debug for BrushFlags {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        if self.is_empty() {
            write!(f, "{:#x}", Self::empty().bits())
        } else {
            bitflags::parser::to_writer(self, f)
        }
    }
}

/// Convenience structure to encode into PrimitiveInstanceData.
pub struct BrushInstance {
    pub prim_header_index: PrimitiveHeaderIndex,
    pub clip_task_address: RenderTaskAddress,
    pub segment_index: i32,
    pub edge_flags: EdgeAaSegmentMask,
    pub brush_flags: BrushFlags,
    pub resource_address: i32,
}

impl From<BrushInstance> for PrimitiveInstanceData {
    fn from(instance: BrushInstance) -> Self {
        PrimitiveInstanceData {
            data: [
                instance.prim_header_index.0,
                instance.clip_task_address.0,
                instance.segment_index
                | ((instance.brush_flags.bits() as i32) << 16)
                | ((instance.edge_flags.bits() as i32) << 28),
                instance.resource_address,
            ]
        }
    }
}

/// Convenience structure to encode into the image brush's user data.
#[derive(Copy, Clone, Debug)]
pub struct ImageBrushData {
    pub color_mode: ShaderColorMode,
    pub alpha_type: AlphaType,
    pub raster_space: RasterizationSpace,
    pub opacity: f32,
}

impl ImageBrushData {
    #[inline]
    pub fn encode(&self) -> [i32; 4] {
        [
            self.color_mode as i32 | ((self.alpha_type as i32) << 16),
            self.raster_space as i32,
            get_shader_opacity(self.opacity),
            0,
        ]
    }
}

// Represents the information about a transform palette
// entry that is passed to shaders. It includes an index
// into the transform palette, and a set of flags. The
// only flag currently used determines whether the
// transform is axis-aligned (and this should have
// pixel snapping applied).
#[derive(Copy, Debug, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub struct TransformPaletteId(pub u32);

impl TransformPaletteId {
    /// Identity transform ID.
    pub const IDENTITY: Self = TransformPaletteId(0);

    /// Extract the transform kind from the id.
    pub fn transform_kind(&self) -> TransformedRectKind {
        if (self.0 >> 23) == 0 {
            TransformedRectKind::AxisAligned
        } else {
            TransformedRectKind::Complex
        }
    }

    /// Override the kind of transform stored in this id. This can be useful in
    /// cases where we don't want shaders to consider certain transforms axis-
    /// aligned (i.e. perspective warp) even though we may still want to for the
    /// general case.
    pub fn override_transform_kind(&self, kind: TransformedRectKind) -> Self {
        TransformPaletteId((self.0 & 0x7FFFFFu32) | ((kind as u32) << 23))
    }
}

/// The GPU data payload for a transform palette entry.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
pub struct TransformData {
    transform: LayoutToPictureTransform,
    inv_transform: PictureToLayoutTransform,
}

impl TransformData {
    fn invalid() -> Self {
        TransformData {
            transform: LayoutToPictureTransform::identity(),
            inv_transform: PictureToLayoutTransform::identity(),
        }
    }
}

// Extra data stored about each transform palette entry.
#[derive(Clone)]
pub struct TransformMetadata {
    transform_kind: TransformedRectKind,
}

impl TransformMetadata {
    pub fn invalid() -> Self {
        TransformMetadata {
            transform_kind: TransformedRectKind::AxisAligned,
        }
    }
}

#[derive(Debug, Hash, Eq, PartialEq)]
struct RelativeTransformKey {
    from_index: SpatialNodeIndex,
    to_index: SpatialNodeIndex,
}

// Stores a contiguous list of TransformData structs, that
// are ready for upload to the GPU.
// TODO(gw): For now, this only stores the complete local
//           to world transform for each spatial node. In
//           the future, the transform palette will support
//           specifying a coordinate system that the transform
//           should be relative to.
pub struct TransformPalette {
    transforms: Vec<TransformData>,
    metadata: Vec<TransformMetadata>,
    map: FastHashMap<RelativeTransformKey, usize>,
}

impl TransformPalette {
    pub fn new(
        count: usize,
    ) -> Self {
        let _ = VECS_PER_TRANSFORM;

        let mut transforms = Vec::with_capacity(count);
        let mut metadata = Vec::with_capacity(count);

        transforms.push(TransformData::invalid());
        metadata.push(TransformMetadata::invalid());

        TransformPalette {
            transforms,
            metadata,
            map: FastHashMap::default(),
        }
    }

    pub fn finish(self) -> Vec<TransformData> {
        self.transforms
    }

    fn get_index(
        &mut self,
        child_index: SpatialNodeIndex,
        parent_index: SpatialNodeIndex,
        spatial_tree: &SpatialTree,
    ) -> usize {
        if child_index == parent_index {
            0
        } else {
            let key = RelativeTransformKey {
                from_index: child_index,
                to_index: parent_index,
            };

            let metadata = &mut self.metadata;
            let transforms = &mut self.transforms;

            *self.map
                .entry(key)
                .or_insert_with(|| {
                    let transform = spatial_tree.get_relative_transform(
                        child_index,
                        parent_index,
                    )
                    .into_transform()
                    .with_destination::<PicturePixel>();

                    register_transform(
                        metadata,
                        transforms,
                        transform,
                    )
                })
        }
    }

    // Get a transform palette id for the given spatial node.
    // TODO(gw): In the future, it will be possible to specify
    //           a coordinate system id here, to allow retrieving
    //           transforms in the local space of a given spatial node.
    pub fn get_id(
        &mut self,
        from_index: SpatialNodeIndex,
        to_index: SpatialNodeIndex,
        spatial_tree: &SpatialTree,
    ) -> TransformPaletteId {
        let index = self.get_index(
            from_index,
            to_index,
            spatial_tree,
        );
        let transform_kind = self.metadata[index].transform_kind as u32;
        TransformPaletteId(
            (index as u32) |
            (transform_kind << 23)
        )
    }

    pub fn get_custom(
        &mut self,
        transform: LayoutToPictureTransform,
    ) -> TransformPaletteId {
        let index = register_transform(
            &mut self.metadata,
            &mut self.transforms,
            transform,
        );

        let transform_kind = self.metadata[index].transform_kind as u32;
        TransformPaletteId(
            (index as u32) |
            (transform_kind << 23)
        )
    }
}

// Texture cache resources can be either a simple rect, or define
// a polygon within a rect by specifying a UV coordinate for each
// corner. This is useful for rendering screen-space rasterized
// off-screen surfaces.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum UvRectKind {
    // The 2d bounds of the texture cache entry define the
    // valid UV space for this texture cache entry.
    Rect,
    // The four vertices below define a quad within
    // the texture cache entry rect. The shader can
    // use a bilerp() to correctly interpolate a
    // UV coord in the vertex shader.
    Quad {
        top_left: DeviceHomogeneousVector,
        top_right: DeviceHomogeneousVector,
        bottom_left: DeviceHomogeneousVector,
        bottom_right: DeviceHomogeneousVector,
    },
}

#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ImageSource {
    pub p0: DevicePoint,
    pub p1: DevicePoint,
    // TODO: It appears that only glyphs make use of user_data (to store glyph offset
    // and scale).
    // Perhaps we should separate the two so we don't have to push an empty unused vec4
    // for all image sources.
    pub user_data: [f32; 4],
    pub uv_rect_kind: UvRectKind,
}

impl ImageSource {
    pub fn write_gpu_blocks(&self, request: &mut GpuDataRequest) {
        // see fetch_image_resource in GLSL
        // has to be VECS_PER_IMAGE_RESOURCE vectors
        request.push([
            self.p0.x,
            self.p0.y,
            self.p1.x,
            self.p1.y,
        ]);
        request.push(self.user_data);

        // If this is a polygon uv kind, then upload the four vertices.
        if let UvRectKind::Quad { top_left, top_right, bottom_left, bottom_right } = self.uv_rect_kind {
            // see fetch_image_resource_extra in GLSL
            //Note: we really need only 3 components per point here: X, Y, and W
            request.push(top_left);
            request.push(top_right);
            request.push(bottom_left);
            request.push(bottom_right);
        }
    }
}

// Set the local -> world transform for a given spatial
// node in the transform palette.
fn register_transform(
    metadatas: &mut Vec<TransformMetadata>,
    transforms: &mut Vec<TransformData>,
    transform: LayoutToPictureTransform,
) -> usize {
    // TODO: refactor the calling code to not even try
    // registering a non-invertible transform.
    let inv_transform = transform
        .inverse()
        .unwrap_or_else(PictureToLayoutTransform::identity);

    let metadata = TransformMetadata {
        transform_kind: transform.transform_kind()
    };
    let data = TransformData {
        transform,
        inv_transform,
    };

    let index = transforms.len();
    metadatas.push(metadata);
    transforms.push(data);

    index
}

pub fn get_shader_opacity(opacity: f32) -> i32 {
    (opacity * 65535.0).round() as i32
}