1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
/// Bloom filter for relative selectors.
use fxhash::FxHashMap;
use crate::bloom::BloomFilter;
use crate::context::QuirksMode;
use crate::parser::{collect_selector_hashes, RelativeSelector, RelativeSelectorMatchHint};
use crate::tree::{Element, OpaqueElement};
use crate::SelectorImpl;
enum Entry {
/// Filter lookup happened once. Construction of the filter is expensive,
/// so this is set when the element for subtree traversal is encountered.
Lookup,
/// Filter lookup happened more than once, and the filter for this element's
/// subtree traversal is constructed. Could use special handlings for pseudo-classes
/// such as `:hover` and `:focus`, see Bug 1845503.
HasFilter(Box<BloomFilter>),
}
#[derive(Clone, Copy, Hash, Eq, PartialEq)]
enum TraversalKind {
Children,
Descendants,
}
fn add_to_filter<E: Element>(element: &E, filter: &mut BloomFilter, kind: TraversalKind) -> bool {
let mut child = element.first_element_child();
while let Some(e) = child {
if !e.add_element_unique_hashes(filter) {
return false;
}
if kind == TraversalKind::Descendants {
if !add_to_filter(&e, filter, kind) {
return false;
}
}
child = e.next_sibling_element();
}
true
}
#[derive(Clone, Copy, Hash, Eq, PartialEq)]
struct Key(OpaqueElement, TraversalKind);
/// Map of bloom filters for fast-rejecting relative selectors.
#[derive(Default)]
pub struct RelativeSelectorFilterMap {
map: FxHashMap<Key, Entry>,
}
fn fast_reject<Impl: SelectorImpl>(
selector: &RelativeSelector<Impl>,
quirks_mode: QuirksMode,
filter: &BloomFilter,
) -> bool {
let mut hashes = [0u32; 4];
let mut len = 0;
// For inner selectors, we only collect from the single rightmost compound.
// This is because inner selectors can cause breakouts: e.g. `.anchor:has(:is(.a .b) .c)`
// can match when `.a` is the ancestor of `.anchor`. Including `.a` would possibly fast
// reject the subtree for not having `.a`, even if the selector would match.
// Technically, if the selector's traversal is non-sibling subtree, we can traverse
// inner selectors up to the point where a descendant/child combinator is encountered
// (e.g. In `.anchor:has(:is(.a ~ .b) .c)`, `.a` is guaranteed to be the a descendant
// of `.anchor`). While that can be separately handled, well, this is simpler.
collect_selector_hashes(
selector.selector.iter(),
quirks_mode,
&mut hashes,
&mut len,
|s| s.iter(),
);
for i in 0..len {
if !filter.might_contain_hash(hashes[i]) {
// Definitely rejected.
return true;
}
}
false
}
impl RelativeSelectorFilterMap {
fn get_filter<E: Element>(&mut self, element: &E, kind: TraversalKind) -> Option<&BloomFilter> {
// Insert flag to indicate that we looked up the filter once, and
// create the filter if and only if that flag is there.
let key = Key(element.opaque(), kind);
let entry = self
.map
.entry(key)
.and_modify(|entry| {
if !matches!(entry, Entry::Lookup) {
return;
}
let mut filter = BloomFilter::new();
// Go through all children/descendants of this element and add their hashes.
if add_to_filter(element, &mut filter, kind) {
*entry = Entry::HasFilter(Box::new(filter));
}
})
.or_insert(Entry::Lookup);
match entry {
Entry::Lookup => None,
Entry::HasFilter(ref filter) => Some(filter.as_ref()),
}
}
/// Potentially reject the given selector for this element.
/// This may seem redundant in presence of the cache, but the cache keys into the
/// selector-element pair specifically, while this filter keys to the element
/// and the traversal kind, so it is useful for handling multiple selectors
/// that effectively end up looking at the same(-ish, for siblings) subtree.
pub fn fast_reject<Impl: SelectorImpl, E: Element>(
&mut self,
element: &E,
selector: &RelativeSelector<Impl>,
quirks_mode: QuirksMode,
) -> bool {
if matches!(
selector.match_hint,
RelativeSelectorMatchHint::InNextSibling
) {
// Don't bother.
return false;
}
let is_sibling = matches!(
selector.match_hint,
RelativeSelectorMatchHint::InSibling |
RelativeSelectorMatchHint::InNextSiblingSubtree |
RelativeSelectorMatchHint::InSiblingSubtree
);
let is_subtree = matches!(
selector.match_hint,
RelativeSelectorMatchHint::InSubtree |
RelativeSelectorMatchHint::InNextSiblingSubtree |
RelativeSelectorMatchHint::InSiblingSubtree
);
let kind = if is_subtree {
TraversalKind::Descendants
} else {
TraversalKind::Children
};
if is_sibling {
// Contain the entirety of the parent's children/subtree in the filter, and use that.
// This is less likely to reject, especially for sibling subtree matches; however, it's less
// expensive memory-wise, compared to storing filters for each sibling.
element.parent_element().map_or(false, |parent| {
self.get_filter(&parent, kind)
.map_or(false, |filter| fast_reject(selector, quirks_mode, filter))
})
} else {
self.get_filter(element, kind)
.map_or(false, |filter| fast_reject(selector, quirks_mode, filter))
}
}
}