use std::cmp::Ordering;
use super::parser::Cursor;
use super::timezone::{LocalTimeType, SECONDS_PER_WEEK};
use super::{
Error, CUMUL_DAY_IN_MONTHS_NORMAL_YEAR, DAYS_PER_WEEK, DAY_IN_MONTHS_NORMAL_YEAR,
SECONDS_PER_DAY,
};
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) enum TransitionRule {
Fixed(LocalTimeType),
Alternate(AlternateTime),
}
impl TransitionRule {
pub(super) fn from_tz_string(
tz_string: &[u8],
use_string_extensions: bool,
) -> Result<Self, Error> {
let mut cursor = Cursor::new(tz_string);
let std_time_zone = Some(parse_name(&mut cursor)?);
let std_offset = parse_offset(&mut cursor)?;
if cursor.is_empty() {
return Ok(LocalTimeType::new(-std_offset, false, std_time_zone)?.into());
}
let dst_time_zone = Some(parse_name(&mut cursor)?);
let dst_offset = match cursor.peek() {
Some(&b',') => std_offset - 3600,
Some(_) => parse_offset(&mut cursor)?,
None => {
return Err(Error::UnsupportedTzString("DST start and end rules must be provided"))
}
};
if cursor.is_empty() {
return Err(Error::UnsupportedTzString("DST start and end rules must be provided"));
}
cursor.read_tag(b",")?;
let (dst_start, dst_start_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;
cursor.read_tag(b",")?;
let (dst_end, dst_end_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;
if !cursor.is_empty() {
return Err(Error::InvalidTzString("remaining data after parsing TZ string"));
}
Ok(AlternateTime::new(
LocalTimeType::new(-std_offset, false, std_time_zone)?,
LocalTimeType::new(-dst_offset, true, dst_time_zone)?,
dst_start,
dst_start_time,
dst_end,
dst_end_time,
)?
.into())
}
pub(super) fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
match self {
TransitionRule::Fixed(local_time_type) => Ok(local_time_type),
TransitionRule::Alternate(alternate_time) => {
alternate_time.find_local_time_type(unix_time)
}
}
}
pub(super) fn find_local_time_type_from_local(
&self,
local_time: i64,
year: i32,
) -> Result<crate::MappedLocalTime<LocalTimeType>, Error> {
match self {
TransitionRule::Fixed(local_time_type) => {
Ok(crate::MappedLocalTime::Single(*local_time_type))
}
TransitionRule::Alternate(alternate_time) => {
alternate_time.find_local_time_type_from_local(local_time, year)
}
}
}
}
impl From<LocalTimeType> for TransitionRule {
fn from(inner: LocalTimeType) -> Self {
TransitionRule::Fixed(inner)
}
}
impl From<AlternateTime> for TransitionRule {
fn from(inner: AlternateTime) -> Self {
TransitionRule::Alternate(inner)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) struct AlternateTime {
pub(super) std: LocalTimeType,
pub(super) dst: LocalTimeType,
dst_start: RuleDay,
dst_start_time: i32,
dst_end: RuleDay,
dst_end_time: i32,
}
impl AlternateTime {
const fn new(
std: LocalTimeType,
dst: LocalTimeType,
dst_start: RuleDay,
dst_start_time: i32,
dst_end: RuleDay,
dst_end_time: i32,
) -> Result<Self, Error> {
if !((dst_start_time as i64).abs() < SECONDS_PER_WEEK
&& (dst_end_time as i64).abs() < SECONDS_PER_WEEK)
{
return Err(Error::TransitionRule("invalid DST start or end time"));
}
Ok(Self { std, dst, dst_start, dst_start_time, dst_end, dst_end_time })
}
fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
let dst_start_time_in_utc = self.dst_start_time as i64 - self.std.ut_offset as i64;
let dst_end_time_in_utc = self.dst_end_time as i64 - self.dst.ut_offset as i64;
let current_year = match UtcDateTime::from_timespec(unix_time) {
Ok(dt) => dt.year,
Err(error) => return Err(error),
};
if !(i32::MIN + 2..=i32::MAX - 2).contains(¤t_year) {
return Err(Error::OutOfRange("out of range date time"));
}
let current_year_dst_start_unix_time =
self.dst_start.unix_time(current_year, dst_start_time_in_utc);
let current_year_dst_end_unix_time =
self.dst_end.unix_time(current_year, dst_end_time_in_utc);
let is_dst =
match Ord::cmp(¤t_year_dst_start_unix_time, ¤t_year_dst_end_unix_time) {
Ordering::Less | Ordering::Equal => {
if unix_time < current_year_dst_start_unix_time {
let previous_year_dst_end_unix_time =
self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc);
if unix_time < previous_year_dst_end_unix_time {
let previous_year_dst_start_unix_time =
self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc);
previous_year_dst_start_unix_time <= unix_time
} else {
false
}
} else if unix_time < current_year_dst_end_unix_time {
true
} else {
let next_year_dst_start_unix_time =
self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc);
if next_year_dst_start_unix_time <= unix_time {
let next_year_dst_end_unix_time =
self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc);
unix_time < next_year_dst_end_unix_time
} else {
false
}
}
}
Ordering::Greater => {
if unix_time < current_year_dst_end_unix_time {
let previous_year_dst_start_unix_time =
self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc);
if unix_time < previous_year_dst_start_unix_time {
let previous_year_dst_end_unix_time =
self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc);
unix_time < previous_year_dst_end_unix_time
} else {
true
}
} else if unix_time < current_year_dst_start_unix_time {
false
} else {
let next_year_dst_end_unix_time =
self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc);
if next_year_dst_end_unix_time <= unix_time {
let next_year_dst_start_unix_time =
self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc);
next_year_dst_start_unix_time <= unix_time
} else {
true
}
}
}
};
if is_dst {
Ok(&self.dst)
} else {
Ok(&self.std)
}
}
fn find_local_time_type_from_local(
&self,
local_time: i64,
current_year: i32,
) -> Result<crate::MappedLocalTime<LocalTimeType>, Error> {
if !(i32::MIN + 2..=i32::MAX - 2).contains(¤t_year) {
return Err(Error::OutOfRange("out of range date time"));
}
let dst_start_transition_start =
self.dst_start.unix_time(current_year, 0) + i64::from(self.dst_start_time);
let dst_start_transition_end = self.dst_start.unix_time(current_year, 0)
+ i64::from(self.dst_start_time)
+ i64::from(self.dst.ut_offset)
- i64::from(self.std.ut_offset);
let dst_end_transition_start =
self.dst_end.unix_time(current_year, 0) + i64::from(self.dst_end_time);
let dst_end_transition_end = self.dst_end.unix_time(current_year, 0)
+ i64::from(self.dst_end_time)
+ i64::from(self.std.ut_offset)
- i64::from(self.dst.ut_offset);
match self.std.ut_offset.cmp(&self.dst.ut_offset) {
Ordering::Equal => Ok(crate::MappedLocalTime::Single(self.std)),
Ordering::Less => {
if self.dst_start.transition_date(current_year).0
< self.dst_end.transition_date(current_year).0
{
if local_time <= dst_start_transition_start {
Ok(crate::MappedLocalTime::Single(self.std))
} else if local_time > dst_start_transition_start
&& local_time < dst_start_transition_end
{
Ok(crate::MappedLocalTime::None)
} else if local_time >= dst_start_transition_end
&& local_time < dst_end_transition_end
{
Ok(crate::MappedLocalTime::Single(self.dst))
} else if local_time >= dst_end_transition_end
&& local_time <= dst_end_transition_start
{
Ok(crate::MappedLocalTime::Ambiguous(self.std, self.dst))
} else {
Ok(crate::MappedLocalTime::Single(self.std))
}
} else {
if local_time < dst_end_transition_end {
Ok(crate::MappedLocalTime::Single(self.dst))
} else if local_time >= dst_end_transition_end
&& local_time <= dst_end_transition_start
{
Ok(crate::MappedLocalTime::Ambiguous(self.std, self.dst))
} else if local_time > dst_end_transition_end
&& local_time < dst_start_transition_start
{
Ok(crate::MappedLocalTime::Single(self.std))
} else if local_time >= dst_start_transition_start
&& local_time < dst_start_transition_end
{
Ok(crate::MappedLocalTime::None)
} else {
Ok(crate::MappedLocalTime::Single(self.dst))
}
}
}
Ordering::Greater => {
if self.dst_start.transition_date(current_year).0
< self.dst_end.transition_date(current_year).0
{
if local_time < dst_start_transition_end {
Ok(crate::MappedLocalTime::Single(self.std))
} else if local_time >= dst_start_transition_end
&& local_time <= dst_start_transition_start
{
Ok(crate::MappedLocalTime::Ambiguous(self.dst, self.std))
} else if local_time > dst_start_transition_start
&& local_time < dst_end_transition_start
{
Ok(crate::MappedLocalTime::Single(self.dst))
} else if local_time >= dst_end_transition_start
&& local_time < dst_end_transition_end
{
Ok(crate::MappedLocalTime::None)
} else {
Ok(crate::MappedLocalTime::Single(self.std))
}
} else {
if local_time <= dst_end_transition_start {
Ok(crate::MappedLocalTime::Single(self.dst))
} else if local_time > dst_end_transition_start
&& local_time < dst_end_transition_end
{
Ok(crate::MappedLocalTime::None)
} else if local_time >= dst_end_transition_end
&& local_time < dst_start_transition_end
{
Ok(crate::MappedLocalTime::Single(self.std))
} else if local_time >= dst_start_transition_end
&& local_time <= dst_start_transition_start
{
Ok(crate::MappedLocalTime::Ambiguous(self.dst, self.std))
} else {
Ok(crate::MappedLocalTime::Single(self.dst))
}
}
}
}
}
}
fn parse_name<'a>(cursor: &mut Cursor<'a>) -> Result<&'a [u8], Error> {
match cursor.peek() {
Some(b'<') => {}
_ => return Ok(cursor.read_while(u8::is_ascii_alphabetic)?),
}
cursor.read_exact(1)?;
let unquoted = cursor.read_until(|&x| x == b'>')?;
cursor.read_exact(1)?;
Ok(unquoted)
}
fn parse_offset(cursor: &mut Cursor) -> Result<i32, Error> {
let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?;
if !(0..=24).contains(&hour) {
return Err(Error::InvalidTzString("invalid offset hour"));
}
if !(0..=59).contains(&minute) {
return Err(Error::InvalidTzString("invalid offset minute"));
}
if !(0..=59).contains(&second) {
return Err(Error::InvalidTzString("invalid offset second"));
}
Ok(sign * (hour * 3600 + minute * 60 + second))
}
fn parse_rule_time(cursor: &mut Cursor) -> Result<i32, Error> {
let (hour, minute, second) = parse_hhmmss(cursor)?;
if !(0..=24).contains(&hour) {
return Err(Error::InvalidTzString("invalid day time hour"));
}
if !(0..=59).contains(&minute) {
return Err(Error::InvalidTzString("invalid day time minute"));
}
if !(0..=59).contains(&second) {
return Err(Error::InvalidTzString("invalid day time second"));
}
Ok(hour * 3600 + minute * 60 + second)
}
fn parse_rule_time_extended(cursor: &mut Cursor) -> Result<i32, Error> {
let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?;
if !(-167..=167).contains(&hour) {
return Err(Error::InvalidTzString("invalid day time hour"));
}
if !(0..=59).contains(&minute) {
return Err(Error::InvalidTzString("invalid day time minute"));
}
if !(0..=59).contains(&second) {
return Err(Error::InvalidTzString("invalid day time second"));
}
Ok(sign * (hour * 3600 + minute * 60 + second))
}
fn parse_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32), Error> {
let hour = cursor.read_int()?;
let mut minute = 0;
let mut second = 0;
if cursor.read_optional_tag(b":")? {
minute = cursor.read_int()?;
if cursor.read_optional_tag(b":")? {
second = cursor.read_int()?;
}
}
Ok((hour, minute, second))
}
fn parse_signed_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32, i32), Error> {
let mut sign = 1;
if let Some(&c) = cursor.peek() {
if c == b'+' || c == b'-' {
cursor.read_exact(1)?;
if c == b'-' {
sign = -1;
}
}
}
let (hour, minute, second) = parse_hhmmss(cursor)?;
Ok((sign, hour, minute, second))
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum RuleDay {
Julian1WithoutLeap(u16),
Julian0WithLeap(u16),
MonthWeekday {
month: u8,
week: u8,
week_day: u8,
},
}
impl RuleDay {
fn parse(cursor: &mut Cursor, use_string_extensions: bool) -> Result<(Self, i32), Error> {
let date = match cursor.peek() {
Some(b'M') => {
cursor.read_exact(1)?;
let month = cursor.read_int()?;
cursor.read_tag(b".")?;
let week = cursor.read_int()?;
cursor.read_tag(b".")?;
let week_day = cursor.read_int()?;
RuleDay::month_weekday(month, week, week_day)?
}
Some(b'J') => {
cursor.read_exact(1)?;
RuleDay::julian_1(cursor.read_int()?)?
}
_ => RuleDay::julian_0(cursor.read_int()?)?,
};
Ok((
date,
match (cursor.read_optional_tag(b"/")?, use_string_extensions) {
(false, _) => 2 * 3600,
(true, true) => parse_rule_time_extended(cursor)?,
(true, false) => parse_rule_time(cursor)?,
},
))
}
fn julian_1(julian_day_1: u16) -> Result<Self, Error> {
if !(1..=365).contains(&julian_day_1) {
return Err(Error::TransitionRule("invalid rule day julian day"));
}
Ok(RuleDay::Julian1WithoutLeap(julian_day_1))
}
const fn julian_0(julian_day_0: u16) -> Result<Self, Error> {
if julian_day_0 > 365 {
return Err(Error::TransitionRule("invalid rule day julian day"));
}
Ok(RuleDay::Julian0WithLeap(julian_day_0))
}
fn month_weekday(month: u8, week: u8, week_day: u8) -> Result<Self, Error> {
if !(1..=12).contains(&month) {
return Err(Error::TransitionRule("invalid rule day month"));
}
if !(1..=5).contains(&week) {
return Err(Error::TransitionRule("invalid rule day week"));
}
if week_day > 6 {
return Err(Error::TransitionRule("invalid rule day week day"));
}
Ok(RuleDay::MonthWeekday { month, week, week_day })
}
fn transition_date(&self, year: i32) -> (usize, i64) {
match *self {
RuleDay::Julian1WithoutLeap(year_day) => {
let year_day = year_day as i64;
let month = match CUMUL_DAY_IN_MONTHS_NORMAL_YEAR.binary_search(&(year_day - 1)) {
Ok(x) => x + 1,
Err(x) => x,
};
let month_day = year_day - CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1];
(month, month_day)
}
RuleDay::Julian0WithLeap(year_day) => {
let leap = is_leap_year(year) as i64;
let cumul_day_in_months = [
0,
31,
59 + leap,
90 + leap,
120 + leap,
151 + leap,
181 + leap,
212 + leap,
243 + leap,
273 + leap,
304 + leap,
334 + leap,
];
let year_day = year_day as i64;
let month = match cumul_day_in_months.binary_search(&year_day) {
Ok(x) => x + 1,
Err(x) => x,
};
let month_day = 1 + year_day - cumul_day_in_months[month - 1];
(month, month_day)
}
RuleDay::MonthWeekday { month: rule_month, week, week_day } => {
let leap = is_leap_year(year) as i64;
let month = rule_month as usize;
let mut day_in_month = DAY_IN_MONTHS_NORMAL_YEAR[month - 1];
if month == 2 {
day_in_month += leap;
}
let week_day_of_first_month_day =
(4 + days_since_unix_epoch(year, month, 1)).rem_euclid(DAYS_PER_WEEK);
let first_week_day_occurrence_in_month =
1 + (week_day as i64 - week_day_of_first_month_day).rem_euclid(DAYS_PER_WEEK);
let mut month_day =
first_week_day_occurrence_in_month + (week as i64 - 1) * DAYS_PER_WEEK;
if month_day > day_in_month {
month_day -= DAYS_PER_WEEK
}
(month, month_day)
}
}
}
fn unix_time(&self, year: i32, day_time_in_utc: i64) -> i64 {
let (month, month_day) = self.transition_date(year);
days_since_unix_epoch(year, month, month_day) * SECONDS_PER_DAY + day_time_in_utc
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub(crate) struct UtcDateTime {
pub(crate) year: i32,
pub(crate) month: u8,
pub(crate) month_day: u8,
pub(crate) hour: u8,
pub(crate) minute: u8,
pub(crate) second: u8,
}
impl UtcDateTime {
pub(crate) fn from_timespec(unix_time: i64) -> Result<Self, Error> {
let seconds = match unix_time.checked_sub(UNIX_OFFSET_SECS) {
Some(seconds) => seconds,
None => return Err(Error::OutOfRange("out of range operation")),
};
let mut remaining_days = seconds / SECONDS_PER_DAY;
let mut remaining_seconds = seconds % SECONDS_PER_DAY;
if remaining_seconds < 0 {
remaining_seconds += SECONDS_PER_DAY;
remaining_days -= 1;
}
let mut cycles_400_years = remaining_days / DAYS_PER_400_YEARS;
remaining_days %= DAYS_PER_400_YEARS;
if remaining_days < 0 {
remaining_days += DAYS_PER_400_YEARS;
cycles_400_years -= 1;
}
let cycles_100_years = Ord::min(remaining_days / DAYS_PER_100_YEARS, 3);
remaining_days -= cycles_100_years * DAYS_PER_100_YEARS;
let cycles_4_years = Ord::min(remaining_days / DAYS_PER_4_YEARS, 24);
remaining_days -= cycles_4_years * DAYS_PER_4_YEARS;
let remaining_years = Ord::min(remaining_days / DAYS_PER_NORMAL_YEAR, 3);
remaining_days -= remaining_years * DAYS_PER_NORMAL_YEAR;
let mut year = OFFSET_YEAR
+ remaining_years
+ cycles_4_years * 4
+ cycles_100_years * 100
+ cycles_400_years * 400;
let mut month = 0;
while month < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH.len() {
let days = DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month];
if remaining_days < days {
break;
}
remaining_days -= days;
month += 1;
}
month += 2;
if month >= MONTHS_PER_YEAR as usize {
month -= MONTHS_PER_YEAR as usize;
year += 1;
}
month += 1;
let month_day = 1 + remaining_days;
let hour = remaining_seconds / SECONDS_PER_HOUR;
let minute = (remaining_seconds / SECONDS_PER_MINUTE) % MINUTES_PER_HOUR;
let second = remaining_seconds % SECONDS_PER_MINUTE;
let year = match year >= i32::MIN as i64 && year <= i32::MAX as i64 {
true => year as i32,
false => return Err(Error::OutOfRange("i64 is out of range for i32")),
};
Ok(Self {
year,
month: month as u8,
month_day: month_day as u8,
hour: hour as u8,
minute: minute as u8,
second: second as u8,
})
}
}
const NANOSECONDS_PER_SECOND: u32 = 1_000_000_000;
const SECONDS_PER_MINUTE: i64 = 60;
const SECONDS_PER_HOUR: i64 = 3600;
const MINUTES_PER_HOUR: i64 = 60;
const MONTHS_PER_YEAR: i64 = 12;
const DAYS_PER_NORMAL_YEAR: i64 = 365;
const DAYS_PER_4_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 4 + 1;
const DAYS_PER_100_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 100 + 24;
const DAYS_PER_400_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 400 + 97;
const UNIX_OFFSET_SECS: i64 = 951868800;
const OFFSET_YEAR: i64 = 2000;
const DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH: [i64; 12] =
[31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29];
pub(crate) const fn days_since_unix_epoch(year: i32, month: usize, month_day: i64) -> i64 {
let is_leap_year = is_leap_year(year);
let year = year as i64;
let mut result = (year - 1970) * 365;
if year >= 1970 {
result += (year - 1968) / 4;
result -= (year - 1900) / 100;
result += (year - 1600) / 400;
if is_leap_year && month < 3 {
result -= 1;
}
} else {
result += (year - 1972) / 4;
result -= (year - 2000) / 100;
result += (year - 2000) / 400;
if is_leap_year && month >= 3 {
result += 1;
}
}
result += CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1] + month_day - 1;
result
}
pub(crate) const fn is_leap_year(year: i32) -> bool {
year % 400 == 0 || (year % 4 == 0 && year % 100 != 0)
}
#[cfg(test)]
mod tests {
use super::super::timezone::Transition;
use super::super::{Error, TimeZone};
use super::{AlternateTime, LocalTimeType, RuleDay, TransitionRule};
#[test]
fn test_quoted() -> Result<(), Error> {
let transition_rule = TransitionRule::from_tz_string(b"<-03>+3<+03>-3,J1,J365", false)?;
assert_eq!(
transition_rule,
AlternateTime::new(
LocalTimeType::new(-10800, false, Some(b"-03"))?,
LocalTimeType::new(10800, true, Some(b"+03"))?,
RuleDay::julian_1(1)?,
7200,
RuleDay::julian_1(365)?,
7200,
)?
.into()
);
Ok(())
}
#[test]
fn test_full() -> Result<(), Error> {
let tz_string = b"NZST-12:00:00NZDT-13:00:00,M10.1.0/02:00:00,M3.3.0/02:00:00";
let transition_rule = TransitionRule::from_tz_string(tz_string, false)?;
assert_eq!(
transition_rule,
AlternateTime::new(
LocalTimeType::new(43200, false, Some(b"NZST"))?,
LocalTimeType::new(46800, true, Some(b"NZDT"))?,
RuleDay::month_weekday(10, 1, 0)?,
7200,
RuleDay::month_weekday(3, 3, 0)?,
7200,
)?
.into()
);
Ok(())
}
#[test]
fn test_negative_dst() -> Result<(), Error> {
let tz_string = b"IST-1GMT0,M10.5.0,M3.5.0/1";
let transition_rule = TransitionRule::from_tz_string(tz_string, false)?;
assert_eq!(
transition_rule,
AlternateTime::new(
LocalTimeType::new(3600, false, Some(b"IST"))?,
LocalTimeType::new(0, true, Some(b"GMT"))?,
RuleDay::month_weekday(10, 5, 0)?,
7200,
RuleDay::month_weekday(3, 5, 0)?,
3600,
)?
.into()
);
Ok(())
}
#[test]
fn test_negative_hour() -> Result<(), Error> {
let tz_string = b"<-03>3<-02>,M3.5.0/-2,M10.5.0/-1";
assert!(TransitionRule::from_tz_string(tz_string, false).is_err());
assert_eq!(
TransitionRule::from_tz_string(tz_string, true)?,
AlternateTime::new(
LocalTimeType::new(-10800, false, Some(b"-03"))?,
LocalTimeType::new(-7200, true, Some(b"-02"))?,
RuleDay::month_weekday(3, 5, 0)?,
-7200,
RuleDay::month_weekday(10, 5, 0)?,
-3600,
)?
.into()
);
Ok(())
}
#[test]
fn test_all_year_dst() -> Result<(), Error> {
let tz_string = b"EST5EDT,0/0,J365/25";
assert!(TransitionRule::from_tz_string(tz_string, false).is_err());
assert_eq!(
TransitionRule::from_tz_string(tz_string, true)?,
AlternateTime::new(
LocalTimeType::new(-18000, false, Some(b"EST"))?,
LocalTimeType::new(-14400, true, Some(b"EDT"))?,
RuleDay::julian_0(0)?,
0,
RuleDay::julian_1(365)?,
90000,
)?
.into()
);
Ok(())
}
#[test]
fn test_v3_file() -> Result<(), Error> {
let bytes = b"TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x04\0\0\x1c\x20\0\0IST\0TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\x04\0\0\0\0\x7f\xe8\x17\x80\0\0\0\x1c\x20\0\0IST\0\x01\x01\x0aIST-2IDT,M3.4.4/26,M10.5.0\x0a";
let time_zone = TimeZone::from_tz_data(bytes)?;
let time_zone_result = TimeZone::new(
vec![Transition::new(2145916800, 0)],
vec![LocalTimeType::new(7200, false, Some(b"IST"))?],
Vec::new(),
Some(TransitionRule::from(AlternateTime::new(
LocalTimeType::new(7200, false, Some(b"IST"))?,
LocalTimeType::new(10800, true, Some(b"IDT"))?,
RuleDay::month_weekday(3, 4, 4)?,
93600,
RuleDay::month_weekday(10, 5, 0)?,
7200,
)?)),
)?;
assert_eq!(time_zone, time_zone_result);
Ok(())
}
#[test]
fn test_rule_day() -> Result<(), Error> {
let rule_day_j1 = RuleDay::julian_1(60)?;
assert_eq!(rule_day_j1.transition_date(2000), (3, 1));
assert_eq!(rule_day_j1.transition_date(2001), (3, 1));
assert_eq!(rule_day_j1.unix_time(2000, 43200), 951912000);
let rule_day_j0 = RuleDay::julian_0(59)?;
assert_eq!(rule_day_j0.transition_date(2000), (2, 29));
assert_eq!(rule_day_j0.transition_date(2001), (3, 1));
assert_eq!(rule_day_j0.unix_time(2000, 43200), 951825600);
let rule_day_mwd = RuleDay::month_weekday(2, 5, 2)?;
assert_eq!(rule_day_mwd.transition_date(2000), (2, 29));
assert_eq!(rule_day_mwd.transition_date(2001), (2, 27));
assert_eq!(rule_day_mwd.unix_time(2000, 43200), 951825600);
assert_eq!(rule_day_mwd.unix_time(2001, 43200), 983275200);
Ok(())
}
#[test]
fn test_transition_rule() -> Result<(), Error> {
let transition_rule_fixed = TransitionRule::from(LocalTimeType::new(-36000, false, None)?);
assert_eq!(transition_rule_fixed.find_local_time_type(0)?.offset(), -36000);
let transition_rule_dst = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(43200, false, Some(b"NZST"))?,
LocalTimeType::new(46800, true, Some(b"NZDT"))?,
RuleDay::month_weekday(10, 1, 0)?,
7200,
RuleDay::month_weekday(3, 3, 0)?,
7200,
)?);
assert_eq!(transition_rule_dst.find_local_time_type(953384399)?.offset(), 46800);
assert_eq!(transition_rule_dst.find_local_time_type(953384400)?.offset(), 43200);
assert_eq!(transition_rule_dst.find_local_time_type(970322399)?.offset(), 43200);
assert_eq!(transition_rule_dst.find_local_time_type(970322400)?.offset(), 46800);
let transition_rule_negative_dst = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(3600, false, Some(b"IST"))?,
LocalTimeType::new(0, true, Some(b"GMT"))?,
RuleDay::month_weekday(10, 5, 0)?,
7200,
RuleDay::month_weekday(3, 5, 0)?,
3600,
)?);
assert_eq!(transition_rule_negative_dst.find_local_time_type(954032399)?.offset(), 0);
assert_eq!(transition_rule_negative_dst.find_local_time_type(954032400)?.offset(), 3600);
assert_eq!(transition_rule_negative_dst.find_local_time_type(972781199)?.offset(), 3600);
assert_eq!(transition_rule_negative_dst.find_local_time_type(972781200)?.offset(), 0);
let transition_rule_negative_time_1 = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(0, false, None)?,
LocalTimeType::new(0, true, None)?,
RuleDay::julian_0(100)?,
0,
RuleDay::julian_0(101)?,
-86500,
)?);
assert!(transition_rule_negative_time_1.find_local_time_type(8639899)?.is_dst());
assert!(!transition_rule_negative_time_1.find_local_time_type(8639900)?.is_dst());
assert!(!transition_rule_negative_time_1.find_local_time_type(8639999)?.is_dst());
assert!(transition_rule_negative_time_1.find_local_time_type(8640000)?.is_dst());
let transition_rule_negative_time_2 = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(-10800, false, Some(b"-03"))?,
LocalTimeType::new(-7200, true, Some(b"-02"))?,
RuleDay::month_weekday(3, 5, 0)?,
-7200,
RuleDay::month_weekday(10, 5, 0)?,
-3600,
)?);
assert_eq!(
transition_rule_negative_time_2.find_local_time_type(954032399)?.offset(),
-10800
);
assert_eq!(
transition_rule_negative_time_2.find_local_time_type(954032400)?.offset(),
-7200
);
assert_eq!(
transition_rule_negative_time_2.find_local_time_type(972781199)?.offset(),
-7200
);
assert_eq!(
transition_rule_negative_time_2.find_local_time_type(972781200)?.offset(),
-10800
);
let transition_rule_all_year_dst = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(-18000, false, Some(b"EST"))?,
LocalTimeType::new(-14400, true, Some(b"EDT"))?,
RuleDay::julian_0(0)?,
0,
RuleDay::julian_1(365)?,
90000,
)?);
assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702799)?.offset(), -14400);
assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702800)?.offset(), -14400);
Ok(())
}
#[test]
fn test_transition_rule_overflow() -> Result<(), Error> {
let transition_rule_1 = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(-1, false, None)?,
LocalTimeType::new(-1, true, None)?,
RuleDay::julian_1(365)?,
0,
RuleDay::julian_1(1)?,
0,
)?);
let transition_rule_2 = TransitionRule::from(AlternateTime::new(
LocalTimeType::new(1, false, None)?,
LocalTimeType::new(1, true, None)?,
RuleDay::julian_1(365)?,
0,
RuleDay::julian_1(1)?,
0,
)?);
let min_unix_time = -67768100567971200;
let max_unix_time = 67767976233532799;
assert!(matches!(
transition_rule_1.find_local_time_type(min_unix_time),
Err(Error::OutOfRange(_))
));
assert!(matches!(
transition_rule_2.find_local_time_type(max_unix_time),
Err(Error::OutOfRange(_))
));
Ok(())
}
}