1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
use std::num::NonZeroU32;

use crate::front::wgsl::parse::ast;
use crate::{Handle, Span};

use crate::front::wgsl::error::Error;
use crate::front::wgsl::lower::{ExpressionContext, Lowerer};

/// A cooked form of `ast::ConstructorType` that uses Naga types whenever
/// possible.
enum Constructor<T> {
    /// A vector construction whose component type is inferred from the
    /// argument: `vec3(1.0)`.
    PartialVector { size: crate::VectorSize },

    /// A matrix construction whose component type is inferred from the
    /// argument: `mat2x2(1,2,3,4)`.
    PartialMatrix {
        columns: crate::VectorSize,
        rows: crate::VectorSize,
    },

    /// An array whose component type and size are inferred from the arguments:
    /// `array(3,4,5)`.
    PartialArray,

    /// A known Naga type.
    ///
    /// When we match on this type, we need to see the `TypeInner` here, but at
    /// the point that we build this value we'll still need mutable access to
    /// the module later. To avoid borrowing from the module, the type parameter
    /// `T` is `Handle<Type>` initially. Then we use `borrow_inner` to produce a
    /// version holding a tuple `(Handle<Type>, &TypeInner)`.
    Type(T),
}

impl Constructor<Handle<crate::Type>> {
    /// Return an equivalent `Constructor` value that includes borrowed
    /// `TypeInner` values alongside any type handles.
    ///
    /// The returned form is more convenient to match on, since the patterns
    /// can actually see what the handle refers to.
    fn borrow_inner(
        self,
        module: &crate::Module,
    ) -> Constructor<(Handle<crate::Type>, &crate::TypeInner)> {
        match self {
            Constructor::PartialVector { size } => Constructor::PartialVector { size },
            Constructor::PartialMatrix { columns, rows } => {
                Constructor::PartialMatrix { columns, rows }
            }
            Constructor::PartialArray => Constructor::PartialArray,
            Constructor::Type(handle) => Constructor::Type((handle, &module.types[handle].inner)),
        }
    }
}

impl Constructor<(Handle<crate::Type>, &crate::TypeInner)> {
    fn to_error_string(&self, ctx: &ExpressionContext) -> String {
        match *self {
            Self::PartialVector { size } => {
                format!("vec{}<?>", size as u32,)
            }
            Self::PartialMatrix { columns, rows } => {
                format!("mat{}x{}<?>", columns as u32, rows as u32,)
            }
            Self::PartialArray => "array<?, ?>".to_string(),
            Self::Type((handle, _inner)) => handle.to_wgsl(&ctx.module.to_ctx()),
        }
    }
}

enum Components<'a> {
    None,
    One {
        component: Handle<crate::Expression>,
        span: Span,
        ty_inner: &'a crate::TypeInner,
    },
    Many {
        components: Vec<Handle<crate::Expression>>,
        spans: Vec<Span>,
    },
}

impl Components<'_> {
    fn into_components_vec(self) -> Vec<Handle<crate::Expression>> {
        match self {
            Self::None => vec![],
            Self::One { component, .. } => vec![component],
            Self::Many { components, .. } => components,
        }
    }
}

impl<'source> Lowerer<'source, '_> {
    /// Generate Naga IR for a type constructor expression.
    ///
    /// The `constructor` value represents the head of the constructor
    /// expression, which is at least a hint of which type is being built; if
    /// it's one of the `Partial` variants, we need to consider the argument
    /// types as well.
    ///
    /// This is used for [`Construct`] expressions, but also for [`Call`]
    /// expressions, once we've determined that the "callable" (in WGSL spec
    /// terms) is actually a type.
    ///
    /// [`Construct`]: ast::Expression::Construct
    /// [`Call`]: ast::Expression::Call
    pub fn construct(
        &mut self,
        span: Span,
        constructor: &ast::ConstructorType<'source>,
        ty_span: Span,
        components: &[Handle<ast::Expression<'source>>],
        ctx: &mut ExpressionContext<'source, '_, '_>,
    ) -> Result<Handle<crate::Expression>, Error<'source>> {
        use crate::proc::TypeResolution as Tr;

        let constructor_h = self.constructor(constructor, ctx)?;

        let components = match *components {
            [] => Components::None,
            [component] => {
                let span = ctx.ast_expressions.get_span(component);
                let component = self.expression_for_abstract(component, ctx)?;
                let ty_inner = super::resolve_inner!(ctx, component);

                Components::One {
                    component,
                    span,
                    ty_inner,
                }
            }
            ref ast_components @ [_, _, ..] => {
                let components = ast_components
                    .iter()
                    .map(|&expr| self.expression_for_abstract(expr, ctx))
                    .collect::<Result<_, _>>()?;
                let spans = ast_components
                    .iter()
                    .map(|&expr| ctx.ast_expressions.get_span(expr))
                    .collect();

                for &component in &components {
                    ctx.grow_types(component)?;
                }

                Components::Many { components, spans }
            }
        };

        // Even though we computed `constructor` above, wait until now to borrow
        // a reference to the `TypeInner`, so that the component-handling code
        // above can have mutable access to the type arena.
        let constructor = constructor_h.borrow_inner(ctx.module);

        let expr;
        match (components, constructor) {
            // Empty constructor
            (Components::None, dst_ty) => match dst_ty {
                Constructor::Type((result_ty, _)) => {
                    return ctx.append_expression(crate::Expression::ZeroValue(result_ty), span)
                }
                Constructor::PartialVector { .. }
                | Constructor::PartialMatrix { .. }
                | Constructor::PartialArray => {
                    // We have no arguments from which to infer the result type, so
                    // partial constructors aren't acceptable here.
                    return Err(Error::TypeNotInferable(ty_span));
                }
            },

            // Scalar constructor & conversion (scalar -> scalar)
            (
                Components::One {
                    component,
                    ty_inner: &crate::TypeInner::Scalar { .. },
                    ..
                },
                Constructor::Type((_, &crate::TypeInner::Scalar(scalar))),
            ) => {
                expr = crate::Expression::As {
                    expr: component,
                    kind: scalar.kind,
                    convert: Some(scalar.width),
                };
            }

            // Vector conversion (vector -> vector)
            (
                Components::One {
                    component,
                    ty_inner: &crate::TypeInner::Vector { size: src_size, .. },
                    ..
                },
                Constructor::Type((
                    _,
                    &crate::TypeInner::Vector {
                        size: dst_size,
                        scalar: dst_scalar,
                    },
                )),
            ) if dst_size == src_size => {
                expr = crate::Expression::As {
                    expr: component,
                    kind: dst_scalar.kind,
                    convert: Some(dst_scalar.width),
                };
            }

            // Vector conversion (vector -> vector) - partial
            (
                Components::One {
                    component,
                    ty_inner: &crate::TypeInner::Vector { size: src_size, .. },
                    ..
                },
                Constructor::PartialVector { size: dst_size },
            ) if dst_size == src_size => {
                // This is a trivial conversion: the sizes match, and a Partial
                // constructor doesn't specify a scalar type, so nothing can
                // possibly happen.
                return Ok(component);
            }

            // Matrix conversion (matrix -> matrix)
            (
                Components::One {
                    component,
                    ty_inner:
                        &crate::TypeInner::Matrix {
                            columns: src_columns,
                            rows: src_rows,
                            ..
                        },
                    ..
                },
                Constructor::Type((
                    _,
                    &crate::TypeInner::Matrix {
                        columns: dst_columns,
                        rows: dst_rows,
                        scalar: dst_scalar,
                    },
                )),
            ) if dst_columns == src_columns && dst_rows == src_rows => {
                expr = crate::Expression::As {
                    expr: component,
                    kind: dst_scalar.kind,
                    convert: Some(dst_scalar.width),
                };
            }

            // Matrix conversion (matrix -> matrix) - partial
            (
                Components::One {
                    component,
                    ty_inner:
                        &crate::TypeInner::Matrix {
                            columns: src_columns,
                            rows: src_rows,
                            ..
                        },
                    ..
                },
                Constructor::PartialMatrix {
                    columns: dst_columns,
                    rows: dst_rows,
                },
            ) if dst_columns == src_columns && dst_rows == src_rows => {
                // This is a trivial conversion: the sizes match, and a Partial
                // constructor doesn't specify a scalar type, so nothing can
                // possibly happen.
                return Ok(component);
            }

            // Vector constructor (splat) - infer type
            (
                Components::One {
                    component,
                    ty_inner: &crate::TypeInner::Scalar { .. },
                    ..
                },
                Constructor::PartialVector { size },
            ) => {
                expr = crate::Expression::Splat {
                    size,
                    value: component,
                };
            }

            // Vector constructor (splat)
            (
                Components::One {
                    mut component,
                    ty_inner: &crate::TypeInner::Scalar(_),
                    ..
                },
                Constructor::Type((_, &crate::TypeInner::Vector { size, scalar })),
            ) => {
                ctx.convert_slice_to_common_leaf_scalar(
                    std::slice::from_mut(&mut component),
                    scalar,
                )?;
                expr = crate::Expression::Splat {
                    size,
                    value: component,
                };
            }

            // Vector constructor (by elements), partial
            (
                Components::Many {
                    mut components,
                    spans,
                },
                Constructor::PartialVector { size },
            ) => {
                let consensus_scalar =
                    ctx.automatic_conversion_consensus(&components)
                        .map_err(|index| {
                            Error::InvalidConstructorComponentType(spans[index], index as i32)
                        })?;
                ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
                let inner = consensus_scalar.to_inner_vector(size);
                let ty = ctx.ensure_type_exists(inner);
                expr = crate::Expression::Compose { ty, components };
            }

            // Vector constructor (by elements), full type given
            (
                Components::Many { mut components, .. },
                Constructor::Type((ty, &crate::TypeInner::Vector { scalar, .. })),
            ) => {
                ctx.try_automatic_conversions_for_vector(&mut components, scalar, ty_span)?;
                expr = crate::Expression::Compose { ty, components };
            }

            // Matrix constructor (by elements), partial
            (
                Components::Many {
                    mut components,
                    spans,
                },
                Constructor::PartialMatrix { columns, rows },
            ) if components.len() == columns as usize * rows as usize => {
                let consensus_scalar =
                    ctx.automatic_conversion_consensus(&components)
                        .map_err(|index| {
                            Error::InvalidConstructorComponentType(spans[index], index as i32)
                        })?;
                // We actually only accept floating-point elements.
                let consensus_scalar = consensus_scalar
                    .automatic_conversion_combine(crate::Scalar::ABSTRACT_FLOAT)
                    .unwrap_or(consensus_scalar);
                ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
                let vec_ty = ctx.ensure_type_exists(consensus_scalar.to_inner_vector(rows));

                let components = components
                    .chunks(rows as usize)
                    .map(|vec_components| {
                        ctx.append_expression(
                            crate::Expression::Compose {
                                ty: vec_ty,
                                components: Vec::from(vec_components),
                            },
                            Default::default(),
                        )
                    })
                    .collect::<Result<Vec<_>, _>>()?;

                let ty = ctx.ensure_type_exists(crate::TypeInner::Matrix {
                    columns,
                    rows,
                    scalar: consensus_scalar,
                });
                expr = crate::Expression::Compose { ty, components };
            }

            // Matrix constructor (by elements), type given
            (
                Components::Many { mut components, .. },
                Constructor::Type((
                    _,
                    &crate::TypeInner::Matrix {
                        columns,
                        rows,
                        scalar,
                    },
                )),
            ) if components.len() == columns as usize * rows as usize => {
                let element = Tr::Value(crate::TypeInner::Scalar(scalar));
                ctx.try_automatic_conversions_slice(&mut components, &element, ty_span)?;
                let vec_ty = ctx.ensure_type_exists(scalar.to_inner_vector(rows));

                let components = components
                    .chunks(rows as usize)
                    .map(|vec_components| {
                        ctx.append_expression(
                            crate::Expression::Compose {
                                ty: vec_ty,
                                components: Vec::from(vec_components),
                            },
                            Default::default(),
                        )
                    })
                    .collect::<Result<Vec<_>, _>>()?;

                let ty = ctx.ensure_type_exists(crate::TypeInner::Matrix {
                    columns,
                    rows,
                    scalar,
                });
                expr = crate::Expression::Compose { ty, components };
            }

            // Matrix constructor (by columns), partial
            (
                Components::Many {
                    mut components,
                    spans,
                },
                Constructor::PartialMatrix { columns, rows },
            ) => {
                let consensus_scalar =
                    ctx.automatic_conversion_consensus(&components)
                        .map_err(|index| {
                            Error::InvalidConstructorComponentType(spans[index], index as i32)
                        })?;
                ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
                let ty = ctx.ensure_type_exists(crate::TypeInner::Matrix {
                    columns,
                    rows,
                    scalar: consensus_scalar,
                });
                expr = crate::Expression::Compose { ty, components };
            }

            // Matrix constructor (by columns), type given
            (
                Components::Many { mut components, .. },
                Constructor::Type((
                    ty,
                    &crate::TypeInner::Matrix {
                        columns: _,
                        rows,
                        scalar,
                    },
                )),
            ) => {
                let component_ty = crate::TypeInner::Vector { size: rows, scalar };
                ctx.try_automatic_conversions_slice(
                    &mut components,
                    &Tr::Value(component_ty),
                    ty_span,
                )?;
                expr = crate::Expression::Compose { ty, components };
            }

            // Array constructor - infer type
            (components, Constructor::PartialArray) => {
                let mut components = components.into_components_vec();
                if let Ok(consensus_scalar) = ctx.automatic_conversion_consensus(&components) {
                    // Note that this will *not* necessarily convert all the
                    // components to the same type! The `automatic_conversion_consensus`
                    // method only considers the parameters' leaf scalar
                    // types; the parameters themselves could be any mix of
                    // vectors, matrices, and scalars.
                    //
                    // But *if* it is possible for this array construction
                    // expression to be well-typed at all, then all the
                    // parameters must have the same type constructors (vec,
                    // matrix, scalar) applied to their leaf scalars, so
                    // reconciling their scalars is always the right thing to
                    // do. And if this array construction is not well-typed,
                    // these conversions will not make it so, and we can let
                    // validation catch the error.
                    ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
                } else {
                    // There's no consensus scalar. Emit the `Compose`
                    // expression anyway, and let validation catch the problem.
                }

                let base = ctx.register_type(components[0])?;

                let inner = crate::TypeInner::Array {
                    base,
                    size: crate::ArraySize::Constant(
                        NonZeroU32::new(u32::try_from(components.len()).unwrap()).unwrap(),
                    ),
                    stride: {
                        self.layouter.update(ctx.module.to_ctx()).unwrap();
                        self.layouter[base].to_stride()
                    },
                };
                let ty = ctx.ensure_type_exists(inner);

                expr = crate::Expression::Compose { ty, components };
            }

            // Array constructor, explicit type
            (components, Constructor::Type((ty, &crate::TypeInner::Array { base, .. }))) => {
                let mut components = components.into_components_vec();
                ctx.try_automatic_conversions_slice(&mut components, &Tr::Handle(base), ty_span)?;
                expr = crate::Expression::Compose { ty, components };
            }

            // Struct constructor
            (
                components,
                Constructor::Type((ty, &crate::TypeInner::Struct { ref members, .. })),
            ) => {
                let mut components = components.into_components_vec();
                let struct_ty_span = ctx.module.types.get_span(ty);

                // Make a vector of the members' type handles in advance, to
                // avoid borrowing `members` from `ctx` while we generate
                // new code.
                let members: Vec<Handle<crate::Type>> = members.iter().map(|m| m.ty).collect();

                for (component, &ty) in components.iter_mut().zip(&members) {
                    *component =
                        ctx.try_automatic_conversions(*component, &Tr::Handle(ty), struct_ty_span)?;
                }
                expr = crate::Expression::Compose { ty, components };
            }

            // ERRORS

            // Bad conversion (type cast)
            (Components::One { span, ty_inner, .. }, constructor) => {
                let from_type = ty_inner.to_wgsl(&ctx.module.to_ctx()).into();
                return Err(Error::BadTypeCast {
                    span,
                    from_type,
                    to_type: constructor.to_error_string(ctx).into(),
                });
            }

            // Too many parameters for scalar constructor
            (
                Components::Many { spans, .. },
                Constructor::Type((_, &crate::TypeInner::Scalar { .. })),
            ) => {
                let span = spans[1].until(spans.last().unwrap());
                return Err(Error::UnexpectedComponents(span));
            }

            // Other types can't be constructed
            _ => return Err(Error::TypeNotConstructible(ty_span)),
        }

        let expr = ctx.append_expression(expr, span)?;
        Ok(expr)
    }

    /// Build a [`Constructor`] for a WGSL construction expression.
    ///
    /// If `constructor` conveys enough information to determine which Naga [`Type`]
    /// we're actually building (i.e., it's not a partial constructor), then
    /// ensure the `Type` exists in [`ctx.module`], and return
    /// [`Constructor::Type`].
    ///
    /// Otherwise, return the [`Constructor`] partial variant corresponding to
    /// `constructor`.
    ///
    /// [`Type`]: crate::Type
    /// [`ctx.module`]: ExpressionContext::module
    fn constructor<'out>(
        &mut self,
        constructor: &ast::ConstructorType<'source>,
        ctx: &mut ExpressionContext<'source, '_, 'out>,
    ) -> Result<Constructor<Handle<crate::Type>>, Error<'source>> {
        let handle = match *constructor {
            ast::ConstructorType::Scalar(scalar) => {
                let ty = ctx.ensure_type_exists(scalar.to_inner_scalar());
                Constructor::Type(ty)
            }
            ast::ConstructorType::PartialVector { size } => Constructor::PartialVector { size },
            ast::ConstructorType::Vector { size, ty, ty_span } => {
                let ty = self.resolve_ast_type(ty, &mut ctx.as_global())?;
                let scalar = match ctx.module.types[ty].inner {
                    crate::TypeInner::Scalar(sc) => sc,
                    _ => return Err(Error::UnknownScalarType(ty_span)),
                };
                let ty = ctx.ensure_type_exists(crate::TypeInner::Vector { size, scalar });
                Constructor::Type(ty)
            }
            ast::ConstructorType::PartialMatrix { columns, rows } => {
                Constructor::PartialMatrix { columns, rows }
            }
            ast::ConstructorType::Matrix {
                rows,
                columns,
                ty,
                ty_span,
            } => {
                let ty = self.resolve_ast_type(ty, &mut ctx.as_global())?;
                let scalar = match ctx.module.types[ty].inner {
                    crate::TypeInner::Scalar(sc) => sc,
                    _ => return Err(Error::UnknownScalarType(ty_span)),
                };
                let ty = match scalar.kind {
                    crate::ScalarKind::Float => ctx.ensure_type_exists(crate::TypeInner::Matrix {
                        columns,
                        rows,
                        scalar,
                    }),
                    _ => return Err(Error::BadMatrixScalarKind(ty_span, scalar)),
                };
                Constructor::Type(ty)
            }
            ast::ConstructorType::PartialArray => Constructor::PartialArray,
            ast::ConstructorType::Array { base, size } => {
                let base = self.resolve_ast_type(base, &mut ctx.as_global())?;
                let size = self.array_size(size, &mut ctx.as_global())?;

                self.layouter.update(ctx.module.to_ctx()).unwrap();
                let stride = self.layouter[base].to_stride();

                let ty = ctx.ensure_type_exists(crate::TypeInner::Array { base, size, stride });
                Constructor::Type(ty)
            }
            ast::ConstructorType::Type(ty) => Constructor::Type(ty),
        };

        Ok(handle)
    }
}