1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
use std::num::NonZeroU32;
use crate::front::wgsl::parse::ast;
use crate::{Handle, Span};
use crate::front::wgsl::error::Error;
use crate::front::wgsl::lower::{ExpressionContext, Lowerer};
/// A cooked form of `ast::ConstructorType` that uses Naga types whenever
/// possible.
enum Constructor<T> {
/// A vector construction whose component type is inferred from the
/// argument: `vec3(1.0)`.
PartialVector { size: crate::VectorSize },
/// A matrix construction whose component type is inferred from the
/// argument: `mat2x2(1,2,3,4)`.
PartialMatrix {
columns: crate::VectorSize,
rows: crate::VectorSize,
},
/// An array whose component type and size are inferred from the arguments:
/// `array(3,4,5)`.
PartialArray,
/// A known Naga type.
///
/// When we match on this type, we need to see the `TypeInner` here, but at
/// the point that we build this value we'll still need mutable access to
/// the module later. To avoid borrowing from the module, the type parameter
/// `T` is `Handle<Type>` initially. Then we use `borrow_inner` to produce a
/// version holding a tuple `(Handle<Type>, &TypeInner)`.
Type(T),
}
impl Constructor<Handle<crate::Type>> {
/// Return an equivalent `Constructor` value that includes borrowed
/// `TypeInner` values alongside any type handles.
///
/// The returned form is more convenient to match on, since the patterns
/// can actually see what the handle refers to.
fn borrow_inner(
self,
module: &crate::Module,
) -> Constructor<(Handle<crate::Type>, &crate::TypeInner)> {
match self {
Constructor::PartialVector { size } => Constructor::PartialVector { size },
Constructor::PartialMatrix { columns, rows } => {
Constructor::PartialMatrix { columns, rows }
}
Constructor::PartialArray => Constructor::PartialArray,
Constructor::Type(handle) => Constructor::Type((handle, &module.types[handle].inner)),
}
}
}
impl Constructor<(Handle<crate::Type>, &crate::TypeInner)> {
fn to_error_string(&self, ctx: &ExpressionContext) -> String {
match *self {
Self::PartialVector { size } => {
format!("vec{}<?>", size as u32,)
}
Self::PartialMatrix { columns, rows } => {
format!("mat{}x{}<?>", columns as u32, rows as u32,)
}
Self::PartialArray => "array<?, ?>".to_string(),
Self::Type((handle, _inner)) => handle.to_wgsl(&ctx.module.to_ctx()),
}
}
}
enum Components<'a> {
None,
One {
component: Handle<crate::Expression>,
span: Span,
ty_inner: &'a crate::TypeInner,
},
Many {
components: Vec<Handle<crate::Expression>>,
spans: Vec<Span>,
},
}
impl Components<'_> {
fn into_components_vec(self) -> Vec<Handle<crate::Expression>> {
match self {
Self::None => vec![],
Self::One { component, .. } => vec![component],
Self::Many { components, .. } => components,
}
}
}
impl<'source, 'temp> Lowerer<'source, 'temp> {
/// Generate Naga IR for a type constructor expression.
///
/// The `constructor` value represents the head of the constructor
/// expression, which is at least a hint of which type is being built; if
/// it's one of the `Partial` variants, we need to consider the argument
/// types as well.
///
/// This is used for [`Construct`] expressions, but also for [`Call`]
/// expressions, once we've determined that the "callable" (in WGSL spec
/// terms) is actually a type.
///
/// [`Construct`]: ast::Expression::Construct
/// [`Call`]: ast::Expression::Call
pub fn construct(
&mut self,
span: Span,
constructor: &ast::ConstructorType<'source>,
ty_span: Span,
components: &[Handle<ast::Expression<'source>>],
ctx: &mut ExpressionContext<'source, '_, '_>,
) -> Result<Handle<crate::Expression>, Error<'source>> {
use crate::proc::TypeResolution as Tr;
let constructor_h = self.constructor(constructor, ctx)?;
let components = match *components {
[] => Components::None,
[component] => {
let span = ctx.ast_expressions.get_span(component);
let component = self.expression_for_abstract(component, ctx)?;
let ty_inner = super::resolve_inner!(ctx, component);
Components::One {
component,
span,
ty_inner,
}
}
ref ast_components @ [_, _, ..] => {
let components = ast_components
.iter()
.map(|&expr| self.expression_for_abstract(expr, ctx))
.collect::<Result<_, _>>()?;
let spans = ast_components
.iter()
.map(|&expr| ctx.ast_expressions.get_span(expr))
.collect();
for &component in &components {
ctx.grow_types(component)?;
}
Components::Many { components, spans }
}
};
// Even though we computed `constructor` above, wait until now to borrow
// a reference to the `TypeInner`, so that the component-handling code
// above can have mutable access to the type arena.
let constructor = constructor_h.borrow_inner(ctx.module);
let expr;
match (components, constructor) {
// Empty constructor
(Components::None, dst_ty) => match dst_ty {
Constructor::Type((result_ty, _)) => {
return ctx.append_expression(crate::Expression::ZeroValue(result_ty), span)
}
Constructor::PartialVector { .. }
| Constructor::PartialMatrix { .. }
| Constructor::PartialArray => {
// We have no arguments from which to infer the result type, so
// partial constructors aren't acceptable here.
return Err(Error::TypeNotInferable(ty_span));
}
},
// Scalar constructor & conversion (scalar -> scalar)
(
Components::One {
component,
ty_inner: &crate::TypeInner::Scalar { .. },
..
},
Constructor::Type((_, &crate::TypeInner::Scalar(scalar))),
) => {
expr = crate::Expression::As {
expr: component,
kind: scalar.kind,
convert: Some(scalar.width),
};
}
// Vector conversion (vector -> vector)
(
Components::One {
component,
ty_inner: &crate::TypeInner::Vector { size: src_size, .. },
..
},
Constructor::Type((
_,
&crate::TypeInner::Vector {
size: dst_size,
scalar: dst_scalar,
},
)),
) if dst_size == src_size => {
expr = crate::Expression::As {
expr: component,
kind: dst_scalar.kind,
convert: Some(dst_scalar.width),
};
}
// Vector conversion (vector -> vector) - partial
(
Components::One {
component,
ty_inner: &crate::TypeInner::Vector { size: src_size, .. },
..
},
Constructor::PartialVector { size: dst_size },
) if dst_size == src_size => {
// This is a trivial conversion: the sizes match, and a Partial
// constructor doesn't specify a scalar type, so nothing can
// possibly happen.
return Ok(component);
}
// Matrix conversion (matrix -> matrix)
(
Components::One {
component,
ty_inner:
&crate::TypeInner::Matrix {
columns: src_columns,
rows: src_rows,
..
},
..
},
Constructor::Type((
_,
&crate::TypeInner::Matrix {
columns: dst_columns,
rows: dst_rows,
scalar: dst_scalar,
},
)),
) if dst_columns == src_columns && dst_rows == src_rows => {
expr = crate::Expression::As {
expr: component,
kind: dst_scalar.kind,
convert: Some(dst_scalar.width),
};
}
// Matrix conversion (matrix -> matrix) - partial
(
Components::One {
component,
ty_inner:
&crate::TypeInner::Matrix {
columns: src_columns,
rows: src_rows,
..
},
..
},
Constructor::PartialMatrix {
columns: dst_columns,
rows: dst_rows,
},
) if dst_columns == src_columns && dst_rows == src_rows => {
// This is a trivial conversion: the sizes match, and a Partial
// constructor doesn't specify a scalar type, so nothing can
// possibly happen.
return Ok(component);
}
// Vector constructor (splat) - infer type
(
Components::One {
component,
ty_inner: &crate::TypeInner::Scalar { .. },
..
},
Constructor::PartialVector { size },
) => {
expr = crate::Expression::Splat {
size,
value: component,
};
}
// Vector constructor (splat)
(
Components::One {
mut component,
ty_inner: &crate::TypeInner::Scalar(_),
..
},
Constructor::Type((_, &crate::TypeInner::Vector { size, scalar })),
) => {
ctx.convert_slice_to_common_leaf_scalar(
std::slice::from_mut(&mut component),
scalar,
)?;
expr = crate::Expression::Splat {
size,
value: component,
};
}
// Vector constructor (by elements), partial
(
Components::Many {
mut components,
spans,
},
Constructor::PartialVector { size },
) => {
let consensus_scalar =
ctx.automatic_conversion_consensus(&components)
.map_err(|index| {
Error::InvalidConstructorComponentType(spans[index], index as i32)
})?;
ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
let inner = consensus_scalar.to_inner_vector(size);
let ty = ctx.ensure_type_exists(inner);
expr = crate::Expression::Compose { ty, components };
}
// Vector constructor (by elements), full type given
(
Components::Many { mut components, .. },
Constructor::Type((ty, &crate::TypeInner::Vector { scalar, .. })),
) => {
ctx.try_automatic_conversions_for_vector(&mut components, scalar, ty_span)?;
expr = crate::Expression::Compose { ty, components };
}
// Matrix constructor (by elements), partial
(
Components::Many {
mut components,
spans,
},
Constructor::PartialMatrix { columns, rows },
) if components.len() == columns as usize * rows as usize => {
let consensus_scalar =
ctx.automatic_conversion_consensus(&components)
.map_err(|index| {
Error::InvalidConstructorComponentType(spans[index], index as i32)
})?;
// We actually only accept floating-point elements.
let consensus_scalar = consensus_scalar
.automatic_conversion_combine(crate::Scalar::ABSTRACT_FLOAT)
.unwrap_or(consensus_scalar);
ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
let vec_ty = ctx.ensure_type_exists(consensus_scalar.to_inner_vector(rows));
let components = components
.chunks(rows as usize)
.map(|vec_components| {
ctx.append_expression(
crate::Expression::Compose {
ty: vec_ty,
components: Vec::from(vec_components),
},
Default::default(),
)
})
.collect::<Result<Vec<_>, _>>()?;
let ty = ctx.ensure_type_exists(crate::TypeInner::Matrix {
columns,
rows,
scalar: consensus_scalar,
});
expr = crate::Expression::Compose { ty, components };
}
// Matrix constructor (by elements), type given
(
Components::Many { mut components, .. },
Constructor::Type((
_,
&crate::TypeInner::Matrix {
columns,
rows,
scalar,
},
)),
) if components.len() == columns as usize * rows as usize => {
let element = Tr::Value(crate::TypeInner::Scalar(scalar));
ctx.try_automatic_conversions_slice(&mut components, &element, ty_span)?;
let vec_ty = ctx.ensure_type_exists(scalar.to_inner_vector(rows));
let components = components
.chunks(rows as usize)
.map(|vec_components| {
ctx.append_expression(
crate::Expression::Compose {
ty: vec_ty,
components: Vec::from(vec_components),
},
Default::default(),
)
})
.collect::<Result<Vec<_>, _>>()?;
let ty = ctx.ensure_type_exists(crate::TypeInner::Matrix {
columns,
rows,
scalar,
});
expr = crate::Expression::Compose { ty, components };
}
// Matrix constructor (by columns), partial
(
Components::Many {
mut components,
spans,
},
Constructor::PartialMatrix { columns, rows },
) => {
let consensus_scalar =
ctx.automatic_conversion_consensus(&components)
.map_err(|index| {
Error::InvalidConstructorComponentType(spans[index], index as i32)
})?;
ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
let ty = ctx.ensure_type_exists(crate::TypeInner::Matrix {
columns,
rows,
scalar: consensus_scalar,
});
expr = crate::Expression::Compose { ty, components };
}
// Matrix constructor (by columns), type given
(
Components::Many { mut components, .. },
Constructor::Type((
ty,
&crate::TypeInner::Matrix {
columns: _,
rows,
scalar,
},
)),
) => {
let component_ty = crate::TypeInner::Vector { size: rows, scalar };
ctx.try_automatic_conversions_slice(
&mut components,
&Tr::Value(component_ty),
ty_span,
)?;
expr = crate::Expression::Compose { ty, components };
}
// Array constructor - infer type
(components, Constructor::PartialArray) => {
let mut components = components.into_components_vec();
if let Ok(consensus_scalar) = ctx.automatic_conversion_consensus(&components) {
// Note that this will *not* necessarily convert all the
// components to the same type! The `automatic_conversion_consensus`
// method only considers the parameters' leaf scalar
// types; the parameters themselves could be any mix of
// vectors, matrices, and scalars.
//
// But *if* it is possible for this array construction
// expression to be well-typed at all, then all the
// parameters must have the same type constructors (vec,
// matrix, scalar) applied to their leaf scalars, so
// reconciling their scalars is always the right thing to
// do. And if this array construction is not well-typed,
// these conversions will not make it so, and we can let
// validation catch the error.
ctx.convert_slice_to_common_leaf_scalar(&mut components, consensus_scalar)?;
} else {
// There's no consensus scalar. Emit the `Compose`
// expression anyway, and let validation catch the problem.
}
let base = ctx.register_type(components[0])?;
let inner = crate::TypeInner::Array {
base,
size: crate::ArraySize::Constant(
NonZeroU32::new(u32::try_from(components.len()).unwrap()).unwrap(),
),
stride: {
self.layouter.update(ctx.module.to_ctx()).unwrap();
self.layouter[base].to_stride()
},
};
let ty = ctx.ensure_type_exists(inner);
expr = crate::Expression::Compose { ty, components };
}
// Array constructor, explicit type
(components, Constructor::Type((ty, &crate::TypeInner::Array { base, .. }))) => {
let mut components = components.into_components_vec();
ctx.try_automatic_conversions_slice(&mut components, &Tr::Handle(base), ty_span)?;
expr = crate::Expression::Compose { ty, components };
}
// Struct constructor
(
components,
Constructor::Type((ty, &crate::TypeInner::Struct { ref members, .. })),
) => {
let mut components = components.into_components_vec();
let struct_ty_span = ctx.module.types.get_span(ty);
// Make a vector of the members' type handles in advance, to
// avoid borrowing `members` from `ctx` while we generate
// new code.
let members: Vec<Handle<crate::Type>> = members.iter().map(|m| m.ty).collect();
for (component, &ty) in components.iter_mut().zip(&members) {
*component =
ctx.try_automatic_conversions(*component, &Tr::Handle(ty), struct_ty_span)?;
}
expr = crate::Expression::Compose { ty, components };
}
// ERRORS
// Bad conversion (type cast)
(Components::One { span, ty_inner, .. }, constructor) => {
let from_type = ty_inner.to_wgsl(&ctx.module.to_ctx()).into();
return Err(Error::BadTypeCast {
span,
from_type,
to_type: constructor.to_error_string(ctx).into(),
});
}
// Too many parameters for scalar constructor
(
Components::Many { spans, .. },
Constructor::Type((_, &crate::TypeInner::Scalar { .. })),
) => {
let span = spans[1].until(spans.last().unwrap());
return Err(Error::UnexpectedComponents(span));
}
// Other types can't be constructed
_ => return Err(Error::TypeNotConstructible(ty_span)),
}
let expr = ctx.append_expression(expr, span)?;
Ok(expr)
}
/// Build a [`Constructor`] for a WGSL construction expression.
///
/// If `constructor` conveys enough information to determine which Naga [`Type`]
/// we're actually building (i.e., it's not a partial constructor), then
/// ensure the `Type` exists in [`ctx.module`], and return
/// [`Constructor::Type`].
///
/// Otherwise, return the [`Constructor`] partial variant corresponding to
/// `constructor`.
///
/// [`Type`]: crate::Type
/// [`ctx.module`]: ExpressionContext::module
fn constructor<'out>(
&mut self,
constructor: &ast::ConstructorType<'source>,
ctx: &mut ExpressionContext<'source, '_, 'out>,
) -> Result<Constructor<Handle<crate::Type>>, Error<'source>> {
let handle = match *constructor {
ast::ConstructorType::Scalar(scalar) => {
let ty = ctx.ensure_type_exists(scalar.to_inner_scalar());
Constructor::Type(ty)
}
ast::ConstructorType::PartialVector { size } => Constructor::PartialVector { size },
ast::ConstructorType::Vector { size, ty, ty_span } => {
let ty = self.resolve_ast_type(ty, &mut ctx.as_global())?;
let scalar = match ctx.module.types[ty].inner {
crate::TypeInner::Scalar(sc) => sc,
_ => return Err(Error::UnknownScalarType(ty_span)),
};
let ty = ctx.ensure_type_exists(crate::TypeInner::Vector { size, scalar });
Constructor::Type(ty)
}
ast::ConstructorType::PartialMatrix { columns, rows } => {
Constructor::PartialMatrix { columns, rows }
}
ast::ConstructorType::Matrix {
rows,
columns,
ty,
ty_span,
} => {
let ty = self.resolve_ast_type(ty, &mut ctx.as_global())?;
let scalar = match ctx.module.types[ty].inner {
crate::TypeInner::Scalar(sc) => sc,
_ => return Err(Error::UnknownScalarType(ty_span)),
};
let ty = match scalar.kind {
crate::ScalarKind::Float => ctx.ensure_type_exists(crate::TypeInner::Matrix {
columns,
rows,
scalar,
}),
_ => return Err(Error::BadMatrixScalarKind(ty_span, scalar)),
};
Constructor::Type(ty)
}
ast::ConstructorType::PartialArray => Constructor::PartialArray,
ast::ConstructorType::Array { base, size } => {
let base = self.resolve_ast_type(base, &mut ctx.as_global())?;
let size = self.array_size(size, &mut ctx.as_global())?;
self.layouter.update(ctx.module.to_ctx()).unwrap();
let stride = self.layouter[base].to_stride();
let ty = ctx.ensure_type_exists(crate::TypeInner::Array { base, size, stride });
Constructor::Type(ty)
}
ast::ConstructorType::Type(ty) => Constructor::Type(ty),
};
Ok(handle)
}
}