1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{ColorF, ColorU, GradientStop, PremultipliedColorF};
use api::units::{LayoutRect, LayoutSize, LayoutVector2D};
use crate::renderer::{GpuBufferAddress, GpuBufferBuilderF};
use std::hash;
mod linear;
mod radial;
mod conic;
pub use linear::MAX_CACHED_SIZE as LINEAR_MAX_CACHED_SIZE;
pub use linear::*;
pub use radial::*;
pub use conic::*;
/// A hashable gradient stop that can be used in primitive keys.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, MallocSizeOf, PartialEq)]
pub struct GradientStopKey {
pub offset: f32,
pub color: ColorU,
}
impl GradientStopKey {
pub fn empty() -> Self {
GradientStopKey {
offset: 0.0,
color: ColorU::new(0, 0, 0, 0),
}
}
}
impl Into<GradientStopKey> for GradientStop {
fn into(self) -> GradientStopKey {
GradientStopKey {
offset: self.offset,
color: self.color.into(),
}
}
}
// Convert `stop_keys` into a vector of `GradientStop`s, which is a more
// convenient representation for the current gradient builder. Compute the
// minimum stop alpha along the way.
fn stops_and_min_alpha(stop_keys: &[GradientStopKey]) -> (Vec<GradientStop>, f32) {
let mut min_alpha: f32 = 1.0;
let stops = stop_keys.iter().map(|stop_key| {
let color: ColorF = stop_key.color.into();
min_alpha = min_alpha.min(color.a);
GradientStop {
offset: stop_key.offset,
color,
}
}).collect();
(stops, min_alpha)
}
impl Eq for GradientStopKey {}
impl hash::Hash for GradientStopKey {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.offset.to_bits().hash(state);
self.color.hash(state);
}
}
// The gradient entry index for the first color stop
pub const GRADIENT_DATA_FIRST_STOP: usize = 0;
// The gradient entry index for the last color stop
pub const GRADIENT_DATA_LAST_STOP: usize = GRADIENT_DATA_SIZE - 1;
// The start of the gradient data table
pub const GRADIENT_DATA_TABLE_BEGIN: usize = GRADIENT_DATA_FIRST_STOP + 1;
// The exclusive bound of the gradient data table
pub const GRADIENT_DATA_TABLE_END: usize = GRADIENT_DATA_LAST_STOP;
// The number of entries in the gradient data table.
pub const GRADIENT_DATA_TABLE_SIZE: usize = 128;
// The number of entries in a gradient data: GRADIENT_DATA_TABLE_SIZE + first stop entry + last stop entry
pub const GRADIENT_DATA_SIZE: usize = GRADIENT_DATA_TABLE_SIZE + 2;
/// An entry in a gradient data table representing a segment of the gradient
/// color space.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
struct GradientDataEntry {
start_color: PremultipliedColorF,
end_step: PremultipliedColorF,
}
impl GradientDataEntry {
fn white() -> Self {
Self {
start_color: PremultipliedColorF::WHITE,
end_step: PremultipliedColorF::TRANSPARENT,
}
}
}
// TODO(gw): Tidy this up to be a free function / module?
pub struct GradientGpuBlockBuilder {}
impl GradientGpuBlockBuilder {
/// Generate a color ramp filling the indices in [start_idx, end_idx) and interpolating
/// from start_color to end_color.
fn fill_colors(
start_idx: usize,
end_idx: usize,
start_color: &PremultipliedColorF,
end_color: &PremultipliedColorF,
entries: &mut [GradientDataEntry; GRADIENT_DATA_SIZE],
prev_step: &PremultipliedColorF,
) -> PremultipliedColorF {
// Calculate the color difference for individual steps in the ramp.
let inv_steps = 1.0 / (end_idx - start_idx) as f32;
let mut step = PremultipliedColorF {
r: (end_color.r - start_color.r) * inv_steps,
g: (end_color.g - start_color.g) * inv_steps,
b: (end_color.b - start_color.b) * inv_steps,
a: (end_color.a - start_color.a) * inv_steps,
};
// As a subtle form of compression, we ensure that the step values for
// each stop range are the same if and only if they belong to the same
// stop range. However, if two different stop ranges have the same step,
// we need to modify the steps so they compare unequally between ranges.
// This allows to quickly compare if two adjacent stops belong to the
// same range by comparing their steps.
if step == *prev_step {
// Modify the step alpha value as if by nextafter(). The difference
// here should be so small as to be unnoticeable, but yet allow it
// to compare differently.
step.a = f32::from_bits(if step.a == 0.0 { 1 } else { step.a.to_bits() + 1 });
}
let mut cur_color = *start_color;
// Walk the ramp writing start and end colors for each entry.
for index in start_idx .. end_idx {
let entry = &mut entries[index];
entry.start_color = cur_color;
cur_color.r += step.r;
cur_color.g += step.g;
cur_color.b += step.b;
cur_color.a += step.a;
entry.end_step = step;
}
step
}
/// Compute an index into the gradient entry table based on a gradient stop offset. This
/// function maps offsets from [0, 1] to indices in [GRADIENT_DATA_TABLE_BEGIN, GRADIENT_DATA_TABLE_END].
#[inline]
fn get_index(offset: f32) -> usize {
(offset.max(0.0).min(1.0) * GRADIENT_DATA_TABLE_SIZE as f32 +
GRADIENT_DATA_TABLE_BEGIN as f32)
.round() as usize
}
// Build the gradient data from the supplied stops, reversing them if necessary.
pub fn build(
reverse_stops: bool,
gpu_buffer_builder: &mut GpuBufferBuilderF,
src_stops: &[GradientStop],
) -> GpuBufferAddress {
// Preconditions (should be ensured by DisplayListBuilder):
// * we have at least two stops
// * first stop has offset 0.0
// * last stop has offset 1.0
let mut src_stops = src_stops.into_iter();
let mut cur_color = match src_stops.next() {
Some(stop) => {
debug_assert_eq!(stop.offset, 0.0);
stop.color.premultiplied()
}
None => {
error!("Zero gradient stops found!");
PremultipliedColorF::BLACK
}
};
// A table of gradient entries, with two colors per entry, that specify the start and end color
// within the segment of the gradient space represented by that entry. To lookup a gradient result,
// first the entry index is calculated to determine which two colors to interpolate between, then
// the offset within that entry bucket is used to interpolate between the two colors in that entry.
// This layout is motivated by the fact that if one naively tries to store a single color per entry
// and interpolate directly between entries, then hard stops will become softened because the end
// color of an entry actually differs from the start color of the next entry, even though they fall
// at the same edge offset in the gradient space. Instead, the two-color-per-entry layout preserves
// hard stops, as the end color for a given entry can differ from the start color for the following
// entry.
// Colors are stored in RGBA32F format (in the GPU cache). This table requires the gradient color
// stops to be normalized to the range [0, 1]. The first and last entries hold the first and last
// color stop colors respectively, while the entries in between hold the interpolated color stop
// values for the range [0, 1].
// As a further optimization, rather than directly storing the end color, the difference of the end
// color from the start color is stored instead, so that an entry can be evaluated more cheaply
// with start+diff*offset instead of mix(start,end,offset). Further, the color difference in two
// adjacent entries will always be the same if they were generated from the same set of stops/run.
// To allow fast searching of the table, if two adjacent entries generated from different sets of
// stops (a boundary) have the same difference, the floating-point bits of the stop will be nudged
// so that they compare differently without perceptibly altering the interpolation result. This way,
// one can quickly scan the table and recover runs just by comparing the color differences of the
// current and next entry.
// For example, a table with 2 inside entries (startR,startG,startB):(diffR,diffG,diffB) might look
// like so:
// first | 0.0 | 0.5 | last
// (0,0,0):(0,0,0) | (1,0,0):(-1,1,0) | (0,0,1):(0,1,-1) | (1,1,1):(0,0,0)
// ^ solid black ^ red to green ^ blue to green ^ solid white
let mut entries = [GradientDataEntry::white(); GRADIENT_DATA_SIZE];
let mut prev_step = cur_color;
if reverse_stops {
// Fill in the first entry (for reversed stops) with the first color stop
prev_step = GradientGpuBlockBuilder::fill_colors(
GRADIENT_DATA_LAST_STOP,
GRADIENT_DATA_LAST_STOP + 1,
&cur_color,
&cur_color,
&mut entries,
&prev_step,
);
// Fill in the center of the gradient table, generating a color ramp between each consecutive pair
// of gradient stops. Each iteration of a loop will fill the indices in [next_idx, cur_idx). The
// loop will then fill indices in [GRADIENT_DATA_TABLE_BEGIN, GRADIENT_DATA_TABLE_END).
let mut cur_idx = GRADIENT_DATA_TABLE_END;
for next in src_stops {
let next_color = next.color.premultiplied();
let next_idx = Self::get_index(1.0 - next.offset);
if next_idx < cur_idx {
prev_step = GradientGpuBlockBuilder::fill_colors(
next_idx,
cur_idx,
&next_color,
&cur_color,
&mut entries,
&prev_step,
);
cur_idx = next_idx;
}
cur_color = next_color;
}
if cur_idx != GRADIENT_DATA_TABLE_BEGIN {
error!("Gradient stops abruptly at {}, auto-completing to white", cur_idx);
}
// Fill in the last entry (for reversed stops) with the last color stop
GradientGpuBlockBuilder::fill_colors(
GRADIENT_DATA_FIRST_STOP,
GRADIENT_DATA_FIRST_STOP + 1,
&cur_color,
&cur_color,
&mut entries,
&prev_step,
);
} else {
// Fill in the first entry with the first color stop
prev_step = GradientGpuBlockBuilder::fill_colors(
GRADIENT_DATA_FIRST_STOP,
GRADIENT_DATA_FIRST_STOP + 1,
&cur_color,
&cur_color,
&mut entries,
&prev_step,
);
// Fill in the center of the gradient table, generating a color ramp between each consecutive pair
// of gradient stops. Each iteration of a loop will fill the indices in [cur_idx, next_idx). The
// loop will then fill indices in [GRADIENT_DATA_TABLE_BEGIN, GRADIENT_DATA_TABLE_END).
let mut cur_idx = GRADIENT_DATA_TABLE_BEGIN;
for next in src_stops {
let next_color = next.color.premultiplied();
let next_idx = Self::get_index(next.offset);
if next_idx > cur_idx {
prev_step = GradientGpuBlockBuilder::fill_colors(
cur_idx,
next_idx,
&cur_color,
&next_color,
&mut entries,
&prev_step,
);
cur_idx = next_idx;
}
cur_color = next_color;
}
if cur_idx != GRADIENT_DATA_TABLE_END {
error!("Gradient stops abruptly at {}, auto-completing to white", cur_idx);
}
// Fill in the last entry with the last color stop
GradientGpuBlockBuilder::fill_colors(
GRADIENT_DATA_LAST_STOP,
GRADIENT_DATA_LAST_STOP + 1,
&cur_color,
&cur_color,
&mut entries,
&prev_step,
);
}
let mut writer = gpu_buffer_builder.write_blocks(2 * entries.len());
for entry in entries {
writer.push_one(entry.start_color);
writer.push_one(entry.end_step);
}
writer.finish()
}
}
// If the gradient is not tiled we know that any content outside of the clip will not
// be shown. Applying the clip early reduces how much of the gradient we
// render and cache. We do this optimization separately on each axis.
// Returns the offset between the new and old primitive rect origin, to apply to the
// gradient parameters that are relative to the primitive origin.
pub fn apply_gradient_local_clip(
prim_rect: &mut LayoutRect,
stretch_size: &LayoutSize,
tile_spacing: &LayoutSize,
clip_rect: &LayoutRect,
) -> LayoutVector2D {
let w = prim_rect.max.x.min(clip_rect.max.x) - prim_rect.min.x;
let h = prim_rect.max.y.min(clip_rect.max.y) - prim_rect.min.y;
let is_tiled_x = w > stretch_size.width + tile_spacing.width;
let is_tiled_y = h > stretch_size.height + tile_spacing.height;
let mut offset = LayoutVector2D::new(0.0, 0.0);
if !is_tiled_x {
let diff = (clip_rect.min.x - prim_rect.min.x).min(prim_rect.width());
if diff > 0.0 {
prim_rect.min.x += diff;
offset.x = -diff;
}
let diff = prim_rect.max.x - clip_rect.max.x;
if diff > 0.0 {
prim_rect.max.x -= diff;
}
}
if !is_tiled_y {
let diff = (clip_rect.min.y - prim_rect.min.y).min(prim_rect.height());
if diff > 0.0 {
prim_rect.min.y += diff;
offset.y = -diff;
}
let diff = prim_rect.max.y - clip_rect.max.y;
if diff > 0.0 {
prim_rect.max.y -= diff;
}
}
offset
}
#[test]
#[cfg(target_pointer_width = "64")]
fn test_struct_sizes() {
use std::mem;
// The sizes of these structures are critical for performance on a number of
// talos stress tests. If you get a failure here on CI, there's two possibilities:
// (a) You made a structure smaller than it currently is. Great work! Update the
// test expectations and move on.
// (b) You made a structure larger. This is not necessarily a problem, but should only
// be done with care, and after checking if talos performance regresses badly.
assert_eq!(mem::size_of::<LinearGradient>(), 72, "LinearGradient size changed");
assert_eq!(mem::size_of::<LinearGradientTemplate>(), 144, "LinearGradientTemplate size changed");
assert_eq!(mem::size_of::<LinearGradientKey>(), 88, "LinearGradientKey size changed");
assert_eq!(mem::size_of::<RadialGradient>(), 72, "RadialGradient size changed");
assert_eq!(mem::size_of::<RadialGradientTemplate>(), 144, "RadialGradientTemplate size changed");
assert_eq!(mem::size_of::<RadialGradientKey>(), 96, "RadialGradientKey size changed");
assert_eq!(mem::size_of::<ConicGradient>(), 72, "ConicGradient size changed");
assert_eq!(mem::size_of::<ConicGradientTemplate>(), 144, "ConicGradientTemplate size changed");
assert_eq!(mem::size_of::<ConicGradientKey>(), 96, "ConicGradientKey size changed");
}