zerocopy/
wrappers.rs

1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{fmt, hash::Hash};
10
11use super::*;
12use crate::pointer::{invariant::Valid, SizeEq, TransmuteFrom};
13
14/// A type with no alignment requirement.
15///
16/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
17/// has the same size and bit validity as `T`, but not necessarily the same
18/// alignment [or ABI]. This is useful if a type with an alignment requirement
19/// needs to be read from a chunk of memory which provides no alignment
20/// guarantees.
21///
22/// Since `Unalign` has no alignment requirement, the inner `T` may not be
23/// properly aligned in memory. There are five ways to access the inner `T`:
24/// - by value, using [`get`] or [`into_inner`]
25/// - by reference inside of a callback, using [`update`]
26/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
27///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
28///   runtime
29/// - unsafely by reference, using [`deref_unchecked`] or
30///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
31///   the `Unalign` satisfies `T`'s alignment requirement
32/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
33///   [`DerefMut::deref_mut`]
34///
35/// [or ABI]: https://github.com/google/zerocopy/issues/164
36/// [`get`]: Unalign::get
37/// [`into_inner`]: Unalign::into_inner
38/// [`update`]: Unalign::update
39/// [`try_deref`]: Unalign::try_deref
40/// [`try_deref_mut`]: Unalign::try_deref_mut
41/// [`deref_unchecked`]: Unalign::deref_unchecked
42/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
43///
44/// # Example
45///
46/// In this example, we need `EthernetFrame` to have no alignment requirement -
47/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
48/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
49/// alignment requirement so that `EthernetFrame` has no alignment requirement
50/// and can implement `Unaligned`.
51///
52/// ```rust
53/// use zerocopy::*;
54/// # use zerocopy_derive::*;
55/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
56///
57/// # #[derive(PartialEq, Copy, Clone, Debug)]
58/// #[derive(TryFromBytes, KnownLayout, Immutable)]
59/// #[repr(u16)]
60/// enum EtherType {
61///     Ipv4 = 0x0800u16.to_be(),
62///     Arp = 0x0806u16.to_be(),
63///     Ipv6 = 0x86DDu16.to_be(),
64///     # /*
65///     ...
66///     # */
67/// }
68///
69/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
70/// #[repr(C)]
71/// struct EthernetFrame {
72///     src: Mac,
73///     dst: Mac,
74///     ethertype: Unalign<EtherType>,
75///     payload: [u8],
76/// }
77///
78/// let bytes = &[
79///     # 0, 1, 2, 3, 4, 5,
80///     # 6, 7, 8, 9, 10, 11,
81///     # /*
82///     ...
83///     # */
84///     0x86, 0xDD,            // EtherType
85///     0xDE, 0xAD, 0xBE, 0xEF // Payload
86/// ][..];
87///
88/// // PANICS: Guaranteed not to panic because `bytes` is of the right
89/// // length, has the right contents, and `EthernetFrame` has no
90/// // alignment requirement.
91/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
92///
93/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
94/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
95/// ```
96///
97/// # Safety
98///
99/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
100/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
101/// `Unalign<T>` is guaranteed to have alignment 1.
102// NOTE: This type is sound to use with types that need to be dropped. The
103// reason is that the compiler-generated drop code automatically moves all
104// values to aligned memory slots before dropping them in-place. This is not
105// well-documented, but it's hinted at in places like [1] and [2]. However, this
106// also means that `T` must be `Sized`; unless something changes, we can never
107// support unsized `T`. [3]
108//
109// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
110// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
111// [3] https://github.com/google/zerocopy/issues/209
112#[allow(missing_debug_implementations)]
113#[derive(Default, Copy)]
114#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
115#[repr(C, packed)]
116pub struct Unalign<T>(T);
117
118// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
119// smart enough to realize that `Unalign<T>` is always sized and thus emits a
120// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
121impl_known_layout!(T => Unalign<T>);
122
123// FIXME(https://github.com/rust-lang/rust-clippy/issues/16087): Move these
124// attributes below the comment once this Clippy bug is fixed.
125#[cfg_attr(
126    all(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, any(feature = "derive", test)),
127    expect(unused_unsafe)
128)]
129#[cfg_attr(
130    all(
131        not(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
132        any(feature = "derive", test)
133    ),
134    allow(unused_unsafe)
135)]
136// SAFETY:
137// - `Unalign<T>` promises to have alignment 1, and so we don't require that `T:
138//   Unaligned`.
139// - `Unalign<T>` has the same bit validity as `T`, and so it is `FromZeros`,
140//   `FromBytes`, or `IntoBytes` exactly when `T` is as well.
141// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it permits
142//   interior mutation exactly when `T` does.
143// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as `T`, so
144//   `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
145//
146#[allow(clippy::multiple_unsafe_ops_per_block)]
147const _: () = unsafe {
148    impl_or_verify!(T => Unaligned for Unalign<T>);
149    impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
150    impl_or_verify!(
151        T: TryFromBytes => TryFromBytes for Unalign<T>;
152        |c| T::is_bit_valid(c.transmute::<_, _, BecauseImmutable>())
153    );
154    impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
155    impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
156    impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
157};
158
159// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
160// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
161// is not sufficient to implement `Clone` for `Unalign`.
162impl<T: Copy> Clone for Unalign<T> {
163    #[inline(always)]
164    fn clone(&self) -> Unalign<T> {
165        *self
166    }
167}
168
169impl<T> Unalign<T> {
170    /// Constructs a new `Unalign`.
171    #[inline(always)]
172    pub const fn new(val: T) -> Unalign<T> {
173        Unalign(val)
174    }
175
176    /// Consumes `self`, returning the inner `T`.
177    #[inline(always)]
178    pub const fn into_inner(self) -> T {
179        // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
180        // and bit validity as `T`.
181        //
182        // We do this instead of just destructuring in order to prevent
183        // `Unalign`'s `Drop::drop` from being run, since dropping is not
184        // supported in `const fn`s.
185        //
186        // FIXME(https://github.com/rust-lang/rust/issues/73255): Destructure
187        // instead of using unsafe.
188        unsafe { crate::util::transmute_unchecked(self) }
189    }
190
191    /// Attempts to return a reference to the wrapped `T`, failing if `self` is
192    /// not properly aligned.
193    ///
194    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
195    /// `Err`.
196    ///
197    /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
198    /// may prefer [`Deref::deref`], which is infallible.
199    #[inline(always)]
200    pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
201        let inner = Ptr::from_ref(self).transmute();
202        match inner.try_into_aligned() {
203            Ok(aligned) => Ok(aligned.as_ref()),
204            Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
205        }
206    }
207
208    /// Attempts to return a mutable reference to the wrapped `T`, failing if
209    /// `self` is not properly aligned.
210    ///
211    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
212    /// `Err`.
213    ///
214    /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
215    /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
216    #[inline(always)]
217    pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
218        let inner = Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>();
219        match inner.try_into_aligned() {
220            Ok(aligned) => Ok(aligned.as_mut()),
221            Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
222        }
223    }
224
225    /// Returns a reference to the wrapped `T` without checking alignment.
226    ///
227    /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
228    /// may prefer [`Deref::deref`], which is safe.
229    ///
230    /// # Safety
231    ///
232    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
233    #[inline(always)]
234    pub const unsafe fn deref_unchecked(&self) -> &T {
235        // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
236        // at the same memory location as `self`. It has no alignment guarantee,
237        // but the caller has promised that `self` is properly aligned, so we
238        // know that it is sound to create a reference to `T` at this memory
239        // location.
240        //
241        // We use `mem::transmute` instead of `&*self.get_ptr()` because
242        // dereferencing pointers is not stable in `const` on our current MSRV
243        // (1.56 as of this writing).
244        unsafe { mem::transmute(self) }
245    }
246
247    /// Returns a mutable reference to the wrapped `T` without checking
248    /// alignment.
249    ///
250    /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
251    /// callers may prefer [`DerefMut::deref_mut`], which is safe.
252    ///
253    /// # Safety
254    ///
255    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
256    #[inline(always)]
257    pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
258        // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
259        // the same memory location as `self`. It has no alignment guarantee,
260        // but the caller has promised that `self` is properly aligned, so we
261        // know that the pointer itself is aligned, and thus that it is sound to
262        // create a reference to a `T` at this memory location.
263        unsafe { &mut *self.get_mut_ptr() }
264    }
265
266    /// Gets an unaligned raw pointer to the inner `T`.
267    ///
268    /// # Safety
269    ///
270    /// The returned raw pointer is not necessarily aligned to
271    /// `align_of::<T>()`. Most functions which operate on raw pointers require
272    /// those pointers to be aligned, so calling those functions with the result
273    /// of `get_ptr` will result in undefined behavior if alignment is not
274    /// guaranteed using some out-of-band mechanism. In general, the only
275    /// functions which are safe to call with this pointer are those which are
276    /// explicitly documented as being sound to use with an unaligned pointer,
277    /// such as [`read_unaligned`].
278    ///
279    /// Even if the caller is permitted to mutate `self` (e.g. they have
280    /// ownership or a mutable borrow), it is not guaranteed to be sound to
281    /// write through the returned pointer. If writing is required, prefer
282    /// [`get_mut_ptr`] instead.
283    ///
284    /// [`read_unaligned`]: core::ptr::read_unaligned
285    /// [`get_mut_ptr`]: Unalign::get_mut_ptr
286    #[inline(always)]
287    pub const fn get_ptr(&self) -> *const T {
288        ptr::addr_of!(self.0)
289    }
290
291    /// Gets an unaligned mutable raw pointer to the inner `T`.
292    ///
293    /// # Safety
294    ///
295    /// The returned raw pointer is not necessarily aligned to
296    /// `align_of::<T>()`. Most functions which operate on raw pointers require
297    /// those pointers to be aligned, so calling those functions with the result
298    /// of `get_ptr` will result in undefined behavior if alignment is not
299    /// guaranteed using some out-of-band mechanism. In general, the only
300    /// functions which are safe to call with this pointer are those which are
301    /// explicitly documented as being sound to use with an unaligned pointer,
302    /// such as [`read_unaligned`].
303    ///
304    /// [`read_unaligned`]: core::ptr::read_unaligned
305    // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
306    #[inline(always)]
307    pub fn get_mut_ptr(&mut self) -> *mut T {
308        ptr::addr_of_mut!(self.0)
309    }
310
311    /// Sets the inner `T`, dropping the previous value.
312    // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
313    #[inline(always)]
314    pub fn set(&mut self, t: T) {
315        *self = Unalign::new(t);
316    }
317
318    /// Updates the inner `T` by calling a function on it.
319    ///
320    /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
321    /// impl should be preferred over this method when performing updates, as it
322    /// will usually be faster and more ergonomic.
323    ///
324    /// For large types, this method may be expensive, as it requires copying
325    /// `2 * size_of::<T>()` bytes. \[1\]
326    ///
327    /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
328    /// invoke `f` on it directly. Instead, `update` moves it into a
329    /// properly-aligned location in the local stack frame, calls `f` on it, and
330    /// then moves it back to its original location in `self`.
331    ///
332    /// [`T: Unaligned`]: Unaligned
333    #[inline]
334    pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
335        if mem::align_of::<T>() == 1 {
336            // While we advise callers to use `DerefMut` when `T: Unaligned`,
337            // not all callers will be able to guarantee `T: Unaligned` in all
338            // cases. In particular, callers who are themselves providing an API
339            // which is generic over `T` may sometimes be called by *their*
340            // callers with `T` such that `align_of::<T>() == 1`, but cannot
341            // guarantee this in the general case. Thus, this optimization may
342            // sometimes be helpful.
343
344            // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
345            // alignment by definition.
346            let t = unsafe { self.deref_mut_unchecked() };
347            return f(t);
348        }
349
350        // On drop, this moves `copy` out of itself and uses `ptr::write` to
351        // overwrite `slf`.
352        struct WriteBackOnDrop<T> {
353            copy: ManuallyDrop<T>,
354            slf: *mut Unalign<T>,
355        }
356
357        impl<T> Drop for WriteBackOnDrop<T> {
358            fn drop(&mut self) {
359                // SAFETY: We never use `copy` again as required by
360                // `ManuallyDrop::take`.
361                let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
362                // SAFETY: `slf` is the raw pointer value of `self`. We know it
363                // is valid for writes and properly aligned because `self` is a
364                // mutable reference, which guarantees both of these properties.
365                unsafe { ptr::write(self.slf, Unalign::new(copy)) };
366            }
367        }
368
369        // SAFETY: We know that `self` is valid for reads, properly aligned, and
370        // points to an initialized `Unalign<T>` because it is a mutable
371        // reference, which guarantees all of these properties.
372        //
373        // Since `T: !Copy`, it would be unsound in the general case to allow
374        // both the original `Unalign<T>` and the copy to be used by safe code.
375        // We guarantee that the copy is used to overwrite the original in the
376        // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
377        // called before any other safe code executes, soundness is upheld.
378        // While this method can terminate in two ways (by returning normally or
379        // by unwinding due to a panic in `f`), in both cases, `write_back` is
380        // dropped - and its `drop` called - before any other safe code can
381        // execute.
382        let copy = unsafe { ptr::read(self) }.into_inner();
383        let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
384
385        let ret = f(&mut write_back.copy);
386
387        drop(write_back);
388        ret
389    }
390}
391
392impl<T: Copy> Unalign<T> {
393    /// Gets a copy of the inner `T`.
394    // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
395    #[inline(always)]
396    pub fn get(&self) -> T {
397        let Unalign(val) = *self;
398        val
399    }
400}
401
402impl<T: Unaligned> Deref for Unalign<T> {
403    type Target = T;
404
405    #[inline(always)]
406    fn deref(&self) -> &T {
407        Ptr::from_ref(self).transmute().bikeshed_recall_aligned().as_ref()
408    }
409}
410
411impl<T: Unaligned> DerefMut for Unalign<T> {
412    #[inline(always)]
413    fn deref_mut(&mut self) -> &mut T {
414        Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>().bikeshed_recall_aligned().as_mut()
415    }
416}
417
418impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
419    #[inline(always)]
420    fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
421        PartialOrd::partial_cmp(self.deref(), other.deref())
422    }
423}
424
425impl<T: Unaligned + Ord> Ord for Unalign<T> {
426    #[inline(always)]
427    fn cmp(&self, other: &Unalign<T>) -> Ordering {
428        Ord::cmp(self.deref(), other.deref())
429    }
430}
431
432impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
433    #[inline(always)]
434    fn eq(&self, other: &Unalign<T>) -> bool {
435        PartialEq::eq(self.deref(), other.deref())
436    }
437}
438
439impl<T: Unaligned + Eq> Eq for Unalign<T> {}
440
441impl<T: Unaligned + Hash> Hash for Unalign<T> {
442    #[inline(always)]
443    fn hash<H>(&self, state: &mut H)
444    where
445        H: Hasher,
446    {
447        self.deref().hash(state);
448    }
449}
450
451impl<T: Unaligned + Debug> Debug for Unalign<T> {
452    #[inline(always)]
453    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
454        Debug::fmt(self.deref(), f)
455    }
456}
457
458impl<T: Unaligned + Display> Display for Unalign<T> {
459    #[inline(always)]
460    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
461        Display::fmt(self.deref(), f)
462    }
463}
464
465/// A wrapper type to construct uninitialized instances of `T`.
466///
467/// `MaybeUninit` is identical to the [standard library
468/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
469/// types.
470///
471/// # Layout
472///
473/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
474/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
475/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
476/// types, the following are guaranteed:
477/// - Every [valid size][valid-size] for `T` is a valid size for
478///   `MaybeUninit<T>` and vice versa
479/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
480///   pointer metadata, `t` and `m` address the same number of bytes (and
481///   likewise for `*mut`)
482///
483/// [core-maybe-uninit]: core::mem::MaybeUninit
484/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
485#[repr(transparent)]
486#[doc(hidden)]
487pub struct MaybeUninit<T: ?Sized + KnownLayout>(
488    // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
489    // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
490    // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
491    // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
492    // it admits uninitialized bytes in all positions. Because `MaybeUninit` is
493    // marked `repr(transparent)`, these properties additionally hold true for
494    // `Self`.
495    T::MaybeUninit,
496);
497
498#[doc(hidden)]
499impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
500    /// Constructs a `MaybeUninit<T>` initialized with the given value.
501    #[inline(always)]
502    pub fn new(val: T) -> Self
503    where
504        T: Sized,
505        Self: Sized,
506    {
507        // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
508        // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
509        // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
510        //
511        // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
512        // invariant on `T::MaybeUninit`:
513        // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
514        // - All byte sequences of the correct size are valid values of
515        //   `T::MaybeUninit`.
516        //
517        // Second, it is additionally valid to transmute from `T::MaybeUninit`
518        // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
519        // `repr(transparent)` wrapper around `T::MaybeUninit`.
520        //
521        // These two transmutes are collapsed into one so we don't need to add a
522        // `T::MaybeUninit: Sized` bound to this function's `where` clause.
523        unsafe { crate::util::transmute_unchecked(val) }
524    }
525
526    /// Constructs an uninitialized `MaybeUninit<T>`.
527    #[must_use]
528    #[inline(always)]
529    pub fn uninit() -> Self
530    where
531        T: Sized,
532        Self: Sized,
533    {
534        let uninit = CoreMaybeUninit::<T>::uninit();
535        // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
536        // `MaybeUninit<T>` since they both admit uninitialized bytes in all
537        // positions, and they have the same size (i.e., that of `T`).
538        //
539        // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
540        // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
541        // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
542        // accurately reflects the layout of `T`.
543        //
544        // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
545        // uninitialized bytes in all positions.
546        //
547        // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
548        //
549        //   `MaybeUninit<T>` is guaranteed to have the same size, alignment,
550        //   and ABI as `T`
551        unsafe { crate::util::transmute_unchecked(uninit) }
552    }
553
554    /// Creates a `Box<MaybeUninit<T>>`.
555    ///
556    /// This function is useful for allocating large, uninit values on the heap
557    /// without ever creating a temporary instance of `Self` on the stack.
558    ///
559    /// # Errors
560    ///
561    /// Returns an error on allocation failure. Allocation failure is guaranteed
562    /// never to cause a panic or an abort.
563    #[cfg(feature = "alloc")]
564    #[inline]
565    pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
566        // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
567        // `new_box`. The referent of the pointer returned by `alloc` (and,
568        // consequently, the `Box` derived from it) is a valid instance of
569        // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
570        // (un)initialized bytes.
571        unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
572    }
573
574    /// Extracts the value from the `MaybeUninit<T>` container.
575    ///
576    /// # Safety
577    ///
578    /// The caller must ensure that `self` is in an bit-valid state. Depending
579    /// on subsequent use, it may also need to be in a library-valid state.
580    #[inline(always)]
581    pub unsafe fn assume_init(self) -> T
582    where
583        T: Sized,
584        Self: Sized,
585    {
586        // SAFETY: The caller guarantees that `self` is in an bit-valid state.
587        unsafe { crate::util::transmute_unchecked(self) }
588    }
589}
590
591impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
592    #[inline]
593    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
594        f.pad(core::any::type_name::<Self>())
595    }
596}
597
598#[allow(unreachable_pub)] // False positive on MSRV
599#[doc(hidden)]
600pub use read_only_def::*;
601mod read_only_def {
602    /// A read-only wrapper.
603    ///
604    /// A `ReadOnly<T>` disables any interior mutability in `T`, ensuring that
605    /// a `&ReadOnly<T>` is genuinely read-only. Thus, `ReadOnly<T>` is
606    /// [`Immutable`] regardless of whether `T` is.
607    ///
608    /// Note that `&mut ReadOnly<T>` still permits mutation – the read-only
609    /// property only applies to shared references.
610    ///
611    /// [`Immutable`]: crate::Immutable
612    #[repr(transparent)]
613    pub struct ReadOnly<T: ?Sized> {
614        // INVARIANT: `inner` is never mutated through a `&ReadOnly<T>`
615        // reference.
616        inner: T,
617    }
618
619    impl<T> ReadOnly<T> {
620        /// Creates a new `ReadOnly`.
621        #[must_use]
622        #[inline(always)]
623        pub const fn new(t: T) -> ReadOnly<T> {
624            ReadOnly { inner: t }
625        }
626
627        /// Returns the inner value.
628        #[must_use]
629        #[inline(always)]
630        pub fn into_inner(r: ReadOnly<T>) -> T {
631            r.inner
632        }
633    }
634
635    impl<T: ?Sized> ReadOnly<T> {
636        #[inline(always)]
637        pub(crate) fn as_mut(r: &mut ReadOnly<T>) -> &mut T {
638            // SAFETY: `r: &mut ReadOnly`, so this doesn't violate the invariant
639            // that `inner` is never mutated through a `&ReadOnly<T>` reference.
640            &mut r.inner
641        }
642
643        /// # Safety
644        ///
645        /// The caller promises not to mutate the referent (i.e., via interior
646        /// mutation).
647        pub(crate) const unsafe fn as_ref_unchecked(r: &ReadOnly<T>) -> &T {
648            // SAFETY: The caller promises not to mutate the referent.
649            &r.inner
650        }
651    }
652}
653
654// SAFETY: `ReadOnly<T>` is a `#[repr(transparent)` wrapper around `T`.
655const _: () = unsafe {
656    unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ReadOnly<T>);
657};
658
659#[allow(clippy::multiple_unsafe_ops_per_block)]
660// SAFETY:
661// - `ReadOnly<T>` has the same alignment as `T`, and so it is `Unaligned`
662//   exactly when `T` is as well.
663// - `ReadOnly<T>` has the same bit validity as `T`, and so this `is_bit_valid`
664//   implementation is correct, and thus the `TryFromBytes` impl is sound.
665// - `ReadOnly<T>` has the same bit validity as `T`, and so it is `FromZeros`,
666//   `FromBytes`, and `IntoBytes` exactly when `T` is as well.
667const _: () = unsafe {
668    unsafe_impl!(T: ?Sized + Unaligned => Unaligned for ReadOnly<T>);
669    unsafe_impl!(
670        T: ?Sized + TryFromBytes => TryFromBytes for ReadOnly<T>;
671        |c| T::is_bit_valid(c.cast::<_, <ReadOnly<T> as SizeEq<ReadOnly<ReadOnly<T>>>>::CastFrom, _>())
672    );
673    unsafe_impl!(T: ?Sized + FromZeros => FromZeros for ReadOnly<T>);
674    unsafe_impl!(T: ?Sized + FromBytes => FromBytes for ReadOnly<T>);
675    unsafe_impl!(T: ?Sized + IntoBytes => IntoBytes for ReadOnly<T>);
676};
677
678// SAFETY: By invariant, `inner` is never mutated through a `&ReadOnly<T>`
679// reference.
680const _: () = unsafe {
681    unsafe_impl!(T: ?Sized => Immutable for ReadOnly<T>);
682};
683
684const _: () = {
685    use crate::pointer::cast::CastExact;
686
687    // SAFETY: `ReadOnly<T>` has the same layout as `T`.
688    define_cast!(unsafe { pub CastFromReadOnly<T: ?Sized> = ReadOnly<T> => T});
689    // SAFETY: `ReadOnly<T>` has the same layout as `T`.
690    unsafe impl<T: ?Sized> CastExact<ReadOnly<T>, T> for CastFromReadOnly {}
691    // SAFETY: `ReadOnly<T>` has the same layout as `T`.
692    define_cast!(unsafe { pub CastToReadOnly<T: ?Sized> = T => ReadOnly<T>});
693    // SAFETY: `ReadOnly<T>` has the same layout as `T`.
694    unsafe impl<T: ?Sized> CastExact<T, ReadOnly<T>> for CastToReadOnly {}
695
696    impl<T: ?Sized> SizeEq<ReadOnly<T>> for T {
697        type CastFrom = CastFromReadOnly;
698    }
699
700    impl<T: ?Sized> SizeEq<T> for ReadOnly<T> {
701        type CastFrom = CastToReadOnly;
702    }
703};
704
705// SAFETY: `ReadOnly<T>` is a `#[repr(transparent)]` wrapper around `T`, and so
706// it has the same bit validity as `T`.
707unsafe impl<T: ?Sized> TransmuteFrom<T, Valid, Valid> for ReadOnly<T> {}
708
709// SAFETY: `ReadOnly<T>` is a `#[repr(transparent)]` wrapper around `T`, and so
710// it has the same bit validity as `T`.
711unsafe impl<T: ?Sized> TransmuteFrom<ReadOnly<T>, Valid, Valid> for T {}
712
713impl<'a, T: ?Sized + Immutable> From<&'a T> for &'a ReadOnly<T> {
714    #[inline(always)]
715    fn from(t: &'a T) -> &'a ReadOnly<T> {
716        let ro = Ptr::from_ref(t).transmute::<_, _, (_, _)>();
717        // SAFETY: `ReadOnly<T>` has the same alignment as `T`, and
718        // `Ptr::from_ref` produces an aligned `Ptr`.
719        let ro = unsafe { ro.assume_alignment() };
720        ro.as_ref()
721    }
722}
723
724impl<T: ?Sized + Immutable> Deref for ReadOnly<T> {
725    type Target = T;
726
727    #[inline(always)]
728    fn deref(&self) -> &Self::Target {
729        // SAFETY: By `T: Immutable`, `&T` doesn't permit interior mutation.
730        unsafe { ReadOnly::as_ref_unchecked(self) }
731    }
732}
733
734impl<T: ?Sized + Immutable> DerefMut for ReadOnly<T> {
735    #[inline(always)]
736    fn deref_mut(&mut self) -> &mut Self::Target {
737        ReadOnly::as_mut(self)
738    }
739}
740
741impl<T: ?Sized + Immutable + Debug> Debug for ReadOnly<T> {
742    #[inline(always)]
743    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
744        self.deref().fmt(f)
745    }
746}
747
748// SAFETY: See safety comment on `ProjectToTag`.
749unsafe impl<T: HasTag + ?Sized> HasTag for ReadOnly<T> {
750    #[allow(clippy::missing_inline_in_public_items)]
751    fn only_derive_is_allowed_to_implement_this_trait()
752    where
753        Self: Sized,
754    {
755    }
756
757    type Tag = T::Tag;
758
759    // SAFETY: `<T as SizeEq<ReadOnly<T>>>::CastFrom` is a no-op projection that
760    // produces a pointer with the same referent. By invariant, for any `Ptr<'_,
761    // T, I>` it is sound to use `T::ProjectToTag` to project to a `Ptr<'_,
762    // T::Tag, I>`. Since `ReadOnly<T>` has the same layout and validity as `T`,
763    // the same is true of projecting from a `Ptr<'_, ReadOnly<T>, I>`.
764    type ProjectToTag = crate::pointer::cast::TransitiveProject<
765        T,
766        <T as SizeEq<ReadOnly<T>>>::CastFrom,
767        T::ProjectToTag,
768    >;
769}
770
771// SAFETY: `ReadOnly<T>` is a `#[repr(transparent)]` wrapper around `T`, and so
772// has the same fields at the same offsets. Thus, it satisfies the safety
773// invariants of `HasField<Field, VARIANT_ID, FIELD_ID>` for field `f` exactly
774// when `T` does, as guaranteed by the `T: HasField` bound:
775// - If `VARIANT_ID` is `STRUCT_VARIANT_ID` or `UNION_VARIANT_ID`, then `T` has
776//   the layout of a struct or union type. Since `ReadOnly<T>` is a transparent
777//   wrapper around `T`, it does too. Otherwise, if `VARIANT_ID` is an enum
778//   variant index, then `T` has the layout of an enum type, and `ReadOnly<T>`
779//   does too.
780// - By `T: HasField<_, _, FIELD_ID>`:
781//   - `T` has a field `f` with name `n` such that
782//     `FIELD_ID = zerocopy::ident_id!(n)` or at index `i` such that
783//     `FIELD_ID = zerocopy::ident_id!(i)`.
784//   - `Field` has the same visibility as `f`.
785//   - `T::Type` has the same type as `f`. Thus, `ReadOnly<T::Type>` has the
786//     same type as `f`, wrapped in `ReadOnly`.
787//
788// `project` satisfies its post-condition – namely, that the returned pointer
789// refers to a non-strict subset of the bytes of `slf`'s referent, and has the
790// same provenance as `slf` – because all intermediate operations satisfy those
791// same conditions.
792unsafe impl<T, Field, const VARIANT_ID: i128, const FIELD_ID: i128>
793    HasField<Field, VARIANT_ID, FIELD_ID> for ReadOnly<T>
794where
795    T: HasField<Field, VARIANT_ID, FIELD_ID> + ?Sized,
796{
797    #[allow(clippy::missing_inline_in_public_items)]
798    fn only_derive_is_allowed_to_implement_this_trait()
799    where
800        Self: Sized,
801    {
802    }
803
804    type Type = ReadOnly<T::Type>;
805
806    #[inline(always)]
807    fn project(slf: PtrInner<'_, Self>) -> *mut ReadOnly<T::Type> {
808        slf.project::<_, <T as SizeEq<ReadOnly<T>>>::CastFrom>()
809            .project::<_, crate::pointer::cast::Projection<Field, VARIANT_ID, FIELD_ID>>()
810            .project::<_, <ReadOnly<T::Type> as SizeEq<T::Type>>::CastFrom>()
811            .as_non_null()
812            .as_ptr()
813    }
814}
815
816// SAFETY: `ReadOnly<T>` is a `#[repr(transparent)]` wrapper around `T`, and so
817// has the same fields at the same offsets. `is_projectable` simply delegates to
818// `T::is_projectable`, which is sound because a `Ptr<'_, ReadOnly<T>, I>` will
819// be projectable exactly when a `Ptr<'_, T, I>` referent is.
820unsafe impl<T, Field, I, const VARIANT_ID: i128, const FIELD_ID: i128>
821    ProjectField<Field, I, VARIANT_ID, FIELD_ID> for ReadOnly<T>
822where
823    T: ProjectField<Field, I, VARIANT_ID, FIELD_ID> + ?Sized,
824    I: invariant::Invariants,
825{
826    #[allow(clippy::missing_inline_in_public_items)]
827    fn only_derive_is_allowed_to_implement_this_trait()
828    where
829        Self: Sized,
830    {
831    }
832
833    type Invariants = T::Invariants;
834
835    type Error = T::Error;
836
837    #[inline(always)]
838    fn is_projectable<'a>(ptr: Ptr<'a, Self::Tag, I>) -> Result<(), Self::Error> {
839        T::is_projectable(ptr)
840    }
841}
842
843#[cfg(test)]
844mod tests {
845    use core::panic::AssertUnwindSafe;
846
847    use super::*;
848    use crate::util::testutil::*;
849
850    #[test]
851    fn test_unalign() {
852        // Test methods that don't depend on alignment.
853        let mut u = Unalign::new(AU64(123));
854        assert_eq!(u.get(), AU64(123));
855        assert_eq!(u.into_inner(), AU64(123));
856        assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
857        assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
858        u.set(AU64(321));
859        assert_eq!(u.get(), AU64(321));
860
861        // Test methods that depend on alignment (when alignment is satisfied).
862        let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
863        assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
864        assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
865        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
866        assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
867        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
868        assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
869        *u.t.try_deref_mut().unwrap() = AU64(321);
870        assert_eq!(u.t.get(), AU64(321));
871
872        // Test methods that depend on alignment (when alignment is not
873        // satisfied).
874        let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
875        assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
876        assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
877
878        // Test methods that depend on `T: Unaligned`.
879        let mut u = Unalign::new(123u8);
880        assert_eq!(u.try_deref(), Ok(&123));
881        assert_eq!(u.try_deref_mut(), Ok(&mut 123));
882        assert_eq!(u.deref(), &123);
883        assert_eq!(u.deref_mut(), &mut 123);
884        *u = 21;
885        assert_eq!(u.get(), 21);
886
887        // Test that some `Unalign` functions and methods are `const`.
888        const _UNALIGN: Unalign<u64> = Unalign::new(0);
889        const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
890        const _U64: u64 = _UNALIGN.into_inner();
891        // Make sure all code is considered "used".
892        //
893        // FIXME(https://github.com/rust-lang/rust/issues/104084): Remove this
894        // attribute.
895        #[allow(dead_code)]
896        const _: () = {
897            let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
898            // Make sure that `deref_unchecked` is `const`.
899            //
900            // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
901            let au64 = unsafe { x.t.deref_unchecked() };
902            match au64 {
903                AU64(123) => {}
904                _ => const_unreachable!(),
905            }
906        };
907    }
908
909    #[test]
910    fn test_unalign_update() {
911        let mut u = Unalign::new(AU64(123));
912        u.update(|a| a.0 += 1);
913        assert_eq!(u.get(), AU64(124));
914
915        // Test that, even if the callback panics, the original is still
916        // correctly overwritten. Use a `Box` so that Miri is more likely to
917        // catch any unsoundness (which would likely result in two `Box`es for
918        // the same heap object, which is the sort of thing that Miri would
919        // probably catch).
920        let mut u = Unalign::new(Box::new(AU64(123)));
921        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
922            u.update(|a| {
923                a.0 += 1;
924                panic!();
925            })
926        }));
927        assert!(res.is_err());
928        assert_eq!(u.into_inner(), Box::new(AU64(124)));
929
930        // Test the align_of::<T>() == 1 optimization.
931        let mut u = Unalign::new([0u8, 1]);
932        u.update(|a| a[0] += 1);
933        assert_eq!(u.get(), [1u8, 1]);
934    }
935
936    #[test]
937    fn test_unalign_copy_clone() {
938        // Test that `Copy` and `Clone` do not cause soundness issues. This test
939        // is mainly meant to exercise UB that would be caught by Miri.
940
941        // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
942        let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
943        #[allow(clippy::clone_on_copy)]
944        let v = u.t.clone();
945        let w = u.t;
946        assert_eq!(u.t.get(), v.get());
947        assert_eq!(u.t.get(), w.get());
948        assert_eq!(v.get(), w.get());
949    }
950
951    #[test]
952    fn test_unalign_trait_impls() {
953        let zero = Unalign::new(0u8);
954        let one = Unalign::new(1u8);
955
956        assert!(zero < one);
957        assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
958        assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
959
960        assert_ne!(zero, one);
961        assert_eq!(zero, zero);
962        assert!(!PartialEq::eq(&zero, &one));
963        assert!(PartialEq::eq(&zero, &zero));
964
965        fn hash<T: Hash>(t: &T) -> u64 {
966            let mut h = std::collections::hash_map::DefaultHasher::new();
967            t.hash(&mut h);
968            h.finish()
969        }
970
971        assert_eq!(hash(&zero), hash(&0u8));
972        assert_eq!(hash(&one), hash(&1u8));
973
974        assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
975        assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
976        assert_eq!(format!("{}", zero), format!("{}", 0u8));
977        assert_eq!(format!("{}", one), format!("{}", 1u8));
978    }
979
980    #[test]
981    #[allow(clippy::as_conversions)]
982    fn test_maybe_uninit() {
983        // int
984        {
985            let input = 42;
986            let uninit = MaybeUninit::new(input);
987            // SAFETY: `uninit` is in an initialized state
988            let output = unsafe { uninit.assume_init() };
989            assert_eq!(input, output);
990        }
991
992        // thin ref
993        {
994            let input = 42;
995            let uninit = MaybeUninit::new(&input);
996            // SAFETY: `uninit` is in an initialized state
997            let output = unsafe { uninit.assume_init() };
998            assert_eq!(&input as *const _, output as *const _);
999            assert_eq!(input, *output);
1000        }
1001
1002        // wide ref
1003        {
1004            let input = [1, 2, 3, 4];
1005            let uninit = MaybeUninit::new(&input[..]);
1006            // SAFETY: `uninit` is in an initialized state
1007            let output = unsafe { uninit.assume_init() };
1008            assert_eq!(&input[..] as *const _, output as *const _);
1009            assert_eq!(input, *output);
1010        }
1011    }
1012    #[test]
1013    fn test_maybe_uninit_uninit() {
1014        let _uninit = MaybeUninit::<u8>::uninit();
1015        // Cannot check value, but can check it compiles and runs
1016    }
1017
1018    #[test]
1019    #[cfg(feature = "alloc")]
1020    fn test_maybe_uninit_new_boxed_uninit() {
1021        let _boxed = MaybeUninit::<u8>::new_boxed_uninit(()).unwrap();
1022    }
1023
1024    #[test]
1025    fn test_maybe_uninit_debug() {
1026        let uninit = MaybeUninit::<u8>::uninit();
1027        assert!(format!("{:?}", uninit).contains("MaybeUninit"));
1028    }
1029}