1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Memory profiling functions.

use std::borrow::ToOwned;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::thread;
use std::time::{Duration, Instant};

use ipc_channel::ipc::{self, IpcReceiver};
use ipc_channel::router::ROUTER;
use profile_traits::mem::{
    ProfilerChan, ProfilerMsg, ReportKind, Reporter, ReporterRequest, ReportsChan,
};
use profile_traits::path;

pub struct Profiler {
    /// The port through which messages are received.
    pub port: IpcReceiver<ProfilerMsg>,

    /// Registered memory reporters.
    reporters: HashMap<String, Reporter>,

    /// Instant at which this profiler was created.
    created: Instant,
}

const JEMALLOC_HEAP_ALLOCATED_STR: &str = "jemalloc-heap-allocated";
const SYSTEM_HEAP_ALLOCATED_STR: &str = "system-heap-allocated";

impl Profiler {
    pub fn create(period: Option<f64>) -> ProfilerChan {
        let (chan, port) = ipc::channel().unwrap();

        // Create the timer thread if a period was provided.
        if let Some(period) = period {
            let chan = chan.clone();
            thread::Builder::new()
                .name("MemoryProfTimer".to_owned())
                .spawn(move || loop {
                    thread::sleep(Duration::from_secs_f64(period));
                    if chan.send(ProfilerMsg::Print).is_err() {
                        break;
                    }
                })
                .expect("Thread spawning failed");
        }

        // Always spawn the memory profiler. If there is no timer thread it won't receive regular
        // `Print` events, but it will still receive the other events.
        thread::Builder::new()
            .name("MemoryProfiler".to_owned())
            .spawn(move || {
                let mut mem_profiler = Profiler::new(port);
                mem_profiler.start();
            })
            .expect("Thread spawning failed");

        let mem_profiler_chan = ProfilerChan(chan);

        // Register the system memory reporter, which will run on its own thread. It never needs to
        // be unregistered, because as long as the memory profiler is running the system memory
        // reporter can make measurements.
        let (system_reporter_sender, system_reporter_receiver) = ipc::channel().unwrap();
        ROUTER.add_typed_route(
            system_reporter_receiver,
            Box::new(|message| {
                let request: ReporterRequest = message.unwrap();
                system_reporter::collect_reports(request)
            }),
        );
        mem_profiler_chan.send(ProfilerMsg::RegisterReporter(
            "system".to_owned(),
            Reporter(system_reporter_sender),
        ));

        mem_profiler_chan
    }

    pub fn new(port: IpcReceiver<ProfilerMsg>) -> Profiler {
        Profiler {
            port,
            reporters: HashMap::new(),
            created: Instant::now(),
        }
    }

    pub fn start(&mut self) {
        while let Ok(msg) = self.port.recv() {
            if !self.handle_msg(msg) {
                break;
            }
        }
    }

    fn handle_msg(&mut self, msg: ProfilerMsg) -> bool {
        match msg {
            ProfilerMsg::RegisterReporter(name, reporter) => {
                // Panic if it has already been registered.
                let name_clone = name.clone();
                match self.reporters.insert(name, reporter) {
                    None => true,
                    Some(_) => panic!("RegisterReporter: '{}' name is already in use", name_clone),
                }
            },

            ProfilerMsg::UnregisterReporter(name) => {
                // Panic if it hasn't previously been registered.
                match self.reporters.remove(&name) {
                    Some(_) => true,
                    None => panic!("UnregisterReporter: '{}' name is unknown", &name),
                }
            },

            ProfilerMsg::Print => {
                self.handle_print_msg();
                true
            },

            ProfilerMsg::Exit => false,
        }
    }

    fn handle_print_msg(&self) {
        let elapsed = self.created.elapsed();
        println!("Begin memory reports {}", elapsed.as_secs());
        println!("|");

        // Collect reports from memory reporters.
        //
        // This serializes the report-gathering. It might be worth creating a new scoped thread for
        // each reporter once we have enough of them.
        //
        // If anything goes wrong with a reporter, we just skip it.
        //
        // We also track the total memory reported on the jemalloc heap and the system heap, and
        // use that to compute the special "jemalloc-heap-unclassified" and
        // "system-heap-unclassified" values.

        let mut forest = ReportsForest::new();

        let mut jemalloc_heap_reported_size = 0;
        let mut system_heap_reported_size = 0;

        let mut jemalloc_heap_allocated_size: Option<usize> = None;
        let mut system_heap_allocated_size: Option<usize> = None;

        for reporter in self.reporters.values() {
            let (chan, port) = ipc::channel().unwrap();
            reporter.collect_reports(ReportsChan(chan));
            if let Ok(mut reports) = port.recv() {
                for report in &mut reports {
                    // Add "explicit" to the start of the path, when appropriate.
                    match report.kind {
                        ReportKind::ExplicitJemallocHeapSize |
                        ReportKind::ExplicitSystemHeapSize |
                        ReportKind::ExplicitNonHeapSize |
                        ReportKind::ExplicitUnknownLocationSize => {
                            report.path.insert(0, String::from("explicit"))
                        },
                        ReportKind::NonExplicitSize => {},
                    }

                    // Update the reported fractions of the heaps, when appropriate.
                    match report.kind {
                        ReportKind::ExplicitJemallocHeapSize => {
                            jemalloc_heap_reported_size += report.size
                        },
                        ReportKind::ExplicitSystemHeapSize => {
                            system_heap_reported_size += report.size
                        },
                        _ => {},
                    }

                    // Record total size of the heaps, when we see them.
                    if report.path.len() == 1 {
                        if report.path[0] == JEMALLOC_HEAP_ALLOCATED_STR {
                            assert!(jemalloc_heap_allocated_size.is_none());
                            jemalloc_heap_allocated_size = Some(report.size);
                        } else if report.path[0] == SYSTEM_HEAP_ALLOCATED_STR {
                            assert!(system_heap_allocated_size.is_none());
                            system_heap_allocated_size = Some(report.size);
                        }
                    }

                    // Insert the report.
                    forest.insert(&report.path, report.size);
                }
            }
        }

        // Compute and insert the heap-unclassified values.
        if let Some(jemalloc_heap_allocated_size) = jemalloc_heap_allocated_size {
            forest.insert(
                &path!["explicit", "jemalloc-heap-unclassified"],
                jemalloc_heap_allocated_size - jemalloc_heap_reported_size,
            );
        }
        if let Some(system_heap_allocated_size) = system_heap_allocated_size {
            forest.insert(
                &path!["explicit", "system-heap-unclassified"],
                system_heap_allocated_size - system_heap_reported_size,
            );
        }

        forest.print();

        println!("|");
        println!("End memory reports");
        println!();
    }
}

/// A collection of one or more reports with the same initial path segment. A ReportsTree
/// containing a single node is described as "degenerate".
struct ReportsTree {
    /// For leaf nodes, this is the sum of the sizes of all reports that mapped to this location.
    /// For interior nodes, this is the sum of the sizes of all its child nodes.
    size: usize,

    /// For leaf nodes, this is the count of all reports that mapped to this location.
    /// For interor nodes, this is always zero.
    count: u32,

    /// The segment from the report path that maps to this node.
    path_seg: String,

    /// Child nodes.
    children: Vec<ReportsTree>,
}

impl ReportsTree {
    fn new(path_seg: String) -> ReportsTree {
        ReportsTree {
            size: 0,
            count: 0,
            path_seg,
            children: vec![],
        }
    }

    // Searches the tree's children for a path_seg match, and returns the index if there is a
    // match.
    fn find_child(&self, path_seg: &str) -> Option<usize> {
        for (i, child) in self.children.iter().enumerate() {
            if child.path_seg == *path_seg {
                return Some(i);
            }
        }
        None
    }

    // Insert the path and size into the tree, adding any nodes as necessary.
    fn insert(&mut self, path: &[String], size: usize) {
        let mut t: &mut ReportsTree = self;
        for path_seg in path {
            let i = match t.find_child(path_seg) {
                Some(i) => i,
                None => {
                    let new_t = ReportsTree::new(path_seg.clone());
                    t.children.push(new_t);
                    t.children.len() - 1
                },
            };
            let tmp = t; // this temporary is needed to satisfy the borrow checker
            t = &mut tmp.children[i];
        }

        t.size += size;
        t.count += 1;
    }

    // Fill in sizes for interior nodes and sort sub-trees accordingly. Should only be done once
    // all the reports have been inserted.
    fn compute_interior_node_sizes_and_sort(&mut self) -> usize {
        if !self.children.is_empty() {
            // Interior node. Derive its size from its children.
            if self.size != 0 {
                // This will occur if e.g. we have paths ["a", "b"] and ["a", "b", "c"].
                panic!("one report's path is a sub-path of another report's path");
            }
            for child in &mut self.children {
                self.size += child.compute_interior_node_sizes_and_sort();
            }
            // Now that child sizes have been computed, we can sort the children.
            self.children.sort_by(|t1, t2| t2.size.cmp(&t1.size));
        }
        self.size
    }

    fn print(&self, depth: i32) {
        if !self.children.is_empty() {
            assert_eq!(self.count, 0);
        }

        let mut indent_str = String::new();
        for _ in 0..depth {
            indent_str.push_str("   ");
        }

        let mebi = 1024f64 * 1024f64;
        let count_str = if self.count > 1 {
            format!(" [{}]", self.count)
        } else {
            "".to_owned()
        };
        println!(
            "|{}{:8.2} MiB -- {}{}",
            indent_str,
            (self.size as f64) / mebi,
            self.path_seg,
            count_str
        );

        for child in &self.children {
            child.print(depth + 1);
        }
    }
}

/// A collection of ReportsTrees. It represents the data from multiple memory reports in a form
/// that's good to print.
struct ReportsForest {
    trees: HashMap<String, ReportsTree>,
}

impl ReportsForest {
    fn new() -> ReportsForest {
        ReportsForest {
            trees: HashMap::new(),
        }
    }

    // Insert the path and size into the forest, adding any trees and nodes as necessary.
    fn insert(&mut self, path: &[String], size: usize) {
        let (head, tail) = path.split_first().unwrap();
        // Get the right tree, creating it if necessary.
        if !self.trees.contains_key(head) {
            self.trees
                .insert(head.clone(), ReportsTree::new(head.clone()));
        }
        let t = self.trees.get_mut(head).unwrap();

        // Use tail because the 0th path segment was used to find the right tree in the forest.
        t.insert(tail, size);
    }

    fn print(&mut self) {
        // Fill in sizes of interior nodes, and recursively sort the sub-trees.
        for tree in self.trees.values_mut() {
            tree.compute_interior_node_sizes_and_sort();
        }

        // Put the trees into a sorted vector. Primary sort: degenerate trees (those containing a
        // single node) come after non-degenerate trees. Secondary sort: alphabetical order of the
        // root node's path_seg.
        let mut v = vec![];
        for tree in self.trees.values() {
            v.push(tree);
        }
        v.sort_by(|a, b| {
            if a.children.is_empty() && !b.children.is_empty() {
                Ordering::Greater
            } else if !a.children.is_empty() && b.children.is_empty() {
                Ordering::Less
            } else {
                a.path_seg.cmp(&b.path_seg)
            }
        });

        // Print the forest.
        for tree in &v {
            tree.print(0);
            // Print a blank line after non-degenerate trees.
            if !tree.children.is_empty() {
                println!("|");
            }
        }
    }
}

//---------------------------------------------------------------------------

mod system_reporter {
    #[cfg(not(any(target_os = "windows", target_env = "ohos")))]
    use std::ffi::CString;
    #[cfg(not(any(target_os = "windows", target_env = "ohos")))]
    use std::mem::size_of;
    #[cfg(not(any(target_os = "windows", target_env = "ohos")))]
    use std::ptr::null_mut;

    #[cfg(all(target_os = "linux", target_env = "gnu"))]
    use libc::c_int;
    #[cfg(not(any(target_os = "windows", target_env = "ohos")))]
    use libc::{c_void, size_t};
    use profile_traits::mem::{Report, ReportKind, ReporterRequest};
    use profile_traits::path;
    #[cfg(target_os = "macos")]
    use task_info::task_basic_info::{resident_size, virtual_size};

    use super::{JEMALLOC_HEAP_ALLOCATED_STR, SYSTEM_HEAP_ALLOCATED_STR};

    /// Collects global measurements from the OS and heap allocators.
    pub fn collect_reports(request: ReporterRequest) {
        let mut reports = vec![];
        {
            let mut report = |path, size| {
                if let Some(size) = size {
                    reports.push(Report {
                        path,
                        kind: ReportKind::NonExplicitSize,
                        size,
                    });
                }
            };

            // Virtual and physical memory usage, as reported by the OS.
            report(path!["vsize"], vsize());
            report(path!["resident"], resident());

            // Memory segments, as reported by the OS.
            for seg in resident_segments() {
                report(path!["resident-according-to-smaps", seg.0], Some(seg.1));
            }

            // Total number of bytes allocated by the application on the system
            // heap.
            report(path![SYSTEM_HEAP_ALLOCATED_STR], system_heap_allocated());

            // The descriptions of the following jemalloc measurements are taken
            // directly from the jemalloc documentation.

            // "Total number of bytes allocated by the application."
            report(
                path![JEMALLOC_HEAP_ALLOCATED_STR],
                jemalloc_stat("stats.allocated"),
            );

            // "Total number of bytes in active pages allocated by the application.
            // This is a multiple of the page size, and greater than or equal to
            // |stats.allocated|."
            report(path!["jemalloc-heap-active"], jemalloc_stat("stats.active"));

            // "Total number of bytes in chunks mapped on behalf of the application.
            // This is a multiple of the chunk size, and is at least as large as
            // |stats.active|. This does not include inactive chunks."
            report(path!["jemalloc-heap-mapped"], jemalloc_stat("stats.mapped"));
        }

        request.reports_channel.send(reports);
    }

    #[cfg(all(target_os = "linux", target_env = "gnu"))]
    extern "C" {
        fn mallinfo() -> struct_mallinfo;
    }

    #[cfg(all(target_os = "linux", target_env = "gnu"))]
    #[repr(C)]
    pub struct struct_mallinfo {
        arena: c_int,
        ordblks: c_int,
        smblks: c_int,
        hblks: c_int,
        hblkhd: c_int,
        usmblks: c_int,
        fsmblks: c_int,
        uordblks: c_int,
        fordblks: c_int,
        keepcost: c_int,
    }

    #[cfg(all(target_os = "linux", target_env = "gnu"))]
    fn system_heap_allocated() -> Option<usize> {
        let info: struct_mallinfo = unsafe { mallinfo() };

        // The documentation in the glibc man page makes it sound like |uordblks| would suffice,
        // but that only gets the small allocations that are put in the brk heap. We need |hblkhd|
        // as well to get the larger allocations that are mmapped.
        //
        // These fields are unfortunately |int| and so can overflow (becoming negative) if memory
        // usage gets high enough. So don't report anything in that case. In the non-overflow case
        // we cast the two values to usize before adding them to make sure the sum also doesn't
        // overflow.
        if info.hblkhd < 0 || info.uordblks < 0 {
            None
        } else {
            Some(info.hblkhd as usize + info.uordblks as usize)
        }
    }

    #[cfg(not(all(target_os = "linux", target_env = "gnu")))]
    fn system_heap_allocated() -> Option<usize> {
        None
    }

    #[cfg(not(any(target_os = "windows", target_env = "ohos")))]
    use tikv_jemalloc_sys::mallctl;

    #[cfg(not(any(target_os = "windows", target_env = "ohos")))]
    fn jemalloc_stat(value_name: &str) -> Option<usize> {
        // Before we request the measurement of interest, we first send an "epoch"
        // request. Without that jemalloc gives cached statistics(!) which can be
        // highly inaccurate.
        let epoch_name = "epoch";
        let epoch_c_name = CString::new(epoch_name).unwrap();
        let mut epoch: u64 = 0;
        let epoch_ptr = &mut epoch as *mut _ as *mut c_void;
        let mut epoch_len = size_of::<u64>() as size_t;

        let value_c_name = CString::new(value_name).unwrap();
        let mut value: size_t = 0;
        let value_ptr = &mut value as *mut _ as *mut c_void;
        let mut value_len = size_of::<size_t>() as size_t;

        // Using the same values for the `old` and `new` parameters is enough
        // to get the statistics updated.
        let rv = unsafe {
            mallctl(
                epoch_c_name.as_ptr(),
                epoch_ptr,
                &mut epoch_len,
                epoch_ptr,
                epoch_len,
            )
        };
        if rv != 0 {
            return None;
        }

        let rv = unsafe {
            mallctl(
                value_c_name.as_ptr(),
                value_ptr,
                &mut value_len,
                null_mut(),
                0,
            )
        };
        if rv != 0 {
            return None;
        }

        Some(value as usize)
    }

    #[cfg(any(target_os = "windows", target_env = "ohos"))]
    fn jemalloc_stat(_value_name: &str) -> Option<usize> {
        None
    }

    #[cfg(target_os = "linux")]
    fn page_size() -> usize {
        unsafe { ::libc::sysconf(::libc::_SC_PAGESIZE) as usize }
    }

    #[cfg(target_os = "linux")]
    fn proc_self_statm_field(field: usize) -> Option<usize> {
        use std::fs::File;
        use std::io::Read;

        let mut f = File::open("/proc/self/statm").ok()?;
        let mut contents = String::new();
        f.read_to_string(&mut contents).ok()?;
        let s = contents.split_whitespace().nth(field)?;
        let npages = s.parse::<usize>().ok()?;
        Some(npages * page_size())
    }

    #[cfg(target_os = "linux")]
    fn vsize() -> Option<usize> {
        proc_self_statm_field(0)
    }

    #[cfg(target_os = "linux")]
    fn resident() -> Option<usize> {
        proc_self_statm_field(1)
    }

    #[cfg(target_os = "macos")]
    fn vsize() -> Option<usize> {
        virtual_size()
    }

    #[cfg(target_os = "macos")]
    fn resident() -> Option<usize> {
        resident_size()
    }

    #[cfg(not(any(target_os = "linux", target_os = "macos")))]
    fn vsize() -> Option<usize> {
        None
    }

    #[cfg(not(any(target_os = "linux", target_os = "macos")))]
    fn resident() -> Option<usize> {
        None
    }

    #[cfg(target_os = "linux")]
    fn resident_segments() -> Vec<(String, usize)> {
        use std::collections::hash_map::Entry;
        use std::collections::HashMap;
        use std::fs::File;
        use std::io::{BufRead, BufReader};

        use regex::Regex;

        // The first line of an entry in /proc/<pid>/smaps looks just like an entry
        // in /proc/<pid>/maps:
        //
        //   address           perms offset  dev   inode  pathname
        //   02366000-025d8000 rw-p 00000000 00:00 0      [heap]
        //
        // Each of the following lines contains a key and a value, separated
        // by ": ", where the key does not contain either of those characters.
        // For example:
        //
        //   Rss:           132 kB

        let f = match File::open("/proc/self/smaps") {
            Ok(f) => BufReader::new(f),
            Err(_) => return vec![],
        };

        let seg_re = Regex::new(
            r"^[:xdigit:]+-[:xdigit:]+ (....) [:xdigit:]+ [:xdigit:]+:[:xdigit:]+ \d+ +(.*)",
        )
        .unwrap();
        let rss_re = Regex::new(r"^Rss: +(\d+) kB").unwrap();

        // We record each segment's resident size.
        let mut seg_map: HashMap<String, usize> = HashMap::new();

        #[derive(PartialEq)]
        enum LookingFor {
            Segment,
            Rss,
        }
        let mut looking_for = LookingFor::Segment;

        let mut curr_seg_name = String::new();

        // Parse the file.
        for line in f.lines() {
            let line = match line {
                Ok(line) => line,
                Err(_) => continue,
            };
            if looking_for == LookingFor::Segment {
                // Look for a segment info line.
                let cap = match seg_re.captures(&line) {
                    Some(cap) => cap,
                    None => continue,
                };
                let perms = cap.get(1).unwrap().as_str();
                let pathname = cap.get(2).unwrap().as_str();

                // Construct the segment name from its pathname and permissions.
                curr_seg_name.clear();
                if pathname.is_empty() || pathname.starts_with("[stack:") {
                    // Anonymous memory. Entries marked with "[stack:nnn]"
                    // look like thread stacks but they may include other
                    // anonymous mappings, so we can't trust them and just
                    // treat them as entirely anonymous.
                    curr_seg_name.push_str("anonymous");
                } else {
                    curr_seg_name.push_str(pathname);
                }
                curr_seg_name.push_str(" (");
                curr_seg_name.push_str(perms);
                curr_seg_name.push(')');

                looking_for = LookingFor::Rss;
            } else {
                // Look for an "Rss:" line.
                let cap = match rss_re.captures(&line) {
                    Some(cap) => cap,
                    None => continue,
                };
                let rss = cap.get(1).unwrap().as_str().parse::<usize>().unwrap() * 1024;

                if rss > 0 {
                    // Aggregate small segments into "other".
                    let seg_name = if rss < 512 * 1024 {
                        "other".to_owned()
                    } else {
                        curr_seg_name.clone()
                    };
                    match seg_map.entry(seg_name) {
                        Entry::Vacant(entry) => {
                            entry.insert(rss);
                        },
                        Entry::Occupied(mut entry) => *entry.get_mut() += rss,
                    }
                }

                looking_for = LookingFor::Segment;
            }
        }

        // Note that the sum of all these segments' RSS values differs from the "resident"
        // measurement obtained via /proc/<pid>/statm in resident(). It's unclear why this
        // difference occurs; for some processes the measurements match, but for Servo they do not.
        seg_map.into_iter().collect()
    }

    #[cfg(not(target_os = "linux"))]
    fn resident_segments() -> Vec<(String, usize)> {
        vec![]
    }
}