1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
use lyon_geom::Angle;
use lyon_geom::Arc;
use lyon_geom::CubicBezierSegment;
use lyon_geom::QuadraticBezierSegment;
use crate::{Point, Transform, Vector};
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum Winding {
EvenOdd,
NonZero,
}
#[derive(Clone, Copy, Debug)]
pub enum PathOp {
MoveTo(Point),
LineTo(Point),
QuadTo(Point, Point),
CubicTo(Point, Point, Point),
Close,
}
impl PathOp {
fn transform(self, xform: &Transform) -> PathOp {
match self {
PathOp::MoveTo(p) => PathOp::MoveTo(xform.transform_point(p)),
PathOp::LineTo(p) => PathOp::LineTo(xform.transform_point(p)),
PathOp::QuadTo(p1, p2) => PathOp::QuadTo(
xform.transform_point(p1),
xform.transform_point(p2)
),
PathOp::CubicTo(p1, p2, p3) => PathOp::CubicTo(
xform.transform_point(p1),
xform.transform_point(p2),
xform.transform_point(p3),
),
PathOp::Close => PathOp::Close,
}
}
}
/// Represents a complete path usable for filling or stroking.
#[derive(Clone, Debug)]
pub struct Path {
pub ops: Vec<PathOp>,
pub winding: Winding,
}
impl Path {
/// Flattens `self` by replacing all QuadTo and CurveTo
/// commands with an appropriate number of LineTo commands
/// so that the error is not greater than `tolerance`.
pub fn flatten(&self, tolerance: f32) -> Path {
let mut cur_pt = None;
let mut flattened = Path { ops: Vec::new(), winding: Winding::NonZero };
for op in &self.ops {
match *op {
PathOp::MoveTo(pt) | PathOp::LineTo(pt) => {
cur_pt = Some(pt);
flattened.ops.push(op.clone())
}
PathOp::Close => {
cur_pt = None;
flattened.ops.push(op.clone())
}
PathOp::QuadTo(cpt, pt) => {
let start = cur_pt.unwrap_or(cpt);
let c = QuadraticBezierSegment {
from: start,
ctrl: cpt,
to: pt,
};
for l in c.flattened(tolerance) {
flattened.ops.push(PathOp::LineTo(l));
}
cur_pt = Some(pt);
}
PathOp::CubicTo(cpt1, cpt2, pt) => {
let start = cur_pt.unwrap_or(cpt1);
let c = CubicBezierSegment {
from: start,
ctrl1: cpt1,
ctrl2: cpt2,
to: pt,
};
for l in c.flattened(tolerance) {
flattened.ops.push(PathOp::LineTo(l));
}
cur_pt = Some(pt);
}
}
}
flattened
}
/// Returns true if the point `x`, `y` is within the filled
/// area of of `self`. The path will be flattened using `tolerance`.
/// The point is considered contained if it's on the path.
// this function likely has bugs
pub fn contains_point(&self, tolerance: f32, x: f32, y: f32) -> bool {
//XXX Instead of making a new path we should just use flattening callbacks
let flat_path = self.flatten(tolerance);
struct WindState {
first_point: Option<Point>,
current_point: Option<Point>,
count: i32,
on_edge: bool,
x: f32,
y: f32,
}
impl WindState {
fn close(&mut self) {
if let (Some(first_point), Some(current_point)) = (self.first_point, self.current_point) {
self.add_edge(
current_point,
first_point,
);
}
self.first_point = None;
}
// to determine containment we just need to count crossing of ray from (x, y) going to infinity
fn add_edge(&mut self, p1: Point, p2: Point) {
let (x1, y1) = (p1.x, p1.y);
let (x2, y2) = (p2.x, p2.y);
let dir = if y1 < y2 { -1 } else { 1 };
// entirely to the right
if x1 > self.x && x2 > self.x {
return
}
// entirely above
if y1 > self.y && y2 > self.y {
return
}
// entirely below
if y1 < self.y && y2 < self.y {
return
}
// entirely to the left
if x1 < self.x && x2 < self.x {
if y1 > self.y && y2 < self.y {
self.count += 1;
return;
}
if y2 > self.y && y1 < self.y {
self.count -= 1;
return;
}
}
let dx = x2 - x1;
let dy = y2 - y1;
// cross product/perp dot product lets us know which side of the line we're on
let cross = dx * (self.y - y1) - dy * (self.x - x1);
if cross == 0. {
self.on_edge = true;
} else if (cross > 0. && dir > 0) || (cross < 0. && dir < 0) {
self.count += dir;
}
}
}
let mut ws = WindState { count: 0, first_point: None, current_point: None, x, y, on_edge: false};
for op in &flat_path.ops {
match *op {
PathOp::MoveTo(pt) => {
ws.close();
ws.current_point = Some(pt);
ws.first_point = Some(pt);
},
PathOp::LineTo(pt) => {
if let Some(current_point) = ws.current_point {
ws.add_edge(current_point, pt);
} else {
ws.first_point = Some(pt);
}
ws.current_point = Some(pt);
},
PathOp::QuadTo(..) |
PathOp::CubicTo(..) => panic!(),
PathOp::Close => ws.close(),
}
}
// make sure the path is closed
ws.close();
let inside = match self.winding {
Winding::EvenOdd => ws.count & 1 != 0,
Winding::NonZero => ws.count != 0,
};
inside || ws.on_edge
}
pub fn transform(self, transform: &Transform) -> Path {
let Path { ops, winding } = self;
let ops = ops.into_iter().map(|op| op.transform(transform)).collect();
Path { ops, winding }
}
}
/// A helper struct used for constructing a `Path`.
pub struct PathBuilder {
path: Path,
}
impl From<Path> for PathBuilder {
fn from(path: Path) -> Self {
PathBuilder {
path
}
}
}
impl PathBuilder {
pub fn new() -> PathBuilder {
PathBuilder {
path: Path {
ops: Vec::new(),
winding: Winding::NonZero,
},
}
}
/// Moves the current point to `x`, `y`
pub fn move_to(&mut self, x: f32, y: f32) {
self.path.ops.push(PathOp::MoveTo(Point::new(x, y)))
}
/// Adds a line segment from the current point to `x`, `y`
pub fn line_to(&mut self, x: f32, y: f32) {
self.path.ops.push(PathOp::LineTo(Point::new(x, y)))
}
/// Adds a quadratic bezier from the current point to `x`, `y`,
/// using a control point of `cx`, `cy`
pub fn quad_to(&mut self, cx: f32, cy: f32, x: f32, y: f32) {
self.path
.ops
.push(PathOp::QuadTo(Point::new(cx, cy), Point::new(x, y)))
}
/// Adds a rect to the path
pub fn rect(&mut self, x: f32, y: f32, width: f32, height: f32) {
self.move_to(x, y);
self.line_to(x + width, y);
self.line_to(x + width, y + height);
self.line_to(x, y + height);
self.close();
}
/// Adds a cubic bezier from the current point to `x`, `y`,
/// using control points `cx1`, `cy1` and `cx2`, `cy2`
pub fn cubic_to(&mut self, cx1: f32, cy1: f32, cx2: f32, cy2: f32, x: f32, y: f32) {
self.path.ops.push(PathOp::CubicTo(
Point::new(cx1, cy1),
Point::new(cx2, cy2),
Point::new(x, y),
))
}
/// Closes the current subpath
pub fn close(&mut self) {
self.path.ops.push(PathOp::Close)
}
/// Adds an arc approximated by quadratic beziers with center `x`, `y`
/// and radius `r` starting at `start_angle` and sweeping by `sweep_angle`.
/// For a positive `sweep_angle` the sweep is done clockwise, for a negative
/// `sweep_angle` the sweep is done counterclockwise.
pub fn arc(&mut self, x: f32, y: f32, r: f32, start_angle: f32, sweep_angle: f32) {
//XXX: handle the current point being the wrong spot
let a: Arc<f32> = Arc {
center: Point::new(x, y),
radii: Vector::new(r, r),
start_angle: Angle::radians(start_angle),
sweep_angle: Angle::radians(sweep_angle),
x_rotation: Angle::zero(),
};
let start = a.from();
self.line_to(start.x, start.y);
a.for_each_quadratic_bezier(&mut |q| {
self.quad_to(q.ctrl.x, q.ctrl.y, q.to.x, q.to.y);
});
}
/// Completes the current path
pub fn finish(self) -> Path {
self.path
}
}