1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Counting and non-counting Bloom filters tuned for use as ancestor filters
//! for selector matching.
use std::fmt::{self, Debug};
// The top 8 bits of the 32-bit hash value are not used by the bloom filter.
// Consumers may rely on this to pack hashes more efficiently.
pub const BLOOM_HASH_MASK: u32 = 0x00ffffff;
const KEY_SIZE: usize = 12;
const ARRAY_SIZE: usize = 1 << KEY_SIZE;
const KEY_MASK: u32 = (1 << KEY_SIZE) - 1;
/// A counting Bloom filter with 8-bit counters.
pub type BloomFilter = CountingBloomFilter<BloomStorageU8>;
/// A counting Bloom filter with parameterized storage to handle
/// counters of different sizes. For now we assume that having two hash
/// functions is enough, but we may revisit that decision later.
///
/// The filter uses an array with 2**KeySize entries.
///
/// Assuming a well-distributed hash function, a Bloom filter with
/// array size M containing N elements and
/// using k hash function has expected false positive rate exactly
///
/// $ (1 - (1 - 1/M)^{kN})^k $
///
/// because each array slot has a
///
/// $ (1 - 1/M)^{kN} $
///
/// chance of being 0, and the expected false positive rate is the
/// probability that all of the k hash functions will hit a nonzero
/// slot.
///
/// For reasonable assumptions (M large, kN large, which should both
/// hold if we're worried about false positives) about M and kN this
/// becomes approximately
///
/// $$ (1 - \exp(-kN/M))^k $$
///
/// For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
/// or in other words
///
/// $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$
///
/// where r is the false positive rate. This can be used to compute
/// the desired KeySize for a given load N and false positive rate r.
///
/// If N/M is assumed small, then the false positive rate can
/// further be approximated as 4*N^2/M^2. So increasing KeySize by
/// 1, which doubles M, reduces the false positive rate by about a
/// factor of 4, and a false positive rate of 1% corresponds to
/// about M/N == 20.
///
/// What this means in practice is that for a few hundred keys using a
/// KeySize of 12 gives false positive rates on the order of 0.25-4%.
///
/// Similarly, using a KeySize of 10 would lead to a 4% false
/// positive rate for N == 100 and to quite bad false positive
/// rates for larger N.
#[derive(Clone, Default)]
pub struct CountingBloomFilter<S>
where
S: BloomStorage,
{
storage: S,
}
impl<S> CountingBloomFilter<S>
where
S: BloomStorage,
{
/// Creates a new bloom filter.
#[inline]
pub fn new() -> Self {
Default::default()
}
#[inline]
pub fn clear(&mut self) {
self.storage = Default::default();
}
// Slow linear accessor to make sure the bloom filter is zeroed. This should
// never be used in release builds.
#[cfg(debug_assertions)]
pub fn is_zeroed(&self) -> bool {
self.storage.is_zeroed()
}
#[cfg(not(debug_assertions))]
pub fn is_zeroed(&self) -> bool {
unreachable!()
}
/// Inserts an item with a particular hash into the bloom filter.
#[inline]
pub fn insert_hash(&mut self, hash: u32) {
self.storage.adjust_first_slot(hash, true);
self.storage.adjust_second_slot(hash, true);
}
/// Removes an item with a particular hash from the bloom filter.
#[inline]
pub fn remove_hash(&mut self, hash: u32) {
self.storage.adjust_first_slot(hash, false);
self.storage.adjust_second_slot(hash, false);
}
/// Check whether the filter might contain an item with the given hash.
/// This can sometimes return true even if the item is not in the filter,
/// but will never return false for items that are actually in the filter.
#[inline]
pub fn might_contain_hash(&self, hash: u32) -> bool {
!self.storage.first_slot_is_empty(hash) && !self.storage.second_slot_is_empty(hash)
}
}
impl<S> Debug for CountingBloomFilter<S>
where
S: BloomStorage,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut slots_used = 0;
for i in 0..ARRAY_SIZE {
if !self.storage.slot_is_empty(i) {
slots_used += 1;
}
}
write!(f, "BloomFilter({}/{})", slots_used, ARRAY_SIZE)
}
}
pub trait BloomStorage: Clone + Default {
fn slot_is_empty(&self, index: usize) -> bool;
fn adjust_slot(&mut self, index: usize, increment: bool);
fn is_zeroed(&self) -> bool;
#[inline]
fn first_slot_is_empty(&self, hash: u32) -> bool {
self.slot_is_empty(Self::first_slot_index(hash))
}
#[inline]
fn second_slot_is_empty(&self, hash: u32) -> bool {
self.slot_is_empty(Self::second_slot_index(hash))
}
#[inline]
fn adjust_first_slot(&mut self, hash: u32, increment: bool) {
self.adjust_slot(Self::first_slot_index(hash), increment)
}
#[inline]
fn adjust_second_slot(&mut self, hash: u32, increment: bool) {
self.adjust_slot(Self::second_slot_index(hash), increment)
}
#[inline]
fn first_slot_index(hash: u32) -> usize {
hash1(hash) as usize
}
#[inline]
fn second_slot_index(hash: u32) -> usize {
hash2(hash) as usize
}
}
/// Storage class for a CountingBloomFilter that has 8-bit counters.
pub struct BloomStorageU8 {
counters: [u8; ARRAY_SIZE],
}
impl BloomStorage for BloomStorageU8 {
#[inline]
fn adjust_slot(&mut self, index: usize, increment: bool) {
let slot = &mut self.counters[index];
if *slot != 0xff {
// full
if increment {
*slot += 1;
} else {
*slot -= 1;
}
}
}
#[inline]
fn slot_is_empty(&self, index: usize) -> bool {
self.counters[index] == 0
}
#[inline]
fn is_zeroed(&self) -> bool {
self.counters.iter().all(|x| *x == 0)
}
}
impl Default for BloomStorageU8 {
fn default() -> Self {
BloomStorageU8 {
counters: [0; ARRAY_SIZE],
}
}
}
impl Clone for BloomStorageU8 {
fn clone(&self) -> Self {
BloomStorageU8 {
counters: self.counters,
}
}
}
/// Storage class for a CountingBloomFilter that has 1-bit counters.
pub struct BloomStorageBool {
counters: [u8; ARRAY_SIZE / 8],
}
impl BloomStorage for BloomStorageBool {
#[inline]
fn adjust_slot(&mut self, index: usize, increment: bool) {
let bit = 1 << (index % 8);
let byte = &mut self.counters[index / 8];
// Since we have only one bit for storage, decrementing it
// should never do anything. Assert against an accidental
// decrementing of a bit that was never set.
assert!(
increment || (*byte & bit) != 0,
"should not decrement if slot is already false"
);
if increment {
*byte |= bit;
}
}
#[inline]
fn slot_is_empty(&self, index: usize) -> bool {
let bit = 1 << (index % 8);
(self.counters[index / 8] & bit) == 0
}
#[inline]
fn is_zeroed(&self) -> bool {
self.counters.iter().all(|x| *x == 0)
}
}
impl Default for BloomStorageBool {
fn default() -> Self {
BloomStorageBool {
counters: [0; ARRAY_SIZE / 8],
}
}
}
impl Clone for BloomStorageBool {
fn clone(&self) -> Self {
BloomStorageBool {
counters: self.counters,
}
}
}
#[inline]
fn hash1(hash: u32) -> u32 {
hash & KEY_MASK
}
#[inline]
fn hash2(hash: u32) -> u32 {
(hash >> KEY_SIZE) & KEY_MASK
}
#[test]
fn create_and_insert_some_stuff() {
use fxhash::FxHasher;
use std::hash::{Hash, Hasher};
use std::mem::transmute;
fn hash_as_str(i: usize) -> u32 {
let mut hasher = FxHasher::default();
let s = i.to_string();
s.hash(&mut hasher);
let hash: u64 = hasher.finish();
(hash >> 32) as u32 ^ (hash as u32)
}
let mut bf = BloomFilter::new();
// Statically assert that ARRAY_SIZE is a multiple of 8, which
// BloomStorageBool relies on.
unsafe {
transmute::<[u8; ARRAY_SIZE % 8], [u8; 0]>([]);
}
for i in 0_usize..1000 {
bf.insert_hash(hash_as_str(i));
}
for i in 0_usize..1000 {
assert!(bf.might_contain_hash(hash_as_str(i)));
}
let false_positives = (1001_usize..2000)
.filter(|i| bf.might_contain_hash(hash_as_str(*i)))
.count();
assert!(false_positives < 190, "{} is not < 190", false_positives); // 19%.
for i in 0_usize..100 {
bf.remove_hash(hash_as_str(i));
}
for i in 100_usize..1000 {
assert!(bf.might_contain_hash(hash_as_str(i)));
}
let false_positives = (0_usize..100)
.filter(|i| bf.might_contain_hash(hash_as_str(*i)))
.count();
assert!(false_positives < 20, "{} is not < 20", false_positives); // 20%.
bf.clear();
for i in 0_usize..2000 {
assert!(!bf.might_contain_hash(hash_as_str(i)));
}
}
#[cfg(feature = "bench")]
#[cfg(test)]
mod bench {
extern crate test;
use super::BloomFilter;
#[derive(Default)]
struct HashGenerator(u32);
impl HashGenerator {
fn next(&mut self) -> u32 {
// Each hash is split into two twelve-bit segments, which are used
// as an index into an array. We increment each by 64 so that we
// hit the next cache line, and then another 1 so that our wrapping
// behavior leads us to different entries each time.
//
// Trying to simulate cold caches is rather difficult with the cargo
// benchmarking setup, so it may all be moot depending on the number
// of iterations that end up being run. But we might as well.
self.0 += (65) + (65 << super::KEY_SIZE);
self.0
}
}
#[bench]
fn create_insert_1000_remove_100_lookup_100(b: &mut test::Bencher) {
b.iter(|| {
let mut gen1 = HashGenerator::default();
let mut gen2 = HashGenerator::default();
let mut bf = BloomFilter::new();
for _ in 0_usize..1000 {
bf.insert_hash(gen1.next());
}
for _ in 0_usize..100 {
bf.remove_hash(gen2.next());
}
for _ in 100_usize..200 {
test::black_box(bf.might_contain_hash(gen2.next()));
}
});
}
#[bench]
fn might_contain_10(b: &mut test::Bencher) {
let bf = BloomFilter::new();
let mut gen = HashGenerator::default();
b.iter(|| {
for _ in 0..10 {
test::black_box(bf.might_contain_hash(gen.next()));
}
});
}
#[bench]
fn clear(b: &mut test::Bencher) {
let mut bf = Box::new(BloomFilter::new());
b.iter(|| test::black_box(&mut bf).clear());
}
#[bench]
fn insert_10(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
let mut gen = HashGenerator::default();
b.iter(|| {
for _ in 0..10 {
test::black_box(bf.insert_hash(gen.next()));
}
});
}
#[bench]
fn remove_10(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
let mut gen = HashGenerator::default();
// Note: this will underflow, and that's ok.
b.iter(|| {
for _ in 0..10 {
bf.remove_hash(gen.next())
}
});
}
}