1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
//! Common types shared between the encoder and decoder
use crate::text_metadata::{EncodableTextChunk, ITXtChunk, TEXtChunk, ZTXtChunk};
use crate::{chunk, encoder};
use io::Write;
use std::{borrow::Cow, convert::TryFrom, fmt, io};

/// Describes how a pixel is encoded.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum ColorType {
    /// 1 grayscale sample.
    Grayscale = 0,
    /// 1 red sample, 1 green sample, 1 blue sample.
    Rgb = 2,
    /// 1 sample for the palette index.
    Indexed = 3,
    /// 1 grayscale sample, then 1 alpha sample.
    GrayscaleAlpha = 4,
    /// 1 red sample, 1 green sample, 1 blue sample, and finally, 1 alpha sample.
    Rgba = 6,
}

impl ColorType {
    /// Returns the number of samples used per pixel encoded in this way.
    pub fn samples(self) -> usize {
        self.samples_u8().into()
    }

    pub(crate) fn samples_u8(self) -> u8 {
        use self::ColorType::*;
        match self {
            Grayscale | Indexed => 1,
            Rgb => 3,
            GrayscaleAlpha => 2,
            Rgba => 4,
        }
    }

    /// u8 -> Self. Temporary solution until Rust provides a canonical one.
    pub fn from_u8(n: u8) -> Option<ColorType> {
        match n {
            0 => Some(ColorType::Grayscale),
            2 => Some(ColorType::Rgb),
            3 => Some(ColorType::Indexed),
            4 => Some(ColorType::GrayscaleAlpha),
            6 => Some(ColorType::Rgba),
            _ => None,
        }
    }

    pub(crate) fn checked_raw_row_length(self, depth: BitDepth, width: u32) -> Option<usize> {
        // No overflow can occur in 64 bits, we multiply 32-bit with 5 more bits.
        let bits = u64::from(width) * u64::from(self.samples_u8()) * u64::from(depth.into_u8());
        TryFrom::try_from(1 + (bits + 7) / 8).ok()
    }

    pub(crate) fn raw_row_length_from_width(self, depth: BitDepth, width: u32) -> usize {
        let samples = width as usize * self.samples();
        1 + match depth {
            BitDepth::Sixteen => samples * 2,
            BitDepth::Eight => samples,
            subbyte => {
                let samples_per_byte = 8 / subbyte as usize;
                let whole = samples / samples_per_byte;
                let fract = usize::from(samples % samples_per_byte > 0);
                whole + fract
            }
        }
    }

    pub(crate) fn is_combination_invalid(self, bit_depth: BitDepth) -> bool {
        // Section 11.2.2 of the PNG standard disallows several combinations
        // of bit depth and color type
        ((bit_depth == BitDepth::One || bit_depth == BitDepth::Two || bit_depth == BitDepth::Four)
            && (self == ColorType::Rgb
                || self == ColorType::GrayscaleAlpha
                || self == ColorType::Rgba))
            || (bit_depth == BitDepth::Sixteen && self == ColorType::Indexed)
    }
}

/// Bit depth of the PNG file.
/// Specifies the number of bits per sample.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum BitDepth {
    One = 1,
    Two = 2,
    Four = 4,
    Eight = 8,
    Sixteen = 16,
}

/// Internal count of bytes per pixel.
/// This is used for filtering which never uses sub-byte units. This essentially reduces the number
/// of possible byte chunk lengths to a very small set of values appropriate to be defined as an
/// enum.
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub(crate) enum BytesPerPixel {
    One = 1,
    Two = 2,
    Three = 3,
    Four = 4,
    Six = 6,
    Eight = 8,
}

impl BitDepth {
    /// u8 -> Self. Temporary solution until Rust provides a canonical one.
    pub fn from_u8(n: u8) -> Option<BitDepth> {
        match n {
            1 => Some(BitDepth::One),
            2 => Some(BitDepth::Two),
            4 => Some(BitDepth::Four),
            8 => Some(BitDepth::Eight),
            16 => Some(BitDepth::Sixteen),
            _ => None,
        }
    }

    pub(crate) fn into_u8(self) -> u8 {
        self as u8
    }
}

/// Pixel dimensions information
#[derive(Clone, Copy, Debug)]
pub struct PixelDimensions {
    /// Pixels per unit, X axis
    pub xppu: u32,
    /// Pixels per unit, Y axis
    pub yppu: u32,
    /// Either *Meter* or *Unspecified*
    pub unit: Unit,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
/// Physical unit of the pixel dimensions
pub enum Unit {
    Unspecified = 0,
    Meter = 1,
}

impl Unit {
    /// u8 -> Self. Temporary solution until Rust provides a canonical one.
    pub fn from_u8(n: u8) -> Option<Unit> {
        match n {
            0 => Some(Unit::Unspecified),
            1 => Some(Unit::Meter),
            _ => None,
        }
    }
}

/// How to reset buffer of an animated png (APNG) at the end of a frame.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum DisposeOp {
    /// Leave the buffer unchanged.
    None = 0,
    /// Clear buffer with the background color.
    Background = 1,
    /// Reset the buffer to the state before the current frame.
    Previous = 2,
}

impl DisposeOp {
    /// u8 -> Self. Using enum_primitive or transmute is probably the right thing but this will do for now.
    pub fn from_u8(n: u8) -> Option<DisposeOp> {
        match n {
            0 => Some(DisposeOp::None),
            1 => Some(DisposeOp::Background),
            2 => Some(DisposeOp::Previous),
            _ => None,
        }
    }
}

impl fmt::Display for DisposeOp {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let name = match *self {
            DisposeOp::None => "DISPOSE_OP_NONE",
            DisposeOp::Background => "DISPOSE_OP_BACKGROUND",
            DisposeOp::Previous => "DISPOSE_OP_PREVIOUS",
        };
        write!(f, "{}", name)
    }
}

/// How pixels are written into the buffer.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum BlendOp {
    /// Pixels overwrite the value at their position.
    Source = 0,
    /// The new pixels are blended into the current state based on alpha.
    Over = 1,
}

impl BlendOp {
    /// u8 -> Self. Using enum_primitive or transmute is probably the right thing but this will do for now.
    pub fn from_u8(n: u8) -> Option<BlendOp> {
        match n {
            0 => Some(BlendOp::Source),
            1 => Some(BlendOp::Over),
            _ => None,
        }
    }
}

impl fmt::Display for BlendOp {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let name = match *self {
            BlendOp::Source => "BLEND_OP_SOURCE",
            BlendOp::Over => "BLEND_OP_OVER",
        };
        write!(f, "{}", name)
    }
}

/// Frame control information
#[derive(Clone, Copy, Debug)]
pub struct FrameControl {
    /// Sequence number of the animation chunk, starting from 0
    pub sequence_number: u32,
    /// Width of the following frame
    pub width: u32,
    /// Height of the following frame
    pub height: u32,
    /// X position at which to render the following frame
    pub x_offset: u32,
    /// Y position at which to render the following frame
    pub y_offset: u32,
    /// Frame delay fraction numerator
    pub delay_num: u16,
    /// Frame delay fraction denominator
    pub delay_den: u16,
    /// Type of frame area disposal to be done after rendering this frame
    pub dispose_op: DisposeOp,
    /// Type of frame area rendering for this frame
    pub blend_op: BlendOp,
}

impl Default for FrameControl {
    fn default() -> FrameControl {
        FrameControl {
            sequence_number: 0,
            width: 0,
            height: 0,
            x_offset: 0,
            y_offset: 0,
            delay_num: 1,
            delay_den: 30,
            dispose_op: DisposeOp::None,
            blend_op: BlendOp::Source,
        }
    }
}

impl FrameControl {
    pub fn set_seq_num(&mut self, s: u32) {
        self.sequence_number = s;
    }

    pub fn inc_seq_num(&mut self, i: u32) {
        self.sequence_number += i;
    }

    pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
        let mut data = [0u8; 26];
        data[..4].copy_from_slice(&self.sequence_number.to_be_bytes());
        data[4..8].copy_from_slice(&self.width.to_be_bytes());
        data[8..12].copy_from_slice(&self.height.to_be_bytes());
        data[12..16].copy_from_slice(&self.x_offset.to_be_bytes());
        data[16..20].copy_from_slice(&self.y_offset.to_be_bytes());
        data[20..22].copy_from_slice(&self.delay_num.to_be_bytes());
        data[22..24].copy_from_slice(&self.delay_den.to_be_bytes());
        data[24] = self.dispose_op as u8;
        data[25] = self.blend_op as u8;

        encoder::write_chunk(w, chunk::fcTL, &data)
    }
}

/// Animation control information
#[derive(Clone, Copy, Debug)]
pub struct AnimationControl {
    /// Number of frames
    pub num_frames: u32,
    /// Number of times to loop this APNG.  0 indicates infinite looping.
    pub num_plays: u32,
}

impl AnimationControl {
    pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
        let mut data = [0; 8];
        data[..4].copy_from_slice(&self.num_frames.to_be_bytes());
        data[4..].copy_from_slice(&self.num_plays.to_be_bytes());
        encoder::write_chunk(w, chunk::acTL, &data)
    }
}

/// The type and strength of applied compression.
#[derive(Debug, Clone, Copy)]
pub enum Compression {
    /// Default level
    Default,
    /// Fast minimal compression
    Fast,
    /// Higher compression level
    ///
    /// Best in this context isn't actually the highest possible level
    /// the encoder can do, but is meant to emulate the `Best` setting in the `Flate2`
    /// library.
    Best,
    #[deprecated(
        since = "0.17.6",
        note = "use one of the other compression levels instead, such as 'fast'"
    )]
    Huffman,
    #[deprecated(
        since = "0.17.6",
        note = "use one of the other compression levels instead, such as 'fast'"
    )]
    Rle,
}

impl Default for Compression {
    fn default() -> Self {
        Self::Default
    }
}

/// An unsigned integer scaled version of a floating point value,
/// equivalent to an integer quotient with fixed denominator (100_000)).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ScaledFloat(u32);

impl ScaledFloat {
    const SCALING: f32 = 100_000.0;

    /// Gets whether the value is within the clamped range of this type.
    pub fn in_range(value: f32) -> bool {
        value >= 0.0 && (value * Self::SCALING).floor() <= u32::MAX as f32
    }

    /// Gets whether the value can be exactly converted in round-trip.
    #[allow(clippy::float_cmp)] // Stupid tool, the exact float compare is _the entire point_.
    pub fn exact(value: f32) -> bool {
        let there = Self::forward(value);
        let back = Self::reverse(there);
        value == back
    }

    fn forward(value: f32) -> u32 {
        (value.max(0.0) * Self::SCALING).floor() as u32
    }

    fn reverse(encoded: u32) -> f32 {
        encoded as f32 / Self::SCALING
    }

    /// Slightly inaccurate scaling and quantization.
    /// Clamps the value into the representable range if it is negative or too large.
    pub fn new(value: f32) -> Self {
        Self(Self::forward(value))
    }

    /// Fully accurate construction from a value scaled as per specification.
    pub fn from_scaled(val: u32) -> Self {
        Self(val)
    }

    /// Get the accurate encoded value.
    pub fn into_scaled(self) -> u32 {
        self.0
    }

    /// Get the unscaled value as a floating point.
    pub fn into_value(self) -> f32 {
        Self::reverse(self.0)
    }

    pub(crate) fn encode_gama<W: Write>(self, w: &mut W) -> encoder::Result<()> {
        encoder::write_chunk(w, chunk::gAMA, &self.into_scaled().to_be_bytes())
    }
}

/// Chromaticities of the color space primaries
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct SourceChromaticities {
    pub white: (ScaledFloat, ScaledFloat),
    pub red: (ScaledFloat, ScaledFloat),
    pub green: (ScaledFloat, ScaledFloat),
    pub blue: (ScaledFloat, ScaledFloat),
}

impl SourceChromaticities {
    pub fn new(white: (f32, f32), red: (f32, f32), green: (f32, f32), blue: (f32, f32)) -> Self {
        SourceChromaticities {
            white: (ScaledFloat::new(white.0), ScaledFloat::new(white.1)),
            red: (ScaledFloat::new(red.0), ScaledFloat::new(red.1)),
            green: (ScaledFloat::new(green.0), ScaledFloat::new(green.1)),
            blue: (ScaledFloat::new(blue.0), ScaledFloat::new(blue.1)),
        }
    }

    #[rustfmt::skip]
    pub fn to_be_bytes(self) -> [u8; 32] {
        let white_x = self.white.0.into_scaled().to_be_bytes();
        let white_y = self.white.1.into_scaled().to_be_bytes();
        let red_x   = self.red.0.into_scaled().to_be_bytes();
        let red_y   = self.red.1.into_scaled().to_be_bytes();
        let green_x = self.green.0.into_scaled().to_be_bytes();
        let green_y = self.green.1.into_scaled().to_be_bytes();
        let blue_x  = self.blue.0.into_scaled().to_be_bytes();
        let blue_y  = self.blue.1.into_scaled().to_be_bytes();
        [
            white_x[0], white_x[1], white_x[2], white_x[3],
            white_y[0], white_y[1], white_y[2], white_y[3],
            red_x[0],   red_x[1],   red_x[2],   red_x[3],
            red_y[0],   red_y[1],   red_y[2],   red_y[3],
            green_x[0], green_x[1], green_x[2], green_x[3],
            green_y[0], green_y[1], green_y[2], green_y[3],
            blue_x[0],  blue_x[1],  blue_x[2],  blue_x[3],
            blue_y[0],  blue_y[1],  blue_y[2],  blue_y[3],
        ]
    }

    pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
        encoder::write_chunk(w, chunk::cHRM, &self.to_be_bytes())
    }
}

/// The rendering intent for an sRGB image.
///
/// Presence of this data also indicates that the image conforms to the sRGB color space.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SrgbRenderingIntent {
    /// For images preferring good adaptation to the output device gamut at the expense of colorimetric accuracy, such as photographs.
    Perceptual = 0,
    /// For images requiring colour appearance matching (relative to the output device white point), such as logos.
    RelativeColorimetric = 1,
    /// For images preferring preservation of saturation at the expense of hue and lightness, such as charts and graphs.
    Saturation = 2,
    /// For images requiring preservation of absolute colorimetry, such as previews of images destined for a different output device (proofs).
    AbsoluteColorimetric = 3,
}

impl SrgbRenderingIntent {
    pub(crate) fn into_raw(self) -> u8 {
        self as u8
    }

    pub(crate) fn from_raw(raw: u8) -> Option<Self> {
        match raw {
            0 => Some(SrgbRenderingIntent::Perceptual),
            1 => Some(SrgbRenderingIntent::RelativeColorimetric),
            2 => Some(SrgbRenderingIntent::Saturation),
            3 => Some(SrgbRenderingIntent::AbsoluteColorimetric),
            _ => None,
        }
    }

    pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
        encoder::write_chunk(w, chunk::sRGB, &[self.into_raw()])
    }
}

/// Coding-independent code points (cICP) specify the color space (primaries),
/// transfer function, matrix coefficients and scaling factor of the image using
/// the code points specified in [ITU-T-H.273](https://www.itu.int/rec/T-REC-H.273).
///
/// See https://www.w3.org/TR/png-3/#cICP-chunk for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CodingIndependentCodePoints {
    /// Id number of the color primaries defined in
    /// [ITU-T-H.273](https://www.itu.int/rec/T-REC-H.273) in "Table 2 -
    /// Interpretation of colour primaries (ColourPrimaries) value".
    pub color_primaries: u8,

    /// Id number of the transfer characteristics defined in
    /// [ITU-T-H.273](https://www.itu.int/rec/T-REC-H.273) in "Table 3 -
    /// Interpretation of transfer characteristics (TransferCharacteristics)
    /// value".
    pub transfer_function: u8,

    /// Id number of the matrix coefficients defined in
    /// [ITU-T-H.273](https://www.itu.int/rec/T-REC-H.273) in "Table 4 -
    /// Interpretation of matrix coefficients (MatrixCoefficients) value".
    ///
    /// This field is included to faithfully replicate the base
    /// [ITU-T-H.273](https://www.itu.int/rec/T-REC-H.273) specification, but matrix coefficients
    /// will always be set to 0, because RGB is currently the only supported color mode in PNG.
    pub matrix_coefficients: u8,

    /// Whether the image is
    /// [a full range image](https://www.w3.org/TR/png-3/#dfn-full-range-image)
    /// or
    /// [a narrow range image](https://www.w3.org/TR/png-3/#dfn-narrow-range-image).
    ///
    /// This field is included to faithfully replicate the base
    /// [ITU-T-H.273](https://www.itu.int/rec/T-REC-H.273) specification, but it has limited
    /// practical application to PNG images, because narrow-range images are [quite
    /// rare](https://github.com/w3c/png/issues/312#issuecomment-2327349614) in practice.
    pub is_video_full_range_image: bool,
}

/// Mastering Display Color Volume (mDCV) used at the point of content creation,
/// as specified in [SMPTE-ST-2086](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8353899).
///
/// See https://www.w3.org/TR/png-3/#mDCV-chunk for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct MasteringDisplayColorVolume {
    /// Mastering display chromaticities.
    pub chromaticities: SourceChromaticities,

    /// Mastering display maximum luminance.
    ///
    /// The value is expressed in units of 0.0001 cd/m^2 - for example if this field
    /// is set to `10000000` then it indicates 1000 cd/m^2.
    pub max_luminance: u32,

    /// Mastering display minimum luminance.
    ///
    /// The value is expressed in units of 0.0001 cd/m^2 - for example if this field
    /// is set to `10000000` then it indicates 1000 cd/m^2.
    pub min_luminance: u32,
}

/// Content light level information of HDR content.
///
/// See https://www.w3.org/TR/png-3/#cLLI-chunk for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ContentLightLevelInfo {
    /// Maximum Content Light Level indicates the maximum light level of any
    /// single pixel (in cd/m^2, also known as nits) of the entire playback
    /// sequence.
    ///
    /// The value is expressed in units of 0.0001 cd/m^2 - for example if this field
    /// is set to `10000000` then it indicates 1000 cd/m^2.
    ///
    /// A value of zero means that the value is unknown or not currently calculable.
    pub max_content_light_level: u32,

    /// Maximum Frame Average Light Level indicates the maximum value of the
    /// frame average light level (in cd/m^2, also known as nits) of the entire
    /// playback sequence. It is calculated by first averaging the decoded
    /// luminance values of all the pixels in each frame, and then using the
    /// value for the frame with the highest value.
    ///
    /// The value is expressed in units of 0.0001 cd/m^2 - for example if this field
    /// is set to `10000000` then it indicates 1000 cd/m^2.
    ///
    /// A value of zero means that the value is unknown or not currently calculable.
    pub max_frame_average_light_level: u32,
}

/// PNG info struct
#[derive(Clone, Debug)]
#[non_exhaustive]
pub struct Info<'a> {
    pub width: u32,
    pub height: u32,
    pub bit_depth: BitDepth,
    /// How colors are stored in the image.
    pub color_type: ColorType,
    pub interlaced: bool,
    /// The image's `sBIT` chunk, if present; contains significant bits of the sample.
    pub sbit: Option<Cow<'a, [u8]>>,
    /// The image's `tRNS` chunk, if present; contains the alpha channel of the image's palette, 1 byte per entry.
    pub trns: Option<Cow<'a, [u8]>>,
    pub pixel_dims: Option<PixelDimensions>,
    /// The image's `PLTE` chunk, if present; contains the RGB channels (in that order) of the image's palettes, 3 bytes per entry (1 per channel).
    pub palette: Option<Cow<'a, [u8]>>,
    /// The contents of the image's gAMA chunk, if present.
    /// Prefer `source_gamma` to also get the derived replacement gamma from sRGB chunks.
    pub gama_chunk: Option<ScaledFloat>,
    /// The contents of the image's `cHRM` chunk, if present.
    /// Prefer `source_chromaticities` to also get the derived replacements from sRGB chunks.
    pub chrm_chunk: Option<SourceChromaticities>,
    /// The contents of the image's `bKGD` chunk, if present.
    pub bkgd: Option<Cow<'a, [u8]>>,

    pub frame_control: Option<FrameControl>,
    pub animation_control: Option<AnimationControl>,
    pub compression: Compression,
    /// Gamma of the source system.
    /// Set by both `gAMA` as well as to a replacement by `sRGB` chunk.
    pub source_gamma: Option<ScaledFloat>,
    /// Chromaticities of the source system.
    /// Set by both `cHRM` as well as to a replacement by `sRGB` chunk.
    pub source_chromaticities: Option<SourceChromaticities>,
    /// The rendering intent of an SRGB image.
    ///
    /// Presence of this value also indicates that the image conforms to the SRGB color space.
    pub srgb: Option<SrgbRenderingIntent>,
    /// The ICC profile for the image.
    pub icc_profile: Option<Cow<'a, [u8]>>,
    /// The coding-independent code points for video signal type identification of the image.
    pub coding_independent_code_points: Option<CodingIndependentCodePoints>,
    /// The mastering display color volume for the image.
    pub mastering_display_color_volume: Option<MasteringDisplayColorVolume>,
    /// The content light information for the image.
    pub content_light_level: Option<ContentLightLevelInfo>,
    /// The EXIF metadata for the image.
    pub exif_metadata: Option<Cow<'a, [u8]>>,
    /// tEXt field
    pub uncompressed_latin1_text: Vec<TEXtChunk>,
    /// zTXt field
    pub compressed_latin1_text: Vec<ZTXtChunk>,
    /// iTXt field
    pub utf8_text: Vec<ITXtChunk>,
}

impl Default for Info<'_> {
    fn default() -> Info<'static> {
        Info {
            width: 0,
            height: 0,
            bit_depth: BitDepth::Eight,
            color_type: ColorType::Grayscale,
            interlaced: false,
            palette: None,
            sbit: None,
            trns: None,
            gama_chunk: None,
            chrm_chunk: None,
            bkgd: None,
            pixel_dims: None,
            frame_control: None,
            animation_control: None,
            // Default to `deflate::Compression::Fast` and `filter::FilterType::Sub`
            // to maintain backward compatible output.
            compression: Compression::Fast,
            source_gamma: None,
            source_chromaticities: None,
            srgb: None,
            icc_profile: None,
            coding_independent_code_points: None,
            mastering_display_color_volume: None,
            content_light_level: None,
            exif_metadata: None,
            uncompressed_latin1_text: Vec::new(),
            compressed_latin1_text: Vec::new(),
            utf8_text: Vec::new(),
        }
    }
}

impl Info<'_> {
    /// A utility constructor for a default info with width and height.
    pub fn with_size(width: u32, height: u32) -> Self {
        Info {
            width,
            height,
            ..Default::default()
        }
    }

    /// Size of the image, width then height.
    pub fn size(&self) -> (u32, u32) {
        (self.width, self.height)
    }

    /// Returns true if the image is an APNG image.
    pub fn is_animated(&self) -> bool {
        self.frame_control.is_some() && self.animation_control.is_some()
    }

    /// Returns the frame control information of the image.
    pub fn animation_control(&self) -> Option<&AnimationControl> {
        self.animation_control.as_ref()
    }

    /// Returns the frame control information of the current frame
    pub fn frame_control(&self) -> Option<&FrameControl> {
        self.frame_control.as_ref()
    }

    /// Returns the number of bits per pixel.
    pub fn bits_per_pixel(&self) -> usize {
        self.color_type.samples() * self.bit_depth as usize
    }

    /// Returns the number of bytes per pixel.
    pub fn bytes_per_pixel(&self) -> usize {
        // If adjusting this for expansion or other transformation passes, remember to keep the old
        // implementation for bpp_in_prediction, which is internal to the png specification.
        self.color_type.samples() * ((self.bit_depth as usize + 7) >> 3)
    }

    /// Return the number of bytes for this pixel used in prediction.
    ///
    /// Some filters use prediction, over the raw bytes of a scanline. Where a previous pixel is
    /// require for such forms the specification instead references previous bytes. That is, for
    /// a gray pixel of bit depth 2, the pixel used in prediction is actually 4 pixels prior. This
    /// has the consequence that the number of possible values is rather small. To make this fact
    /// more obvious in the type system and the optimizer we use an explicit enum here.
    pub(crate) fn bpp_in_prediction(&self) -> BytesPerPixel {
        BytesPerPixel::from_usize(self.bytes_per_pixel())
    }

    /// Returns the number of bytes needed for one deinterlaced image.
    pub fn raw_bytes(&self) -> usize {
        self.height as usize * self.raw_row_length()
    }

    /// Returns the number of bytes needed for one deinterlaced row.
    pub fn raw_row_length(&self) -> usize {
        self.raw_row_length_from_width(self.width)
    }

    pub(crate) fn checked_raw_row_length(&self) -> Option<usize> {
        self.color_type
            .checked_raw_row_length(self.bit_depth, self.width)
    }

    /// Returns the number of bytes needed for one deinterlaced row of width `width`.
    pub fn raw_row_length_from_width(&self, width: u32) -> usize {
        self.color_type
            .raw_row_length_from_width(self.bit_depth, width)
    }

    /// Mark the image data as conforming to the SRGB color space with the specified rendering intent.
    ///
    /// Any ICC profiles will be ignored.
    ///
    /// Source gamma and chromaticities will be written only if they're set to fallback
    /// values specified in [11.3.2.5](https://www.w3.org/TR/png-3/#sRGB-gAMA-cHRM).
    pub(crate) fn set_source_srgb(&mut self, rendering_intent: SrgbRenderingIntent) {
        self.srgb = Some(rendering_intent);
        self.icc_profile = None;
    }

    /// Encode this header to the writer.
    ///
    /// Note that this does _not_ include the PNG signature, it starts with the IHDR chunk and then
    /// includes other chunks that were added to the header.
    #[deprecated(note = "Use Encoder+Writer instead")]
    pub fn encode<W: Write>(&self, mut w: W) -> encoder::Result<()> {
        // Encode the IHDR chunk
        let mut data = [0; 13];
        data[..4].copy_from_slice(&self.width.to_be_bytes());
        data[4..8].copy_from_slice(&self.height.to_be_bytes());
        data[8] = self.bit_depth as u8;
        data[9] = self.color_type as u8;
        data[12] = self.interlaced as u8;
        encoder::write_chunk(&mut w, chunk::IHDR, &data)?;

        // Encode the pHYs chunk
        if let Some(pd) = self.pixel_dims {
            let mut phys_data = [0; 9];
            phys_data[0..4].copy_from_slice(&pd.xppu.to_be_bytes());
            phys_data[4..8].copy_from_slice(&pd.yppu.to_be_bytes());
            match pd.unit {
                Unit::Meter => phys_data[8] = 1,
                Unit::Unspecified => phys_data[8] = 0,
            }
            encoder::write_chunk(&mut w, chunk::pHYs, &phys_data)?;
        }

        // If specified, the sRGB information overrides the source gamma and chromaticities.
        if let Some(srgb) = &self.srgb {
            srgb.encode(&mut w)?;

            // gAMA and cHRM are optional, for backwards compatibility
            let srgb_gamma = crate::srgb::substitute_gamma();
            if Some(srgb_gamma) == self.source_gamma {
                srgb_gamma.encode_gama(&mut w)?
            }
            let srgb_chromaticities = crate::srgb::substitute_chromaticities();
            if Some(srgb_chromaticities) == self.source_chromaticities {
                srgb_chromaticities.encode(&mut w)?;
            }
        } else {
            if let Some(gma) = self.source_gamma {
                gma.encode_gama(&mut w)?
            }
            if let Some(chrms) = self.source_chromaticities {
                chrms.encode(&mut w)?;
            }
            if let Some(iccp) = &self.icc_profile {
                encoder::write_iccp_chunk(&mut w, "_", iccp)?
            }
        }

        if let Some(exif) = &self.exif_metadata {
            encoder::write_chunk(&mut w, chunk::eXIf, exif)?;
        }

        if let Some(actl) = self.animation_control {
            actl.encode(&mut w)?;
        }

        // The position of the PLTE chunk is important, it must come before the tRNS chunk and after
        // many of the other metadata chunks.
        if let Some(p) = &self.palette {
            encoder::write_chunk(&mut w, chunk::PLTE, p)?;
        };

        if let Some(t) = &self.trns {
            encoder::write_chunk(&mut w, chunk::tRNS, t)?;
        }

        for text_chunk in &self.uncompressed_latin1_text {
            text_chunk.encode(&mut w)?;
        }

        for text_chunk in &self.compressed_latin1_text {
            text_chunk.encode(&mut w)?;
        }

        for text_chunk in &self.utf8_text {
            text_chunk.encode(&mut w)?;
        }

        Ok(())
    }
}

impl BytesPerPixel {
    pub(crate) fn from_usize(bpp: usize) -> Self {
        match bpp {
            1 => BytesPerPixel::One,
            2 => BytesPerPixel::Two,
            3 => BytesPerPixel::Three,
            4 => BytesPerPixel::Four,
            6 => BytesPerPixel::Six,   // Only rgb×16bit
            8 => BytesPerPixel::Eight, // Only rgba×16bit
            _ => unreachable!("Not a possible byte rounded pixel width"),
        }
    }

    pub(crate) fn into_usize(self) -> usize {
        self as usize
    }
}

bitflags::bitflags! {
    /// Output transformations
    ///
    /// Many flags from libpng are not yet supported. A PR discussing/adding them would be nice.
    ///
    #[doc = "
    ```c
    /// Discard the alpha channel
    const STRIP_ALPHA         = 0x0002; // read only
    /// Expand 1; 2 and 4-bit samples to bytes
    const PACKING             = 0x0004; // read and write
    /// Change order of packed pixels to LSB first
    const PACKSWAP            = 0x0008; // read and write
    /// Invert monochrome images
    const INVERT_MONO         = 0x0020; // read and write
    /// Normalize pixels to the sBIT depth
    const SHIFT               = 0x0040; // read and write
    /// Flip RGB to BGR; RGBA to BGRA
    const BGR                 = 0x0080; // read and write
    /// Flip RGBA to ARGB or GA to AG
    const SWAP_ALPHA          = 0x0100; // read and write
    /// Byte-swap 16-bit samples
    const SWAP_ENDIAN         = 0x0200; // read and write
    /// Change alpha from opacity to transparency
    const INVERT_ALPHA        = 0x0400; // read and write
    const STRIP_FILLER        = 0x0800; // write only
    const STRIP_FILLER_BEFORE = 0x0800; // write only
    const STRIP_FILLER_AFTER  = 0x1000; // write only
    const GRAY_TO_RGB         = 0x2000; // read only
    const EXPAND_16           = 0x4000; // read only
    /// Similar to STRIP_16 but in libpng considering gamma?
    /// Not entirely sure the documentation says it is more
    /// accurate but doesn't say precisely how.
    const SCALE_16            = 0x8000; // read only
    ```
    "]
    pub struct Transformations: u32 {
        /// No transformation
        const IDENTITY            = 0x00000; // read and write */
        /// Strip 16-bit samples to 8 bits
        const STRIP_16            = 0x00001; // read only */
        /// Expand paletted images to RGB; expand grayscale images of
        /// less than 8-bit depth to 8-bit depth; and expand tRNS chunks
        /// to alpha channels.
        const EXPAND              = 0x00010; // read only */
        /// Expand paletted images to include an alpha channel. Implies `EXPAND`.
        const ALPHA               = 0x10000; // read only */
    }
}

impl Transformations {
    /// Transform every input to 8bit grayscale or color.
    ///
    /// This sets `EXPAND` and `STRIP_16` which is similar to the default transformation used by
    /// this library prior to `0.17`.
    pub fn normalize_to_color8() -> Transformations {
        Transformations::EXPAND | Transformations::STRIP_16
    }
}

/// Instantiate the default transformations, the identity transform.
impl Default for Transformations {
    fn default() -> Transformations {
        Transformations::IDENTITY
    }
}

#[derive(Debug)]
pub struct ParameterError {
    inner: ParameterErrorKind,
}

#[derive(Debug)]
pub(crate) enum ParameterErrorKind {
    /// A provided buffer must be have the exact size to hold the image data. Where the buffer can
    /// be allocated by the caller, they must ensure that it has a minimum size as hinted previously.
    /// Even though the size is calculated from image data, this does counts as a parameter error
    /// because they must react to a value produced by this library, which can have been subjected
    /// to limits.
    ImageBufferSize { expected: usize, actual: usize },
    /// A bit like return `None` from an iterator.
    /// We use it to differentiate between failing to seek to the next image in a sequence and the
    /// absence of a next image. This is an error of the caller because they should have checked
    /// the number of images by inspecting the header data returned when opening the image. This
    /// library will perform the checks necessary to ensure that data was accurate or error with a
    /// format error otherwise.
    PolledAfterEndOfImage,
    /// Attempt to continue decoding after a fatal, non-resumable error was reported (e.g. after
    /// [`DecodingError::Format`]).  The only case when it is possible to resume after an error
    /// is an `UnexpectedEof` scenario - see [`DecodingError::IoError`].
    PolledAfterFatalError,
}

impl From<ParameterErrorKind> for ParameterError {
    fn from(inner: ParameterErrorKind) -> Self {
        ParameterError { inner }
    }
}

impl fmt::Display for ParameterError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        use ParameterErrorKind::*;
        match self.inner {
            ImageBufferSize { expected, actual } => {
                write!(fmt, "wrong data size, expected {} got {}", expected, actual)
            }
            PolledAfterEndOfImage => write!(fmt, "End of image has been reached"),
            PolledAfterFatalError => {
                write!(fmt, "A fatal decoding error has been encounted earlier")
            }
        }
    }
}