1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
// Copyright 2017 Matt Brubeck. See the COPYRIGHT file at the top-level
// directory of this distribution and at http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! [`SmallBitVec`] is a bit vector, a vector of single-bit values stored compactly in memory.
//!
//! SmallBitVec grows dynamically, like the standard `Vec<T>` type.  It can hold up to about one
//! word of bits inline (without a separate heap allocation).  If the number of bits exceeds this
//! inline capacity, it will allocate a buffer on the heap.
//!
//! [`SmallBitVec`]: struct.SmallBitVec.html
//!
//! # Example
//!
//! ```
//! use smallbitvec::SmallBitVec;
//!
//! let mut v = SmallBitVec::new();
//! v.push(true);
//! v.push(false);
//!
//! assert_eq!(v[0], true);
//! assert_eq!(v[1], false);
//! ```

#![no_std]

extern crate alloc;

use alloc::{boxed::Box, vec, vec::Vec};

use core::cmp::max;
use core::fmt;
use core::hash;
use core::mem::{forget, replace, size_of};
use core::ops::{Index, Range};
use core::slice;

/// Creates a [`SmallBitVec`] containing the arguments.
///
/// `sbvec!` allows `SmallBitVec`s to be defined with the same syntax as array expressions.
/// There are two forms of this macro:
///
/// - Create a [`SmallBitVec`] containing a given list of elements:
///
/// ```
/// # #[macro_use] extern crate smallbitvec;
/// # use smallbitvec::SmallBitVec;
/// # fn main() {
/// let v = sbvec![true, false, true];
/// assert_eq!(v[0], true);
/// assert_eq!(v[1], false);
/// assert_eq!(v[2], true);
/// # }
/// ```
///
/// - Create a [`SmallBitVec`] from a given element and size:
///
/// ```
/// # #[macro_use] extern crate smallbitvec;
/// # use smallbitvec::SmallBitVec;
/// # fn main() {
/// let v = sbvec![true; 3];
/// assert!(v.into_iter().eq(vec![true, true, true].into_iter()));
/// # }
/// ```

#[macro_export]
macro_rules! sbvec {
    ($elem:expr; $n:expr) => (
        $crate::SmallBitVec::from_elem($n, $elem)
    );
    ($($x:expr),*) => (
        [$($x),*].iter().cloned().collect::<$crate::SmallBitVec>()
    );
    ($($x:expr,)*) => (
        sbvec![$($x),*]
    );
}

// FIXME: replace this with `debug_assert!` when it’s usable in `const`:
// * https://github.com/rust-lang/rust/issues/49146
// * https://github.com/rust-lang/rust/issues/51999
macro_rules! const_debug_assert_le {
    ($left: ident <= $right: expr) => {
        #[cfg(debug_assertions)]
        // Causes an `index out of bounds` panic if `$left` is too large
        [(); $right + 1][$left];
    };
}

#[cfg(test)]
mod tests;

/// A resizable bit vector, optimized for size and inline storage.
///
/// `SmallBitVec` is exactly one word wide. Depending on the required capacity, this word
/// either stores the bits inline, or it stores a pointer to a separate buffer on the heap.
pub struct SmallBitVec {
    data: usize,
}

/// Total number of bits per word.
#[inline(always)]
const fn inline_bits() -> usize {
    size_of::<usize>() * 8
}

/// For an inline vector, all bits except two can be used as storage capacity:
///
/// - The rightmost bit is set to zero to signal an inline vector.
/// - The position of the rightmost nonzero bit encodes the length.
#[inline(always)]
const fn inline_capacity() -> usize {
    inline_bits() - 2
}

/// Left shift amount to access the nth bit
#[inline(always)]
const fn inline_shift(n: usize) -> usize {
    const_debug_assert_le!(n <= inline_capacity());
    // The storage starts at the leftmost bit.
    inline_bits() - 1 - n
}

/// An inline vector with the nth bit set.
#[inline(always)]
const fn inline_index(n: usize) -> usize {
    1 << inline_shift(n)
}

/// An inline vector with the leftmost `n` bits set.
#[inline(always)]
fn inline_ones(n: usize) -> usize {
    if n == 0 {
        0
    } else {
        !0 << (inline_bits() - n)
    }
}

/// If the rightmost bit of `data` is set, then the remaining bits of `data`
/// are a pointer to a heap allocation.
const HEAP_FLAG: usize = 1;

/// The allocation will contain a `Header` followed by a [Storage] buffer.
type Storage = usize;

/// The number of bits in one `Storage`.
#[inline(always)]
fn bits_per_storage() -> usize {
    size_of::<Storage>() * 8
}

/// Data stored at the start of the heap allocation.
///
/// `Header` must have the same alignment as `Storage`.
struct Header {
    /// The number of bits in this bit vector.
    len: Storage,

    /// The number of elements in the [usize] buffer that follows this header.
    buffer_len: Storage,
}

impl Header {
    /// Create a heap allocation with enough space for a header,
    /// plus a buffer of at least `cap` bits, each initialized to `val`.
    fn new(cap: usize, len: usize, val: bool) -> *mut Header {
        let alloc_len = header_len() + buffer_len(cap);
        let init = if val { !0 } else { 0 };

        let v: Vec<Storage> = vec![init; alloc_len];

        let buffer_len = v.capacity() - header_len();
        let header_ptr = v.as_ptr() as *mut Header;

        forget(v);

        unsafe {
            (*header_ptr).len = len;
            (*header_ptr).buffer_len = buffer_len;
        }
        header_ptr
    }
}

/// The number of `Storage` elements to allocate to hold a header.
#[inline(always)]
fn header_len() -> usize {
    size_of::<Header>() / size_of::<Storage>()
}

/// The minimum number of `Storage` elements to hold at least `cap` bits.
#[inline(always)]
fn buffer_len(cap: usize) -> usize {
    (cap + bits_per_storage() - 1) / bits_per_storage()
}

/// A typed representation of a `SmallBitVec`'s internal storage.
///
/// The layout of the data inside both enum variants is a private implementation detail.
pub enum InternalStorage {
    /// The internal representation of a `SmallBitVec` that has not spilled to a
    /// heap allocation.
    Inline(usize),

    /// The contents of the heap allocation of a spilled `SmallBitVec`.
    Spilled(Box<[usize]>),
}

impl SmallBitVec {
    /// Create an empty vector.
    #[inline]
    pub const fn new() -> SmallBitVec {
        SmallBitVec {
            data: inline_index(0),
        }
    }

    /// Create a vector containing `len` bits, each set to `val`.
    #[inline]
    pub fn from_elem(len: usize, val: bool) -> SmallBitVec {
        if len <= inline_capacity() {
            return SmallBitVec {
                data: if val {
                    inline_ones(len + 1)
                } else {
                    inline_index(len)
                },
            };
        }
        let header_ptr = Header::new(len, len, val);
        SmallBitVec {
            data: (header_ptr as usize) | HEAP_FLAG,
        }
    }

    /// Create an empty vector with enough storage pre-allocated to store at least `cap` bits
    /// without resizing.
    #[inline]
    pub fn with_capacity(cap: usize) -> SmallBitVec {
        // Use inline storage if possible.
        if cap <= inline_capacity() {
            return SmallBitVec::new();
        }

        // Otherwise, allocate on the heap.
        let header_ptr = Header::new(cap, 0, false);
        SmallBitVec {
            data: (header_ptr as usize) | HEAP_FLAG,
        }
    }

    /// The number of bits stored in this bit vector.
    #[inline]
    pub fn len(&self) -> usize {
        if self.is_inline() {
            // The rightmost nonzero bit is a sentinel.  All bits to the left of
            // the sentinel bit are the elements of the bit vector.
            inline_bits() - self.data.trailing_zeros() as usize - 1
        } else {
            self.header().len
        }
    }

    /// Returns `true` if this vector contains no bits.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// The number of bits that can be stored in this bit vector without re-allocating.
    #[inline]
    pub fn capacity(&self) -> usize {
        if self.is_inline() {
            inline_capacity()
        } else {
            self.header().buffer_len * bits_per_storage()
        }
    }

    /// Get the nth bit in this bit vector.
    #[inline]
    pub fn get(&self, n: usize) -> Option<bool> {
        if n < self.len() {
            Some(unsafe { self.get_unchecked(n) })
        } else {
            None
        }
    }

    /// Get the last bit in this bit vector.
    #[inline]
    pub fn last(&self) -> Option<bool> {
        self.len()
            .checked_sub(1)
            .map(|n| unsafe { self.get_unchecked(n) })
    }

    /// Get the nth bit in this bit vector, without bounds checks.
    #[inline]
    pub unsafe fn get_unchecked(&self, n: usize) -> bool {
        if self.is_inline() {
            self.data & inline_index(n) != 0
        } else {
            let buffer = self.buffer();
            let i = n / bits_per_storage();
            let offset = n % bits_per_storage();
            *buffer.get_unchecked(i) & (1 << offset) != 0
        }
    }

    /// Set the nth bit in this bit vector to `val`.  Panics if the index is out of bounds.
    #[inline]
    pub fn set(&mut self, n: usize, val: bool) {
        assert!(n < self.len(), "Index {} out of bounds", n);
        unsafe {
            self.set_unchecked(n, val);
        }
    }

    /// Set the nth bit in this bit vector to `val`, without bounds checks.
    #[inline]
    pub unsafe fn set_unchecked(&mut self, n: usize, val: bool) {
        if self.is_inline() {
            if val {
                self.data |= inline_index(n);
            } else {
                self.data &= !inline_index(n);
            }
        } else {
            let buffer = self.buffer_mut();
            let i = n / bits_per_storage();
            let offset = n % bits_per_storage();
            if val {
                *buffer.get_unchecked_mut(i) |= 1 << offset;
            } else {
                *buffer.get_unchecked_mut(i) &= !(1 << offset);
            }
        }
    }

    /// Append a bit to the end of the vector.
    ///
    /// ```
    /// use smallbitvec::SmallBitVec;
    /// let mut v = SmallBitVec::new();
    /// v.push(true);
    ///
    /// assert_eq!(v.len(), 1);
    /// assert_eq!(v.get(0), Some(true));
    /// ```
    #[inline]
    pub fn push(&mut self, val: bool) {
        let idx = self.len();
        if idx == self.capacity() {
            self.reserve(1);
        }
        unsafe {
            self.set_len(idx + 1);
            self.set_unchecked(idx, val);
        }
    }

    /// Remove the last bit from the vector and return it, if there is one.
    ///
    /// ```
    /// use smallbitvec::SmallBitVec;
    /// let mut v = SmallBitVec::new();
    /// v.push(false);
    ///
    /// assert_eq!(v.pop(), Some(false));
    /// assert_eq!(v.len(), 0);
    /// assert_eq!(v.pop(), None);
    /// ```
    #[inline]
    pub fn pop(&mut self) -> Option<bool> {
        self.len().checked_sub(1).map(|last| unsafe {
            let val = self.get_unchecked(last);
            self.set_len(last);
            val
        })
    }

    /// Remove and return the bit at index `idx`, shifting all later bits toward the front.
    ///
    /// Panics if the index is out of bounds.
    #[inline]
    pub fn remove(&mut self, idx: usize) -> bool {
        let len = self.len();
        let val = self[idx];

        if self.is_inline() {
            // Shift later bits, including the length bit, toward the front.
            let mask = !inline_ones(idx);
            let new_vals = (self.data & mask) << 1;
            self.data = (self.data & !mask) | (new_vals & mask);
        } else {
            let first = idx / bits_per_storage();
            let offset = idx % bits_per_storage();
            let count = buffer_len(len);
            {
                // Shift bits within the first storage block.
                let buf = self.buffer_mut();
                let mask = !0 << offset;
                let new_vals = (buf[first] & mask) >> 1;
                buf[first] = (buf[first] & !mask) | (new_vals & mask);
            }
            // Shift bits in subsequent storage blocks.
            for i in (first + 1)..count {
                // Move the first bit into the previous block.
                let bit_idx = i * bits_per_storage();
                unsafe {
                    let first_bit = self.get_unchecked(bit_idx);
                    self.set_unchecked(bit_idx - 1, first_bit);
                }
                // Shift the remaining bits.
                self.buffer_mut()[i] >>= 1;
            }
            // Decrement the length.
            unsafe {
                self.set_len(len - 1);
            }
        }
        val
    }

    /// Remove all elements from the vector, without deallocating its buffer.
    #[inline]
    pub fn clear(&mut self) {
        unsafe {
            self.set_len(0);
        }
    }

    /// Reserve capacity for at least `additional` more elements to be inserted.
    ///
    /// May reserve more space than requested, to avoid frequent reallocations.
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// Re-allocates only if `self.capacity() < self.len() + additional`.
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        let old_cap = self.capacity();
        let new_cap = self
            .len()
            .checked_add(additional)
            .expect("capacity overflow");
        if new_cap <= old_cap {
            return;
        }
        // Ensure the new capacity is at least double, to guarantee exponential growth.
        let double_cap = old_cap.saturating_mul(2);
        self.reallocate(max(new_cap, double_cap));
    }

    /// Set the length of the vector. The length must not exceed the capacity.
    ///
    /// If this makes the vector longer, then the values of its new elements
    /// are not specified.
    #[inline]
    unsafe fn set_len(&mut self, len: usize) {
        debug_assert!(len <= self.capacity());
        if self.is_inline() {
            let sentinel = inline_index(len);
            let mask = !(sentinel - 1);
            self.data |= sentinel;
            self.data &= mask;
        } else {
            self.header_mut().len = len;
        }
    }

    /// Returns an iterator that yields the bits of the vector in order, as `bool` values.
    #[inline]
    pub fn iter(&self) -> Iter {
        Iter {
            vec: self,
            range: 0..self.len(),
        }
    }

    /// Returns an immutable view of a range of bits from this vec.
    /// ```
    /// #[macro_use] extern crate smallbitvec;
    /// let v = sbvec![true, false, true];
    /// let r = v.range(1..3);
    /// assert_eq!(r[1], true);
    /// ```
    #[inline]
    pub fn range(&self, range: Range<usize>) -> VecRange {
        assert!(range.end <= self.len(), "range out of bounds");
        VecRange { vec: &self, range }
    }

    /// Returns true if all the bits in the vec are set to zero/false.
    ///
    /// On an empty vector, returns true.
    #[inline]
    pub fn all_false(&self) -> bool {
        let mut len = self.len();
        if len == 0 {
            return true;
        }

        if self.is_inline() {
            let mask = inline_ones(len);
            self.data & mask == 0
        } else {
            for &storage in self.buffer() {
                if len >= bits_per_storage() {
                    if storage != 0 {
                        return false;
                    }
                    len -= bits_per_storage();
                } else {
                    let mask = (1 << len) - 1;
                    if storage & mask != 0 {
                        return false;
                    }
                    break;
                }
            }
            true
        }
    }

    /// Returns true if all the bits in the vec are set to one/true.
    ///
    /// On an empty vector, returns true.
    #[inline]
    pub fn all_true(&self) -> bool {
        let mut len = self.len();
        if len == 0 {
            return true;
        }

        if self.is_inline() {
            let mask = inline_ones(len);
            self.data & mask == mask
        } else {
            for &storage in self.buffer() {
                if len >= bits_per_storage() {
                    if storage != !0 {
                        return false;
                    }
                    len -= bits_per_storage();
                } else {
                    let mask = (1 << len) - 1;
                    if storage & mask != mask {
                        return false;
                    }
                    break;
                }
            }
            true
        }
    }

    /// Shorten the vector, keeping the first `len` elements and dropping the rest.
    ///
    /// If `len` is greater than or equal to the vector's current length, this has no
    /// effect.
    ///
    /// This does not re-allocate.
    pub fn truncate(&mut self, len: usize) {
        unsafe {
            if len < self.len() {
                self.set_len(len);
            }
        }
    }

    /// Resizes the vector so that its length is equal to `len`.
    ///
    /// If `len` is less than the current length, the vector simply truncated.
    ///
    /// If `len` is greater than the current length, `value` is appended to the
    /// vector until its length equals `len`.
    pub fn resize(&mut self, len: usize, value: bool) {
        let old_len = self.len();

        if len > old_len {
            unsafe {
                self.reallocate(len);
                self.set_len(len);
                for i in old_len..len {
                    self.set(i, value);
                }
            }
        } else {
            self.truncate(len);
        }
    }

    /// Resize the vector to have capacity for at least `cap` bits.
    ///
    /// `cap` must be at least as large as the length of the vector.
    fn reallocate(&mut self, cap: usize) {
        let old_cap = self.capacity();
        if cap <= old_cap {
            return;
        }
        assert!(self.len() <= cap);

        if self.is_heap() {
            let old_buffer_len = self.header().buffer_len;
            let new_buffer_len = buffer_len(cap);

            let old_alloc_len = header_len() + old_buffer_len;
            let new_alloc_len = header_len() + new_buffer_len;

            let old_ptr = self.header_raw() as *mut Storage;
            let mut v = unsafe { Vec::from_raw_parts(old_ptr, old_alloc_len, old_alloc_len) };
            v.resize(new_alloc_len, 0);
            v.shrink_to_fit();
            self.data = v.as_ptr() as usize | HEAP_FLAG;
            forget(v);

            self.header_mut().buffer_len = new_buffer_len;
        } else {
            let old_self = replace(self, SmallBitVec::with_capacity(cap));
            unsafe {
                self.set_len(old_self.len());
                for i in 0..old_self.len() {
                    self.set_unchecked(i, old_self.get_unchecked(i));
                }
            }
        }
    }

    /// If the vector owns a heap allocation, returns a pointer to the start of the allocation.
    ///
    /// The layout of the data at this allocation is a private implementation detail.
    #[inline]
    pub fn heap_ptr(&self) -> Option<*const usize> {
        if self.is_heap() {
            Some((self.data & !HEAP_FLAG) as *const Storage)
        } else {
            None
        }
    }

    /// Converts this `SmallBitVec` into its internal representation.
    ///
    /// The layout of the data inside both enum variants is a private implementation detail.
    #[inline]
    pub fn into_storage(self) -> InternalStorage {
        if self.is_heap() {
            let alloc_len = header_len() + self.header().buffer_len;
            let ptr = self.header_raw() as *mut Storage;
            let slice = unsafe { Box::from_raw(slice::from_raw_parts_mut(ptr, alloc_len)) };
            forget(self);
            InternalStorage::Spilled(slice)
        } else {
            InternalStorage::Inline(self.data)
        }
    }

    /// Creates a `SmallBitVec` directly from the internal storage of another
    /// `SmallBitVec`.
    ///
    /// # Safety
    ///
    /// This is highly unsafe.  `storage` needs to have been previously generated
    /// via `SmallBitVec::into_storage` (at least, it's highly likely to be
    /// incorrect if it wasn't.)  Violating this may cause problems like corrupting the
    /// allocator's internal data structures.
    ///
    /// # Examples
    ///
    /// ```
    /// # use smallbitvec::{InternalStorage, SmallBitVec};
    ///
    /// fn main() {
    ///     let v = SmallBitVec::from_elem(200, false);
    ///
    ///     // Get the internal representation of the SmallBitVec.
    ///     // unless we transfer its ownership somewhere else.
    ///     let storage = v.into_storage();
    ///
    ///     /// Make a copy of the SmallBitVec's data.
    ///     let cloned_storage = match storage {
    ///         InternalStorage::Spilled(vs) => InternalStorage::Spilled(vs.clone()),
    ///         inline => inline,
    ///     };
    ///
    ///     /// Create a new SmallBitVec from the coped storage.
    ///     let v = unsafe { SmallBitVec::from_storage(cloned_storage) };
    /// }
    /// ```
    pub unsafe fn from_storage(storage: InternalStorage) -> SmallBitVec {
        match storage {
            InternalStorage::Inline(data) => SmallBitVec { data },
            InternalStorage::Spilled(vs) => {
                let ptr = Box::into_raw(vs);
                SmallBitVec {
                    data: (ptr as *mut usize as usize) | HEAP_FLAG,
                }
            }
        }
    }

    /// If the rightmost bit is unset, then we treat it as inline storage.
    #[inline]
    fn is_inline(&self) -> bool {
        self.data & HEAP_FLAG == 0
    }

    /// Otherwise, `data` is a pointer to a heap allocation.
    #[inline]
    fn is_heap(&self) -> bool {
        !self.is_inline()
    }

    /// Get the header of a heap-allocated vector.
    #[inline]
    fn header_raw(&self) -> *mut Header {
        assert!(self.is_heap());
        (self.data & !HEAP_FLAG) as *mut Header
    }

    #[inline]
    fn header_mut(&mut self) -> &mut Header {
        unsafe { &mut *self.header_raw() }
    }

    #[inline]
    fn header(&self) -> &Header {
        unsafe { &*self.header_raw() }
    }

    /// Get the buffer of a heap-allocated vector.
    #[inline]
    fn buffer_raw(&self) -> *mut [Storage] {
        unsafe {
            let header_ptr = self.header_raw();
            let buffer_len = (*header_ptr).buffer_len;
            let buffer_ptr = (header_ptr as *mut Storage)
                .offset((size_of::<Header>() / size_of::<Storage>()) as isize);
            slice::from_raw_parts_mut(buffer_ptr, buffer_len)
        }
    }

    #[inline]
    fn buffer_mut(&mut self) -> &mut [Storage] {
        unsafe { &mut *self.buffer_raw() }
    }

    #[inline]
    fn buffer(&self) -> &[Storage] {
        unsafe { &*self.buffer_raw() }
    }
}

// Trait implementations:

impl fmt::Debug for SmallBitVec {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_list()
            .entries(self.iter().map(|b| b as u8))
            .finish()
    }
}

impl Default for SmallBitVec {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl PartialEq for SmallBitVec {
    fn eq(&self, other: &Self) -> bool {
        // Compare by inline representation
        if self.is_inline() && other.is_inline() {
            return self.data == other.data;
        }

        let len = self.len();
        if len != other.len() {
            return false;
        }

        // Compare by heap representation
        if self.is_heap() && other.is_heap() {
            let buf0 = self.buffer();
            let buf1 = other.buffer();

            let full_blocks = len / bits_per_storage();
            let remainder = len % bits_per_storage();

            if buf0[..full_blocks] != buf1[..full_blocks] {
                return false;
            }

            if remainder != 0 {
                let mask = (1 << remainder) - 1;
                if buf0[full_blocks] & mask != buf1[full_blocks] & mask {
                    return false;
                }
            }
            return true;
        }

        // Representations differ; fall back to bit-by-bit comparison
        Iterator::eq(self.iter(), other.iter())
    }
}

impl Eq for SmallBitVec {}

impl Drop for SmallBitVec {
    fn drop(&mut self) {
        if self.is_heap() {
            unsafe {
                let header_ptr = self.header_raw();
                let alloc_ptr = header_ptr as *mut Storage;
                let alloc_len = header_len() + (*header_ptr).buffer_len;
                Vec::from_raw_parts(alloc_ptr, alloc_len, alloc_len);
            }
        }
    }
}

impl Clone for SmallBitVec {
    fn clone(&self) -> Self {
        if self.is_inline() {
            return SmallBitVec { data: self.data };
        }

        let buffer_len = self.header().buffer_len;
        let alloc_len = header_len() + buffer_len;
        let ptr = self.header_raw() as *mut Storage;
        let raw_allocation = unsafe { slice::from_raw_parts(ptr, alloc_len) };

        let v = raw_allocation.to_vec();
        let header_ptr = v.as_ptr() as *mut Header;
        forget(v);
        SmallBitVec {
            data: (header_ptr as usize) | HEAP_FLAG,
        }
    }
}

impl Index<usize> for SmallBitVec {
    type Output = bool;

    #[inline(always)]
    fn index(&self, i: usize) -> &bool {
        assert!(i < self.len(), "index out of range");
        if self.get(i).unwrap() {
            &true
        } else {
            &false
        }
    }
}

impl hash::Hash for SmallBitVec {
    #[inline]
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        let len = self.len();
        len.hash(state);
        if self.is_inline() {
            (self.data & inline_ones(len)).reverse_bits().hash(state);
        } else {
            let full_blocks = len / bits_per_storage();
            let remainder = len % bits_per_storage();
            let buffer = self.buffer();
            if full_blocks != 0 {
                buffer[..full_blocks].hash(state);
            }
            if remainder != 0 {
                let mask = (1 << remainder) - 1;
                (buffer[full_blocks] & mask).hash(state);
            }
        }
    }
}

impl Extend<bool> for SmallBitVec {
    #[inline]
    fn extend<I: IntoIterator<Item = bool>>(&mut self, iter: I) {
        let iter = iter.into_iter();

        let (min, _) = iter.size_hint();
        assert!(min <= usize::max_value(), "capacity overflow");
        self.reserve(min);

        for element in iter {
            self.push(element)
        }
    }
}

impl FromIterator<bool> for SmallBitVec {
    #[inline]
    fn from_iter<I: IntoIterator<Item = bool>>(iter: I) -> Self {
        let mut v = SmallBitVec::new();
        v.extend(iter);
        v
    }
}

impl IntoIterator for SmallBitVec {
    type Item = bool;
    type IntoIter = IntoIter;

    #[inline]
    fn into_iter(self) -> IntoIter {
        IntoIter {
            range: 0..self.len(),
            vec: self,
        }
    }
}

impl<'a> IntoIterator for &'a SmallBitVec {
    type Item = bool;
    type IntoIter = Iter<'a>;

    #[inline]
    fn into_iter(self) -> Iter<'a> {
        self.iter()
    }
}

/// An iterator that owns a SmallBitVec and yields its bits as `bool` values.
///
/// Returned from [`SmallBitVec::into_iter`][1].
///
/// [1]: struct.SmallBitVec.html#method.into_iter
pub struct IntoIter {
    vec: SmallBitVec,
    range: Range<usize>,
}

impl Iterator for IntoIter {
    type Item = bool;

    #[inline]
    fn next(&mut self) -> Option<bool> {
        self.range
            .next()
            .map(|i| unsafe { self.vec.get_unchecked(i) })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

impl DoubleEndedIterator for IntoIter {
    #[inline]
    fn next_back(&mut self) -> Option<bool> {
        self.range
            .next_back()
            .map(|i| unsafe { self.vec.get_unchecked(i) })
    }
}

impl ExactSizeIterator for IntoIter {}

/// An iterator that borrows a SmallBitVec and yields its bits as `bool` values.
///
/// Returned from [`SmallBitVec::iter`][1].
///
/// [1]: struct.SmallBitVec.html#method.iter
pub struct Iter<'a> {
    vec: &'a SmallBitVec,
    range: Range<usize>,
}

impl<'a> Default for Iter<'a> {
    #[inline]
    fn default() -> Self {
        const EMPTY: &'static SmallBitVec = &SmallBitVec::new();
        Self {
            vec: EMPTY,
            range: 0..0,
        }
    }
}

impl<'a> Iterator for Iter<'a> {
    type Item = bool;

    #[inline]
    fn next(&mut self) -> Option<bool> {
        self.range
            .next()
            .map(|i| unsafe { self.vec.get_unchecked(i) })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

impl<'a> DoubleEndedIterator for Iter<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<bool> {
        self.range
            .next_back()
            .map(|i| unsafe { self.vec.get_unchecked(i) })
    }
}

impl<'a> ExactSizeIterator for Iter<'a> {}

/// An immutable view of a range of bits from a borrowed SmallBitVec.
///
/// Returned from [`SmallBitVec::range`][1].
///
/// [1]: struct.SmallBitVec.html#method.range
#[derive(Debug, Clone)]
pub struct VecRange<'a> {
    vec: &'a SmallBitVec,
    range: Range<usize>,
}

impl<'a> VecRange<'a> {
    #[inline]
    pub fn iter(&self) -> Iter<'a> {
        Iter {
            vec: self.vec,
            range: self.range.clone(),
        }
    }
}

impl<'a> Index<usize> for VecRange<'a> {
    type Output = bool;

    #[inline]
    fn index(&self, i: usize) -> &bool {
        let vec_i = i + self.range.start;
        assert!(vec_i < self.range.end, "index out of range");
        &self.vec[vec_i]
    }
}