1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
// Copyright 2017 Matt Brubeck. See the COPYRIGHT file at the top-level
// directory of this distribution and at http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! [`SmallBitVec`] is a bit vector, a vector of single-bit values stored compactly in memory.
//!
//! SmallBitVec grows dynamically, like the standard `Vec<T>` type. It can hold up to about one
//! word of bits inline (without a separate heap allocation). If the number of bits exceeds this
//! inline capacity, it will allocate a buffer on the heap.
//!
//! [`SmallBitVec`]: struct.SmallBitVec.html
//!
//! # Example
//!
//! ```
//! use smallbitvec::SmallBitVec;
//!
//! let mut v = SmallBitVec::new();
//! v.push(true);
//! v.push(false);
//!
//! assert_eq!(v[0], true);
//! assert_eq!(v[1], false);
//! ```
#![no_std]
extern crate alloc;
use alloc::{boxed::Box, vec, vec::Vec};
use core::cmp::max;
use core::fmt;
use core::hash;
use core::mem::{forget, replace, size_of};
use core::ops::{Index, Range};
use core::slice;
/// Creates a [`SmallBitVec`] containing the arguments.
///
/// `sbvec!` allows `SmallBitVec`s to be defined with the same syntax as array expressions.
/// There are two forms of this macro:
///
/// - Create a [`SmallBitVec`] containing a given list of elements:
///
/// ```
/// # #[macro_use] extern crate smallbitvec;
/// # use smallbitvec::SmallBitVec;
/// # fn main() {
/// let v = sbvec![true, false, true];
/// assert_eq!(v[0], true);
/// assert_eq!(v[1], false);
/// assert_eq!(v[2], true);
/// # }
/// ```
///
/// - Create a [`SmallBitVec`] from a given element and size:
///
/// ```
/// # #[macro_use] extern crate smallbitvec;
/// # use smallbitvec::SmallBitVec;
/// # fn main() {
/// let v = sbvec![true; 3];
/// assert!(v.into_iter().eq(vec![true, true, true].into_iter()));
/// # }
/// ```
#[macro_export]
macro_rules! sbvec {
($elem:expr; $n:expr) => (
$crate::SmallBitVec::from_elem($n, $elem)
);
($($x:expr),*) => (
[$($x),*].iter().cloned().collect::<$crate::SmallBitVec>()
);
($($x:expr,)*) => (
sbvec![$($x),*]
);
}
// FIXME: replace this with `debug_assert!` when it’s usable in `const`:
// * https://github.com/rust-lang/rust/issues/49146
// * https://github.com/rust-lang/rust/issues/51999
macro_rules! const_debug_assert_le {
($left: ident <= $right: expr) => {
#[cfg(debug_assertions)]
// Causes an `index out of bounds` panic if `$left` is too large
[(); $right + 1][$left];
};
}
#[cfg(test)]
mod tests;
/// A resizable bit vector, optimized for size and inline storage.
///
/// `SmallBitVec` is exactly one word wide. Depending on the required capacity, this word
/// either stores the bits inline, or it stores a pointer to a separate buffer on the heap.
pub struct SmallBitVec {
data: usize,
}
/// Total number of bits per word.
#[inline(always)]
const fn inline_bits() -> usize {
size_of::<usize>() * 8
}
/// For an inline vector, all bits except two can be used as storage capacity:
///
/// - The rightmost bit is set to zero to signal an inline vector.
/// - The position of the rightmost nonzero bit encodes the length.
#[inline(always)]
const fn inline_capacity() -> usize {
inline_bits() - 2
}
/// Left shift amount to access the nth bit
#[inline(always)]
const fn inline_shift(n: usize) -> usize {
const_debug_assert_le!(n <= inline_capacity());
// The storage starts at the leftmost bit.
inline_bits() - 1 - n
}
/// An inline vector with the nth bit set.
#[inline(always)]
const fn inline_index(n: usize) -> usize {
1 << inline_shift(n)
}
/// An inline vector with the leftmost `n` bits set.
#[inline(always)]
fn inline_ones(n: usize) -> usize {
if n == 0 {
0
} else {
!0 << (inline_bits() - n)
}
}
/// If the rightmost bit of `data` is set, then the remaining bits of `data`
/// are a pointer to a heap allocation.
const HEAP_FLAG: usize = 1;
/// The allocation will contain a `Header` followed by a [Storage] buffer.
type Storage = usize;
/// The number of bits in one `Storage`.
#[inline(always)]
fn bits_per_storage() -> usize {
size_of::<Storage>() * 8
}
/// Data stored at the start of the heap allocation.
///
/// `Header` must have the same alignment as `Storage`.
struct Header {
/// The number of bits in this bit vector.
len: Storage,
/// The number of elements in the [usize] buffer that follows this header.
buffer_len: Storage,
}
impl Header {
/// Create a heap allocation with enough space for a header,
/// plus a buffer of at least `cap` bits, each initialized to `val`.
fn new(cap: usize, len: usize, val: bool) -> *mut Header {
let alloc_len = header_len() + buffer_len(cap);
let init = if val { !0 } else { 0 };
let v: Vec<Storage> = vec![init; alloc_len];
let buffer_len = v.capacity() - header_len();
let header_ptr = v.as_ptr() as *mut Header;
forget(v);
unsafe {
(*header_ptr).len = len;
(*header_ptr).buffer_len = buffer_len;
}
header_ptr
}
}
/// The number of `Storage` elements to allocate to hold a header.
#[inline(always)]
fn header_len() -> usize {
size_of::<Header>() / size_of::<Storage>()
}
/// The minimum number of `Storage` elements to hold at least `cap` bits.
#[inline(always)]
fn buffer_len(cap: usize) -> usize {
(cap + bits_per_storage() - 1) / bits_per_storage()
}
/// A typed representation of a `SmallBitVec`'s internal storage.
///
/// The layout of the data inside both enum variants is a private implementation detail.
pub enum InternalStorage {
/// The internal representation of a `SmallBitVec` that has not spilled to a
/// heap allocation.
Inline(usize),
/// The contents of the heap allocation of a spilled `SmallBitVec`.
Spilled(Box<[usize]>),
}
impl SmallBitVec {
/// Create an empty vector.
#[inline]
pub const fn new() -> SmallBitVec {
SmallBitVec {
data: inline_index(0),
}
}
/// Create a vector containing `len` bits, each set to `val`.
#[inline]
pub fn from_elem(len: usize, val: bool) -> SmallBitVec {
if len <= inline_capacity() {
return SmallBitVec {
data: if val {
inline_ones(len + 1)
} else {
inline_index(len)
},
};
}
let header_ptr = Header::new(len, len, val);
SmallBitVec {
data: (header_ptr as usize) | HEAP_FLAG,
}
}
/// Create an empty vector with enough storage pre-allocated to store at least `cap` bits
/// without resizing.
#[inline]
pub fn with_capacity(cap: usize) -> SmallBitVec {
// Use inline storage if possible.
if cap <= inline_capacity() {
return SmallBitVec::new();
}
// Otherwise, allocate on the heap.
let header_ptr = Header::new(cap, 0, false);
SmallBitVec {
data: (header_ptr as usize) | HEAP_FLAG,
}
}
/// The number of bits stored in this bit vector.
#[inline]
pub fn len(&self) -> usize {
if self.is_inline() {
// The rightmost nonzero bit is a sentinel. All bits to the left of
// the sentinel bit are the elements of the bit vector.
inline_bits() - self.data.trailing_zeros() as usize - 1
} else {
self.header().len
}
}
/// Returns `true` if this vector contains no bits.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// The number of bits that can be stored in this bit vector without re-allocating.
#[inline]
pub fn capacity(&self) -> usize {
if self.is_inline() {
inline_capacity()
} else {
self.header().buffer_len * bits_per_storage()
}
}
/// Get the nth bit in this bit vector.
#[inline]
pub fn get(&self, n: usize) -> Option<bool> {
if n < self.len() {
Some(unsafe { self.get_unchecked(n) })
} else {
None
}
}
/// Get the last bit in this bit vector.
#[inline]
pub fn last(&self) -> Option<bool> {
self.len()
.checked_sub(1)
.map(|n| unsafe { self.get_unchecked(n) })
}
/// Get the nth bit in this bit vector, without bounds checks.
#[inline]
pub unsafe fn get_unchecked(&self, n: usize) -> bool {
if self.is_inline() {
self.data & inline_index(n) != 0
} else {
let buffer = self.buffer();
let i = n / bits_per_storage();
let offset = n % bits_per_storage();
*buffer.get_unchecked(i) & (1 << offset) != 0
}
}
/// Set the nth bit in this bit vector to `val`. Panics if the index is out of bounds.
#[inline]
pub fn set(&mut self, n: usize, val: bool) {
assert!(n < self.len(), "Index {} out of bounds", n);
unsafe {
self.set_unchecked(n, val);
}
}
/// Set the nth bit in this bit vector to `val`, without bounds checks.
#[inline]
pub unsafe fn set_unchecked(&mut self, n: usize, val: bool) {
if self.is_inline() {
if val {
self.data |= inline_index(n);
} else {
self.data &= !inline_index(n);
}
} else {
let buffer = self.buffer_mut();
let i = n / bits_per_storage();
let offset = n % bits_per_storage();
if val {
*buffer.get_unchecked_mut(i) |= 1 << offset;
} else {
*buffer.get_unchecked_mut(i) &= !(1 << offset);
}
}
}
/// Append a bit to the end of the vector.
///
/// ```
/// use smallbitvec::SmallBitVec;
/// let mut v = SmallBitVec::new();
/// v.push(true);
///
/// assert_eq!(v.len(), 1);
/// assert_eq!(v.get(0), Some(true));
/// ```
#[inline]
pub fn push(&mut self, val: bool) {
let idx = self.len();
if idx == self.capacity() {
self.reserve(1);
}
unsafe {
self.set_len(idx + 1);
self.set_unchecked(idx, val);
}
}
/// Remove the last bit from the vector and return it, if there is one.
///
/// ```
/// use smallbitvec::SmallBitVec;
/// let mut v = SmallBitVec::new();
/// v.push(false);
///
/// assert_eq!(v.pop(), Some(false));
/// assert_eq!(v.len(), 0);
/// assert_eq!(v.pop(), None);
/// ```
#[inline]
pub fn pop(&mut self) -> Option<bool> {
self.len().checked_sub(1).map(|last| unsafe {
let val = self.get_unchecked(last);
self.set_len(last);
val
})
}
/// Remove and return the bit at index `idx`, shifting all later bits toward the front.
///
/// Panics if the index is out of bounds.
#[inline]
pub fn remove(&mut self, idx: usize) -> bool {
let len = self.len();
let val = self[idx];
if self.is_inline() {
// Shift later bits, including the length bit, toward the front.
let mask = !inline_ones(idx);
let new_vals = (self.data & mask) << 1;
self.data = (self.data & !mask) | (new_vals & mask);
} else {
let first = idx / bits_per_storage();
let offset = idx % bits_per_storage();
let count = buffer_len(len);
{
// Shift bits within the first storage block.
let buf = self.buffer_mut();
let mask = !0 << offset;
let new_vals = (buf[first] & mask) >> 1;
buf[first] = (buf[first] & !mask) | (new_vals & mask);
}
// Shift bits in subsequent storage blocks.
for i in (first + 1)..count {
// Move the first bit into the previous block.
let bit_idx = i * bits_per_storage();
unsafe {
let first_bit = self.get_unchecked(bit_idx);
self.set_unchecked(bit_idx - 1, first_bit);
}
// Shift the remaining bits.
self.buffer_mut()[i] >>= 1;
}
// Decrement the length.
unsafe {
self.set_len(len - 1);
}
}
val
}
/// Remove all elements from the vector, without deallocating its buffer.
#[inline]
pub fn clear(&mut self) {
unsafe {
self.set_len(0);
}
}
/// Reserve capacity for at least `additional` more elements to be inserted.
///
/// May reserve more space than requested, to avoid frequent reallocations.
///
/// Panics if the new capacity overflows `usize`.
///
/// Re-allocates only if `self.capacity() < self.len() + additional`.
#[inline]
pub fn reserve(&mut self, additional: usize) {
let old_cap = self.capacity();
let new_cap = self
.len()
.checked_add(additional)
.expect("capacity overflow");
if new_cap <= old_cap {
return;
}
// Ensure the new capacity is at least double, to guarantee exponential growth.
let double_cap = old_cap.saturating_mul(2);
self.reallocate(max(new_cap, double_cap));
}
/// Set the length of the vector. The length must not exceed the capacity.
///
/// If this makes the vector longer, then the values of its new elements
/// are not specified.
#[inline]
unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.capacity());
if self.is_inline() {
let sentinel = inline_index(len);
let mask = !(sentinel - 1);
self.data |= sentinel;
self.data &= mask;
} else {
self.header_mut().len = len;
}
}
/// Returns an iterator that yields the bits of the vector in order, as `bool` values.
#[inline]
pub fn iter(&self) -> Iter {
Iter {
vec: self,
range: 0..self.len(),
}
}
/// Returns an immutable view of a range of bits from this vec.
/// ```
/// #[macro_use] extern crate smallbitvec;
/// let v = sbvec![true, false, true];
/// let r = v.range(1..3);
/// assert_eq!(r[1], true);
/// ```
#[inline]
pub fn range(&self, range: Range<usize>) -> VecRange {
assert!(range.end <= self.len(), "range out of bounds");
VecRange { vec: &self, range }
}
/// Returns true if all the bits in the vec are set to zero/false.
///
/// On an empty vector, returns true.
#[inline]
pub fn all_false(&self) -> bool {
let mut len = self.len();
if len == 0 {
return true;
}
if self.is_inline() {
let mask = inline_ones(len);
self.data & mask == 0
} else {
for &storage in self.buffer() {
if len >= bits_per_storage() {
if storage != 0 {
return false;
}
len -= bits_per_storage();
} else {
let mask = (1 << len) - 1;
if storage & mask != 0 {
return false;
}
break;
}
}
true
}
}
/// Returns true if all the bits in the vec are set to one/true.
///
/// On an empty vector, returns true.
#[inline]
pub fn all_true(&self) -> bool {
let mut len = self.len();
if len == 0 {
return true;
}
if self.is_inline() {
let mask = inline_ones(len);
self.data & mask == mask
} else {
for &storage in self.buffer() {
if len >= bits_per_storage() {
if storage != !0 {
return false;
}
len -= bits_per_storage();
} else {
let mask = (1 << len) - 1;
if storage & mask != mask {
return false;
}
break;
}
}
true
}
}
/// Shorten the vector, keeping the first `len` elements and dropping the rest.
///
/// If `len` is greater than or equal to the vector's current length, this has no
/// effect.
///
/// This does not re-allocate.
pub fn truncate(&mut self, len: usize) {
unsafe {
if len < self.len() {
self.set_len(len);
}
}
}
/// Resizes the vector so that its length is equal to `len`.
///
/// If `len` is less than the current length, the vector simply truncated.
///
/// If `len` is greater than the current length, `value` is appended to the
/// vector until its length equals `len`.
pub fn resize(&mut self, len: usize, value: bool) {
let old_len = self.len();
if len > old_len {
unsafe {
self.reallocate(len);
self.set_len(len);
for i in old_len..len {
self.set(i, value);
}
}
} else {
self.truncate(len);
}
}
/// Resize the vector to have capacity for at least `cap` bits.
///
/// `cap` must be at least as large as the length of the vector.
fn reallocate(&mut self, cap: usize) {
let old_cap = self.capacity();
if cap <= old_cap {
return;
}
assert!(self.len() <= cap);
if self.is_heap() {
let old_buffer_len = self.header().buffer_len;
let new_buffer_len = buffer_len(cap);
let old_alloc_len = header_len() + old_buffer_len;
let new_alloc_len = header_len() + new_buffer_len;
let old_ptr = self.header_raw() as *mut Storage;
let mut v = unsafe { Vec::from_raw_parts(old_ptr, old_alloc_len, old_alloc_len) };
v.resize(new_alloc_len, 0);
v.shrink_to_fit();
self.data = v.as_ptr() as usize | HEAP_FLAG;
forget(v);
self.header_mut().buffer_len = new_buffer_len;
} else {
let old_self = replace(self, SmallBitVec::with_capacity(cap));
unsafe {
self.set_len(old_self.len());
for i in 0..old_self.len() {
self.set_unchecked(i, old_self.get_unchecked(i));
}
}
}
}
/// If the vector owns a heap allocation, returns a pointer to the start of the allocation.
///
/// The layout of the data at this allocation is a private implementation detail.
#[inline]
pub fn heap_ptr(&self) -> Option<*const usize> {
if self.is_heap() {
Some((self.data & !HEAP_FLAG) as *const Storage)
} else {
None
}
}
/// Converts this `SmallBitVec` into its internal representation.
///
/// The layout of the data inside both enum variants is a private implementation detail.
#[inline]
pub fn into_storage(self) -> InternalStorage {
if self.is_heap() {
let alloc_len = header_len() + self.header().buffer_len;
let ptr = self.header_raw() as *mut Storage;
let slice = unsafe { Box::from_raw(slice::from_raw_parts_mut(ptr, alloc_len)) };
forget(self);
InternalStorage::Spilled(slice)
} else {
InternalStorage::Inline(self.data)
}
}
/// Creates a `SmallBitVec` directly from the internal storage of another
/// `SmallBitVec`.
///
/// # Safety
///
/// This is highly unsafe. `storage` needs to have been previously generated
/// via `SmallBitVec::into_storage` (at least, it's highly likely to be
/// incorrect if it wasn't.) Violating this may cause problems like corrupting the
/// allocator's internal data structures.
///
/// # Examples
///
/// ```
/// # use smallbitvec::{InternalStorage, SmallBitVec};
///
/// fn main() {
/// let v = SmallBitVec::from_elem(200, false);
///
/// // Get the internal representation of the SmallBitVec.
/// // unless we transfer its ownership somewhere else.
/// let storage = v.into_storage();
///
/// /// Make a copy of the SmallBitVec's data.
/// let cloned_storage = match storage {
/// InternalStorage::Spilled(vs) => InternalStorage::Spilled(vs.clone()),
/// inline => inline,
/// };
///
/// /// Create a new SmallBitVec from the coped storage.
/// let v = unsafe { SmallBitVec::from_storage(cloned_storage) };
/// }
/// ```
pub unsafe fn from_storage(storage: InternalStorage) -> SmallBitVec {
match storage {
InternalStorage::Inline(data) => SmallBitVec { data },
InternalStorage::Spilled(vs) => {
let ptr = Box::into_raw(vs);
SmallBitVec {
data: (ptr as *mut usize as usize) | HEAP_FLAG,
}
}
}
}
/// If the rightmost bit is unset, then we treat it as inline storage.
#[inline]
fn is_inline(&self) -> bool {
self.data & HEAP_FLAG == 0
}
/// Otherwise, `data` is a pointer to a heap allocation.
#[inline]
fn is_heap(&self) -> bool {
!self.is_inline()
}
/// Get the header of a heap-allocated vector.
#[inline]
fn header_raw(&self) -> *mut Header {
assert!(self.is_heap());
(self.data & !HEAP_FLAG) as *mut Header
}
#[inline]
fn header_mut(&mut self) -> &mut Header {
unsafe { &mut *self.header_raw() }
}
#[inline]
fn header(&self) -> &Header {
unsafe { &*self.header_raw() }
}
/// Get the buffer of a heap-allocated vector.
#[inline]
fn buffer_raw(&self) -> *mut [Storage] {
unsafe {
let header_ptr = self.header_raw();
let buffer_len = (*header_ptr).buffer_len;
let buffer_ptr = (header_ptr as *mut Storage)
.offset((size_of::<Header>() / size_of::<Storage>()) as isize);
slice::from_raw_parts_mut(buffer_ptr, buffer_len)
}
}
#[inline]
fn buffer_mut(&mut self) -> &mut [Storage] {
unsafe { &mut *self.buffer_raw() }
}
#[inline]
fn buffer(&self) -> &[Storage] {
unsafe { &*self.buffer_raw() }
}
}
// Trait implementations:
impl fmt::Debug for SmallBitVec {
#[inline]
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_list()
.entries(self.iter().map(|b| b as u8))
.finish()
}
}
impl Default for SmallBitVec {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl PartialEq for SmallBitVec {
fn eq(&self, other: &Self) -> bool {
// Compare by inline representation
if self.is_inline() && other.is_inline() {
return self.data == other.data;
}
let len = self.len();
if len != other.len() {
return false;
}
// Compare by heap representation
if self.is_heap() && other.is_heap() {
let buf0 = self.buffer();
let buf1 = other.buffer();
let full_blocks = len / bits_per_storage();
let remainder = len % bits_per_storage();
if buf0[..full_blocks] != buf1[..full_blocks] {
return false;
}
if remainder != 0 {
let mask = (1 << remainder) - 1;
if buf0[full_blocks] & mask != buf1[full_blocks] & mask {
return false;
}
}
return true;
}
// Representations differ; fall back to bit-by-bit comparison
Iterator::eq(self.iter(), other.iter())
}
}
impl Eq for SmallBitVec {}
impl Drop for SmallBitVec {
fn drop(&mut self) {
if self.is_heap() {
unsafe {
let header_ptr = self.header_raw();
let alloc_ptr = header_ptr as *mut Storage;
let alloc_len = header_len() + (*header_ptr).buffer_len;
Vec::from_raw_parts(alloc_ptr, alloc_len, alloc_len);
}
}
}
}
impl Clone for SmallBitVec {
fn clone(&self) -> Self {
if self.is_inline() {
return SmallBitVec { data: self.data };
}
let buffer_len = self.header().buffer_len;
let alloc_len = header_len() + buffer_len;
let ptr = self.header_raw() as *mut Storage;
let raw_allocation = unsafe { slice::from_raw_parts(ptr, alloc_len) };
let v = raw_allocation.to_vec();
let header_ptr = v.as_ptr() as *mut Header;
forget(v);
SmallBitVec {
data: (header_ptr as usize) | HEAP_FLAG,
}
}
}
impl Index<usize> for SmallBitVec {
type Output = bool;
#[inline(always)]
fn index(&self, i: usize) -> &bool {
assert!(i < self.len(), "index out of range");
if self.get(i).unwrap() {
&true
} else {
&false
}
}
}
impl hash::Hash for SmallBitVec {
#[inline]
fn hash<H: hash::Hasher>(&self, state: &mut H) {
let len = self.len();
len.hash(state);
if self.is_inline() {
(self.data & inline_ones(len)).reverse_bits().hash(state);
} else {
let full_blocks = len / bits_per_storage();
let remainder = len % bits_per_storage();
let buffer = self.buffer();
if full_blocks != 0 {
buffer[..full_blocks].hash(state);
}
if remainder != 0 {
let mask = (1 << remainder) - 1;
(buffer[full_blocks] & mask).hash(state);
}
}
}
}
impl Extend<bool> for SmallBitVec {
#[inline]
fn extend<I: IntoIterator<Item = bool>>(&mut self, iter: I) {
let iter = iter.into_iter();
let (min, _) = iter.size_hint();
assert!(min <= usize::max_value(), "capacity overflow");
self.reserve(min);
for element in iter {
self.push(element)
}
}
}
impl FromIterator<bool> for SmallBitVec {
#[inline]
fn from_iter<I: IntoIterator<Item = bool>>(iter: I) -> Self {
let mut v = SmallBitVec::new();
v.extend(iter);
v
}
}
impl IntoIterator for SmallBitVec {
type Item = bool;
type IntoIter = IntoIter;
#[inline]
fn into_iter(self) -> IntoIter {
IntoIter {
range: 0..self.len(),
vec: self,
}
}
}
impl<'a> IntoIterator for &'a SmallBitVec {
type Item = bool;
type IntoIter = Iter<'a>;
#[inline]
fn into_iter(self) -> Iter<'a> {
self.iter()
}
}
/// An iterator that owns a SmallBitVec and yields its bits as `bool` values.
///
/// Returned from [`SmallBitVec::into_iter`][1].
///
/// [1]: struct.SmallBitVec.html#method.into_iter
pub struct IntoIter {
vec: SmallBitVec,
range: Range<usize>,
}
impl Iterator for IntoIter {
type Item = bool;
#[inline]
fn next(&mut self) -> Option<bool> {
self.range
.next()
.map(|i| unsafe { self.vec.get_unchecked(i) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.range.size_hint()
}
}
impl DoubleEndedIterator for IntoIter {
#[inline]
fn next_back(&mut self) -> Option<bool> {
self.range
.next_back()
.map(|i| unsafe { self.vec.get_unchecked(i) })
}
}
impl ExactSizeIterator for IntoIter {}
/// An iterator that borrows a SmallBitVec and yields its bits as `bool` values.
///
/// Returned from [`SmallBitVec::iter`][1].
///
/// [1]: struct.SmallBitVec.html#method.iter
pub struct Iter<'a> {
vec: &'a SmallBitVec,
range: Range<usize>,
}
impl<'a> Default for Iter<'a> {
#[inline]
fn default() -> Self {
const EMPTY: &'static SmallBitVec = &SmallBitVec::new();
Self {
vec: EMPTY,
range: 0..0,
}
}
}
impl<'a> Iterator for Iter<'a> {
type Item = bool;
#[inline]
fn next(&mut self) -> Option<bool> {
self.range
.next()
.map(|i| unsafe { self.vec.get_unchecked(i) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.range.size_hint()
}
}
impl<'a> DoubleEndedIterator for Iter<'a> {
#[inline]
fn next_back(&mut self) -> Option<bool> {
self.range
.next_back()
.map(|i| unsafe { self.vec.get_unchecked(i) })
}
}
impl<'a> ExactSizeIterator for Iter<'a> {}
/// An immutable view of a range of bits from a borrowed SmallBitVec.
///
/// Returned from [`SmallBitVec::range`][1].
///
/// [1]: struct.SmallBitVec.html#method.range
#[derive(Debug, Clone)]
pub struct VecRange<'a> {
vec: &'a SmallBitVec,
range: Range<usize>,
}
impl<'a> VecRange<'a> {
#[inline]
pub fn iter(&self) -> Iter<'a> {
Iter {
vec: self.vec,
range: self.range.clone(),
}
}
}
impl<'a> Index<usize> for VecRange<'a> {
type Output = bool;
#[inline]
fn index(&self, i: usize) -> &bool {
let vec_i = i + self.range.start;
assert!(vec_i < self.range.end, "index out of range");
&self.vec[vec_i]
}
}