etagere/
allocator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
use crate::{AllocId, Allocation, AllocatorOptions, DEFAULT_OPTIONS, Size, Rectangle, point2, size2};

const SHELF_SPLIT_THRESHOLD: u16 = 8;
const ITEM_SPLIT_THRESHOLD: u16 = 8;

#[repr(transparent)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
struct ShelfIndex(u16);

impl ShelfIndex {
    const NONE: Self = ShelfIndex(std::u16::MAX);

    fn index(self) -> usize { self.0 as usize }

    fn is_some(self) -> bool { self.0 != std::u16::MAX }

    fn is_none(self) -> bool { self.0 == std::u16::MAX }
}

#[repr(transparent)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
struct ItemIndex(u16);

impl ItemIndex {
    const NONE: Self = ItemIndex(std::u16::MAX);

    fn index(self) -> usize { self.0 as usize }

    fn is_some(self) -> bool { self.0 != std::u16::MAX }

    fn is_none(self) -> bool { self.0 == std::u16::MAX }
}

#[derive(Clone)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
struct Shelf {
    x: u16,
    y: u16,
    height: u16,
    prev: ShelfIndex,
    next: ShelfIndex,
    first_item: ItemIndex,
    first_unallocated: ItemIndex,
    is_empty: bool,
}

#[derive(Clone)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
struct Item {
    x: u16,
    width: u16,
    prev: ItemIndex,
    next: ItemIndex,
    prev_unallocated: ItemIndex,
    next_unallocated: ItemIndex,
    shelf: ShelfIndex,
    allocated: bool,
    generation: u16,
}

// Note: if allocating is slow we can use the guillotiere trick of storing multiple lists of free
// rects (per shelf height) instead of iterating the shelves and items.

/// A shelf-packing dynamic texture atlas allocator tracking each allocation individually and with support
/// for coalescing empty shelves.
#[derive(Clone)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct AtlasAllocator {
    shelves: Vec<Shelf>,
    items: Vec<Item>,
    alignment: Size,
    flip_xy: bool,
    size: Size,
    first_shelf: ShelfIndex,
    free_items: ItemIndex,
    free_shelves: ShelfIndex,
    shelf_width: u16,
    allocated_space: i32,
}

impl AtlasAllocator {
    /// Create an atlas allocator with provided options.
    pub fn with_options(size: Size, options: &AllocatorOptions) -> Self {
        let (shelf_alignment, width, height) = if options.vertical_shelves {
            (options.alignment.height, size.height, size.width)
        } else {
            (options.alignment.width, size.width, size.height)
        };
        let mut shelf_width = width / options.num_columns;
        shelf_width -= shelf_width % shelf_alignment;

        let mut atlas = AtlasAllocator {
            shelves: Vec::new(),
            items: Vec::new(),
            size: size2(width, height),
            alignment: options.alignment,
            flip_xy: options.vertical_shelves,
            first_shelf: ShelfIndex(0),
            free_items: ItemIndex::NONE,
            free_shelves: ShelfIndex::NONE,
            shelf_width: shelf_width as u16,
            allocated_space: 0,
        };

        atlas.init();

        atlas
    }

    /// Create an atlas allocator with default options.
    pub fn new(size: Size) -> Self {
        Self::with_options(size, &DEFAULT_OPTIONS)
    }

    pub fn clear(&mut self) {
        self.init();
    }

    fn init(&mut self) {
        assert!(self.size.width > 0);
        assert!(self.size.height > 0);
        assert!(self.size.width <= std::u16::MAX as i32);
        assert!(self.size.height <= std::u16::MAX as i32);
        assert!(
            self.size.width.checked_mul(self.size.height).is_some(),
            "The area of the atlas must fit in a i32 value"
        );

        assert!(self.alignment.width > 0);
        assert!(self.alignment.height > 0);

        self.shelves.clear();
        self.items.clear();

        let num_columns = self.size.width as u16 / self.shelf_width;

        let mut prev = ShelfIndex::NONE;
        for i in 0..num_columns {
            let first_item = ItemIndex(self.items.len() as u16);
            let x = i * self.shelf_width;
            let current = ShelfIndex(i);
            let next = if i + 1 < num_columns { ShelfIndex(i + 1) } else { ShelfIndex::NONE };

            self.shelves.push(Shelf {
                x,
                y: 0,
                height: self.size.height as u16,
                prev,
                next,
                is_empty: true,
                first_item,
                first_unallocated: first_item,
            });

            self.items.push(Item {
                x,
                width: self.shelf_width,
                prev: ItemIndex::NONE,
                next: ItemIndex::NONE,
                prev_unallocated: ItemIndex::NONE,
                next_unallocated: ItemIndex::NONE,
                shelf: current,
                allocated: false,
                generation: 1,
            });

            prev = current;
        }

        self.first_shelf = ShelfIndex(0);
        self.free_items = ItemIndex::NONE;
        self.free_shelves = ShelfIndex::NONE;
        self.allocated_space = 0;
    }

    pub fn size(&self) -> Size {
        if self.flip_xy {
            size2(self.size.height, self.size.width)
        } else {
            self.size
        }
    }

    /// Allocate a rectangle in the atlas.
    pub fn allocate(&mut self, mut size: Size) -> Option<Allocation> {
        if size.is_empty()
            || size.width > std::u16::MAX as i32
            || size.height > std::u16::MAX as i32 {
            return None;
        }

        adjust_size(self.alignment.width, &mut size.width);
        adjust_size(self.alignment.height, &mut size.height);

        let (width, height) = convert_coordinates(self.flip_xy, size.width, size.height);

        if width > self.shelf_width as i32 || height > self.size.height {
            return None;
        }

        let height = shelf_height(height, self.size.height);

        let mut width = width as u16;
        let mut height = height as u16;

        let mut selected_shelf_height = std::u16::MAX;
        let mut selected_shelf = ShelfIndex::NONE;
        let mut selected_item = ItemIndex::NONE;
        let mut shelf_idx = self.first_shelf;
        while shelf_idx.is_some() {
            let shelf = &self.shelves[shelf_idx.index()];

            if shelf.height < height
                || shelf.height >= selected_shelf_height
                || (!shelf.is_empty && shelf.height > height + height / 2) {
                shelf_idx = shelf.next;
                continue;
            }

            let mut item_idx = shelf.first_unallocated;
            while item_idx.is_some() {
                let item = &self.items[item_idx.index()];
                if !item.allocated && item.width >= width {
                    break;
                }

                item_idx = item.next_unallocated;
            }

            if item_idx.is_some() {
                selected_shelf = shelf_idx;
                selected_shelf_height = shelf.height;
                selected_item = item_idx;

                if shelf.height == height {
                    // Perfect fit, stop searching.
                    break;
                }
            }

            shelf_idx = shelf.next;
        }

        if selected_shelf.is_none() {
            return None;
        }

        let shelf = self.shelves[selected_shelf.index()].clone();
        if shelf.is_empty {
            self.shelves[selected_shelf.index()].is_empty = false;
        }

        if shelf.is_empty && shelf.height > height + SHELF_SPLIT_THRESHOLD {
            // Split the empty shelf into one of the desired size and a new
            // empty one with a single empty item.

            let new_shelf_idx =  self.add_shelf(Shelf {
                x: shelf.x,
                y: shelf.y + height,
                height: shelf.height - height,
                prev: selected_shelf,
                next: shelf.next,
                first_item: ItemIndex::NONE,
                first_unallocated: ItemIndex::NONE,
                is_empty: true,
            });

            let new_item_idx = self.add_item(Item {
                x: shelf.x,
                width: self.shelf_width,
                prev: ItemIndex::NONE,
                next: ItemIndex::NONE,
                prev_unallocated: ItemIndex::NONE,
                next_unallocated: ItemIndex::NONE,
                shelf: new_shelf_idx,
                allocated: false,
                generation: 1,
            });

            self.shelves[new_shelf_idx.index()].first_item = new_item_idx;
            self.shelves[new_shelf_idx.index()].first_unallocated = new_item_idx;

            let next = self.shelves[selected_shelf.index()].next;
            self.shelves[selected_shelf.index()].height = height;
            self.shelves[selected_shelf.index()].next = new_shelf_idx;

            if next.is_some() {
                self.shelves[next.index()].prev = new_shelf_idx;
            }
        } else {
            height = shelf.height;
        }

        let item = self.items[selected_item.index()].clone();

        if item.width - width > ITEM_SPLIT_THRESHOLD {

            let new_item_idx = self.add_item(Item {
                x: item.x + width,
                width: item.width - width,
                prev: selected_item,
                next: item.next,
                prev_unallocated: item.prev_unallocated,
                next_unallocated: item.next_unallocated,
                shelf: item.shelf,
                allocated: false,
                generation: 1,
            });

            self.items[selected_item.index()].width = width;
            self.items[selected_item.index()].next = new_item_idx;

            if item.next.is_some() {
                self.items[item.next.index()].prev = new_item_idx;
            }

            // Replace the item in the "unallocated" list.
            let shelf = &mut self.shelves[selected_shelf.index()];
            if shelf.first_unallocated == selected_item {
                shelf.first_unallocated = new_item_idx;
            }
            if item.prev_unallocated.is_some() {
                self.items[item.prev_unallocated.index()].next_unallocated = new_item_idx;
            }
            if item.next_unallocated.is_some() {
                self.items[item.next_unallocated.index()].prev_unallocated = new_item_idx;
            }
        } else {
            // Remove the item from the "unallocated" list.
            let shelf = &mut self.shelves[selected_shelf.index()];
            if shelf.first_unallocated == selected_item {
                shelf.first_unallocated = item.next_unallocated;
            }
            if item.prev_unallocated.is_some() {
                self.items[item.prev_unallocated.index()].next_unallocated = item.next_unallocated;
            }
            if item.next_unallocated.is_some() {
                self.items[item.next_unallocated.index()].prev_unallocated = item.prev_unallocated;
            }

            width = item.width;
        }

        self.items[selected_item.index()].allocated = true;
        let generation = self.items[selected_item.index()].generation;

        let x0 = item.x;
        let y0 = shelf.y;
        let x1 = x0 + width;
        let y1 = y0 + height;

        let (x0, y0) = convert_coordinates(self.flip_xy, x0 as i32, y0 as i32);
        let (x1, y1) = convert_coordinates(self.flip_xy, x1 as i32, y1 as i32);

        self.check();

        let rectangle = Rectangle {
            min: point2(x0, y0),
            max: point2(x1, y1),
        };

        self.allocated_space += rectangle.area();

        Some(Allocation {
            id: AllocId::new(selected_item.0, generation),
            rectangle,
        })
    }

    /// Deallocate a rectangle in the atlas.
    pub fn deallocate(&mut self, id: AllocId) {
        let item_idx = ItemIndex(id.index());

        let Item { mut prev, mut next, mut width, allocated, shelf, generation, .. } = self.items[item_idx.index()];
        assert!(allocated);
        assert_eq!(generation, id.generation(), "Invalid AllocId");

        self.items[item_idx.index()].allocated = false;
        self.allocated_space -= width as i32 * self.shelves[shelf.index()].height as i32;

        if next.is_some() && !self.items[next.index()].allocated {
            // Merge the next item into this one.

            let next_next = self.items[next.index()].next;
            let next_width = self.items[next.index()].width;
            // Remove next from the "unallocated" list.
            let next_unallocated = self.items[next.index()].next_unallocated;
            let prev_unallocated = self.items[next.index()].prev_unallocated;
            if self.shelves[shelf.index()].first_unallocated == next {
                self.shelves[shelf.index()].first_unallocated = next_unallocated;
            }
            if prev_unallocated.is_some() {
                self.items[prev_unallocated.index()].next_unallocated = next_unallocated;
            }
            if next_unallocated.is_some() {
                self.items[next_unallocated.index()].prev_unallocated = prev_unallocated;
            }

            self.items[item_idx.index()].next = next_next;
            self.items[item_idx.index()].width += next_width;
            width = self.items[item_idx.index()].width;

            if next_next.is_some() {
                self.items[next_next.index()].prev = item_idx;
            }

            // Add next to the free list.
            self.remove_item(next);

            next = next_next
        }

        if prev.is_some() && !self.items[prev.index()].allocated {
            // Merge the item into the previous one.
            // No need to add the item_idx to the "unallocated" list since it
            // is getting merged into an already unallocated item.

            self.items[prev.index()].next = next;
            self.items[prev.index()].width += width;

            if next.is_some() {
                self.items[next.index()].prev = prev;
            }

            // Add item_idx to the free list.
            self.remove_item(item_idx);

            prev = self.items[prev.index()].prev;
        } else {
            // Insert item_idx in the "unallocated" list.
            let first = self.shelves[shelf.index()].first_unallocated;
            if first.is_some() {
                self.items[first.index()].prev_unallocated = item_idx;
            }
            self.items[item_idx.index()].next_unallocated = first;
            self.items[item_idx.index()].prev_unallocated = ItemIndex::NONE;
            self.shelves[shelf.index()].first_unallocated = item_idx;
        }

        if prev.is_none() && next.is_none() {
            let shelf_idx = shelf;
            // The shelf is now empty.
            self.shelves[shelf_idx.index()].is_empty = true;

            // Only attempt to merge shelves on the same column.
            let x = self.shelves[shelf_idx.index()].x;

            let next_shelf = self.shelves[shelf_idx.index()].next;
            if next_shelf.is_some()
                && self.shelves[next_shelf.index()].is_empty
                && self.shelves[next_shelf.index()].x == x {
                // Merge the next shelf into this one.

                let next_next = self.shelves[next_shelf.index()].next;
                let next_height = self.shelves[next_shelf.index()].height;

                self.shelves[shelf_idx.index()].next = next_next;
                self.shelves[shelf_idx.index()].height += next_height;

                if next_next.is_some() {
                    self.shelves[next_next.index()].prev = shelf_idx;
                }

                // Add next to the free list.
                self.remove_shelf(next_shelf);
            }

            let prev_shelf = self.shelves[shelf_idx.index()].prev;
            if prev_shelf.is_some()
                && self.shelves[prev_shelf.index()].is_empty
                && self.shelves[prev_shelf.index()].x == x {
                // Merge the shelf into the previous one.

                let next_shelf = self.shelves[shelf_idx.index()].next;
                self.shelves[prev_shelf.index()].next = next_shelf;
                self.shelves[prev_shelf.index()].height += self.shelves[shelf_idx.index()].height;

                self.shelves[prev_shelf.index()].next = self.shelves[shelf_idx.index()].next;
                if next_shelf.is_some() {
                    self.shelves[next_shelf.index()].prev = prev_shelf;
                }

                // Add the shelf to the free list.
                self.remove_shelf(shelf_idx);
            }
        }

        self.check();
    }

    pub fn is_empty(&self) -> bool {
        let mut shelf_idx = self.first_shelf;

        while shelf_idx.is_some() {
            let shelf = &self.shelves[shelf_idx.index()];
            if !shelf.is_empty {
                return false;
            }

            shelf_idx = shelf.next;
        }

        true
    }

    /// Amount of occupied space in the atlas.
    pub fn allocated_space(&self) -> i32 {
        self.allocated_space
    }

    /// How much space is available for future allocations.
    pub fn free_space(&self) -> i32 {
        self.size.area() - self.allocated_space
    }

    pub fn iter(&self) -> Iter {
        Iter {
            atlas: self,
            idx: 0,
        }
    }

    fn remove_item(&mut self, idx: ItemIndex) {
        self.items[idx.index()].next = self.free_items;
        self.free_items = idx;
    }

    fn remove_shelf(&mut self, idx: ShelfIndex) {
        // Remove the shelf's item.
        self.remove_item(self.shelves[idx.index()].first_item);

        self.shelves[idx.index()].next = self.free_shelves;
        self.free_shelves = idx;
    }

    fn add_item(&mut self, mut item: Item) -> ItemIndex {
        if self.free_items.is_some() {
            let idx = self.free_items;
            item.generation = self.items[idx.index()].generation.wrapping_add(1);
            self.free_items = self.items[idx.index()].next;
            self.items[idx.index()] = item;

            return idx;
        }

        let idx = ItemIndex(self.items.len() as u16);
        self.items.push(item);

        idx
    }

    fn add_shelf(&mut self, shelf: Shelf) -> ShelfIndex {
        if self.free_shelves.is_some() {
            let idx = self.free_shelves;
            self.free_shelves = self.shelves[idx.index()].next;
            self.shelves[idx.index()] = shelf;

            return idx;
        }

        let idx = ShelfIndex(self.shelves.len() as u16);
        self.shelves.push(shelf);

        idx
    }

    #[cfg(not(feature = "checks"))]
    fn check(&self) {}

    #[cfg(feature = "checks")]
    fn check(&self) {
        let mut prev_empty = false;
        let mut accum_h = 0;
        let mut shelf_idx = self.first_shelf;
        let mut shelf_x = 0;
        while shelf_idx.is_some() {
            let shelf = &self.shelves[shelf_idx.index()];
            let new_column = shelf_x != shelf.x;
            if new_column {
                assert_eq!(accum_h as i32, self.size.height);
                accum_h = 0;
            }
            shelf_x = shelf.x;
            accum_h += shelf.height;
            if prev_empty && !new_column {
                assert!(!shelf.is_empty);
            }
            if shelf.is_empty {
                assert!(!self.items[shelf.first_item.index()].allocated);
                assert!(self.items[shelf.first_item.index()].next.is_none());
            }
            prev_empty = shelf.is_empty;

            let mut accum_w = 0;
            let mut accum_unallocated_w = 0;
            let mut prev_allocated = true;
            let mut item_idx = shelf.first_item;
            let mut prev_item_idx = ItemIndex::NONE;
            while item_idx.is_some() {
                let item = &self.items[item_idx.index()];
                accum_w += item.width;
                if !item.allocated {
                    accum_unallocated_w += item.width;
                }

                assert_eq!(item.prev, prev_item_idx);

                if !prev_allocated {
                    assert!(item.allocated, "item {:?} should be allocated", item_idx.0);
                }
                prev_allocated = item.allocated;

                prev_item_idx = item_idx;
                item_idx = item.next;
            }

            assert_eq!(accum_w, self.shelf_width);

            // Traverse the shelf's unallocated list, validate it and check that it matches
            // the amount of unallocated space we found from traversing the whole shelf. 
            accum_w = 0;
            let mut item_idx = shelf.first_unallocated;
            let mut prev_unallocated_idx = ItemIndex::NONE;
            while item_idx.is_some() {
                let item = &self.items[item_idx.index()];
                assert!(!item.allocated);

                assert_eq!(item.prev_unallocated, prev_unallocated_idx);
                accum_w += item.width;

                prev_unallocated_idx = item_idx;
                item_idx = item.next_unallocated;
            }

            assert_eq!(accum_w, accum_unallocated_w, "items missing from the unallocated list?");

            shelf_idx = shelf.next;
        }
    }

    /// Turn a valid AllocId into an index that can be used as a key for external storage.
    ///
    /// The allocator internally stores all items in a single vector. In addition allocations
    /// stay at the same index in the vector until they are deallocated. As a result the index
    /// of an item can be used as a key for external storage using vectors. Note that:
    ///  - The provided ID must correspond to an item that is currently allocated in the atlas.
    ///  - After an item is deallocated, its index may be reused by a future allocation, so
    ///    the returned index should only be considered valid during the lifetime of the its
    ///    associated item.
    ///  - indices are expected to be "reasonable" with respect to the number of allocated items,
    ///    in other words it is never larger than the maximum number of allocated items in the
    ///    atlas (making it a good fit for indexing within a sparsely populated vector).
    pub fn get_index(&self, id: AllocId) -> u32 {
        let index = id.index();
        debug_assert_eq!(self.items[index as usize].generation, id.generation());

        index as u32
    }

    /// Returns the allocation info associated to the allocation ID.
    ///
    /// The id must correspond to an existing allocation in the atlas.
    pub fn get(&self, id: AllocId) -> Rectangle {
        let index = id.index()as usize;
        let item = &self.items[index];

        assert!(item.allocated);
        assert_eq!(item.generation, id.generation(), "Invalid AllocId");

        let shelf = &self.shelves[item.shelf.index()];

        let mut rectangle = Rectangle {
            min: point2(
                item.x as i32,
                shelf.y as i32,
            ),
            max: point2(
                (item.x + item.width) as i32,
                (shelf.y + shelf.height) as i32,
            ),
        };

        if self.flip_xy {
            std::mem::swap(&mut rectangle.min.x, &mut rectangle.min.y);
            std::mem::swap(&mut rectangle.max.x, &mut rectangle.max.y);
        }

        rectangle
    }

    /// Dump a visual representation of the atlas in SVG format.
    pub fn dump_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
        use svg_fmt::*;

        writeln!(
            output,
            "{}",
            BeginSvg {
                w: self.size.width as f32,
                h: self.size.height as f32
            }
        )?;

        self.dump_into_svg(None, output)?;

        writeln!(output, "{}", EndSvg)
    }

    /// Dump a visual representation of the atlas in SVG, omitting the beginning and end of the
    /// SVG document, so that it can be included in a larger document.
    ///
    /// If a rectangle is provided, translate and scale the output to fit it.
    pub fn dump_into_svg(&self, rect: Option<&Rectangle>, output: &mut dyn std::io::Write) -> std::io::Result<()> {
        use svg_fmt::*;

        let (sx, sy, tx, ty) = if let Some(rect) = rect {
            (
                rect.size().width as f32 / self.size.width as f32,
                rect.size().height as f32 / self.size.height as f32,
                rect.min.x as f32,
                rect.min.y as f32,
            )
        } else {
            (1.0, 1.0, 0.0, 0.0)
        };

        writeln!(
            output,
            r#"    {}"#,
            rectangle(tx, ty, self.size.width as f32 * sx, self.size.height as f32 * sy)
                .fill(rgb(40, 40, 40))
                .stroke(Stroke::Color(black(), 1.0))
        )?;

        let mut shelf_idx = self.first_shelf;
        while shelf_idx.is_some() {
            let shelf = &self.shelves[shelf_idx.index()];

            let y = shelf.y as f32 * sy;
            let h = shelf.height as f32 * sy;

            let mut item_idx = shelf.first_item;
            while item_idx.is_some() {
                let item = &self.items[item_idx.index()];

                let x = item.x as f32 * sx;
                let w = item.width as f32 * sx;

                let color = if item.allocated {
                    rgb(70, 70, 180)
                } else {
                    rgb(50, 50, 50)
                };

                let (x, y) = if self.flip_xy { (y, x) } else { (x, y) };
                let (w, h) = if self.flip_xy { (h, w) } else { (w, h) };

                writeln!(
                    output,
                    r#"    {}"#,
                    rectangle(x + tx, y + ty, w, h).fill(color).stroke(Stroke::Color(black(), 1.0))
                )?;

                item_idx = item.next;
            }

            shelf_idx = shelf.next;
        }

        Ok(())
    }

}


fn adjust_size(alignment: i32, size: &mut i32) {
    let rem = *size % alignment;
    if rem > 0 {
        *size += alignment - rem;
    }
}

fn convert_coordinates(flip_xy: bool, x: i32, y: i32) -> (i32, i32) {
    if flip_xy {
        (y, x)
    } else {
        (x, y)
    }
}

fn shelf_height(size: i32, atlas_height: i32) -> i32 {
    let alignment = match size {
        0 ..= 31 => 8,
        32 ..= 127 => 16,
        128 ..= 511 => 32,
        _ => 64,
    };

    let mut adjusted_size = size;
    let rem = size % alignment;
    if rem > 0 {
        adjusted_size = size + alignment - rem;
        if adjusted_size > atlas_height {
            adjusted_size = size;
        }
    }

    adjusted_size
}

/// Iterator over the allocations of an atlas.
pub struct Iter<'l> {
    atlas: &'l AtlasAllocator,
    idx: usize,
}

impl<'l> Iterator for Iter<'l> {
    type Item = Allocation;

    fn next(&mut self) -> Option<Allocation> {
        if self.idx >= self.atlas.items.len() {
            return None;
        }

        while !self.atlas.items[self.idx].allocated {
            self.idx += 1;
            if self.idx >= self.atlas.items.len() {
                return None;
            }
        }

        let item = &self.atlas.items[self.idx];
        let shelf = &self.atlas.shelves[item.shelf.index()];

        let mut alloc = Allocation {
            rectangle: Rectangle {
                min: point2(
                    item.x as i32,
                    shelf.y as i32,
                ),
                max: point2(
                    (item.x + item.width) as i32,
                    (shelf.y + shelf.height) as i32,
                ),
            },
            id: AllocId::new(self.idx as u16, item.generation),
        };

        if self.atlas.flip_xy {
            std::mem::swap(&mut alloc.rectangle.min.x, &mut alloc.rectangle.min.y);
            std::mem::swap(&mut alloc.rectangle.max.x, &mut alloc.rectangle.max.y);
        }

        self.idx += 1;

        Some(alloc)
    }
}

impl<'l> std::iter::IntoIterator for &'l AtlasAllocator {
    type Item = Allocation;
    type IntoIter = Iter<'l>;
    fn into_iter(self) -> Iter<'l> {
        self.iter()
    }
}

#[test]
fn test_simple() {
    let mut atlas = AtlasAllocator::with_options(
        size2(2048, 2048),
        &AllocatorOptions {
            alignment: size2(4, 8),
            vertical_shelves: false,
            num_columns: 2,
        },
    );

    assert!(atlas.is_empty());
    assert_eq!(atlas.allocated_space(), 0);

    let a1 = atlas.allocate(size2(20, 30)).unwrap();
    let a2 = atlas.allocate(size2(30, 40)).unwrap();
    let a3 = atlas.allocate(size2(20, 30)).unwrap();

    assert!(a1.id != a2.id);
    assert!(a1.id != a3.id);
    assert!(!atlas.is_empty());

    //atlas.dump_svg(&mut std::fs::File::create("tmp.svg").expect("!!")).unwrap();

    atlas.deallocate(a1.id);
    atlas.deallocate(a2.id);
    atlas.deallocate(a3.id);

    assert!(atlas.is_empty());
    assert_eq!(atlas.allocated_space(), 0);
}

#[test]
fn test_options() {
    let alignment = size2(8, 16);

    let mut atlas = AtlasAllocator::with_options(
        size2(2000, 1000),
        &AllocatorOptions {
            alignment,
            vertical_shelves: true,
            num_columns: 1,
        },
    );
    assert!(atlas.is_empty());
    assert_eq!(atlas.allocated_space(), 0);

    let a1 = atlas.allocate(size2(20, 30)).unwrap();
    let a2 = atlas.allocate(size2(30, 40)).unwrap();
    let a3 = atlas.allocate(size2(20, 30)).unwrap();

    assert!(a1.id != a2.id);
    assert!(a1.id != a3.id);
    assert!(!atlas.is_empty());

    for id in &atlas {
        assert!(id == a1 || id == a2 || id == a3);
    }

    assert_eq!(a1.rectangle.min.x % alignment.width, 0);
    assert_eq!(a1.rectangle.min.y % alignment.height, 0);
    assert_eq!(a2.rectangle.min.x % alignment.width, 0);
    assert_eq!(a2.rectangle.min.y % alignment.height, 0);
    assert_eq!(a3.rectangle.min.x % alignment.width, 0);
    assert_eq!(a3.rectangle.min.y % alignment.height, 0);

    assert!(a1.rectangle.size().width >= 20);
    assert!(a1.rectangle.size().height >= 30);
    assert!(a2.rectangle.size().width >= 30);
    assert!(a2.rectangle.size().height >= 40);
    assert!(a3.rectangle.size().width >= 20);
    assert!(a3.rectangle.size().height >= 30);


    //atlas.dump_svg(&mut std::fs::File::create("tmp.svg").expect("!!")).unwrap();

    atlas.deallocate(a1.id);
    atlas.deallocate(a2.id);
    atlas.deallocate(a3.id);

    assert!(atlas.is_empty());
    assert_eq!(atlas.allocated_space(), 0);
}

#[test]
fn vertical() {
    let mut atlas = AtlasAllocator::with_options(size2(128, 256), &AllocatorOptions {
        num_columns: 2,
        vertical_shelves: true,
        ..DEFAULT_OPTIONS
    });

    assert_eq!(atlas.size(), size2(128, 256));

    let a = atlas.allocate(size2(32, 16)).unwrap();
    let b = atlas.allocate(size2(16, 32)).unwrap();

    assert!(a.rectangle.size().width >= 32);
    assert!(a.rectangle.size().height >= 16);

    assert!(b.rectangle.size().width >= 16);
    assert!(b.rectangle.size().height >= 32);

    let c = atlas.allocate(size2(128, 128)).unwrap();

    for _ in &atlas {}

    atlas.deallocate(a.id);
    atlas.deallocate(b.id);
    atlas.deallocate(c.id);

    for _ in &atlas {}

    assert!(atlas.is_empty());
    assert_eq!(atlas.allocated_space(), 0);
}


#[test]
fn clear() {
    let mut atlas = AtlasAllocator::new(size2(2048, 2048));

    // Run a workload a few hundred times to make sure clearing properly resets everything.
    for _ in 0..500 {
        atlas.clear();
        assert_eq!(atlas.allocated_space(), 0);

        atlas.allocate(size2(8, 2)).unwrap();
        atlas.allocate(size2(2, 8)).unwrap();
        atlas.allocate(size2(16, 512)).unwrap();
        atlas.allocate(size2(34, 34)).unwrap();
        atlas.allocate(size2(34, 34)).unwrap();
        atlas.allocate(size2(34, 34)).unwrap();
        atlas.allocate(size2(34, 34)).unwrap();
        atlas.allocate(size2(2, 8)).unwrap();
        atlas.allocate(size2(2, 8)).unwrap();
        atlas.allocate(size2(8, 2)).unwrap();
        atlas.allocate(size2(2, 8)).unwrap();
        atlas.allocate(size2(8, 2)).unwrap();
        atlas.allocate(size2(8, 8)).unwrap();
        atlas.allocate(size2(8, 8)).unwrap();
        atlas.allocate(size2(8, 8)).unwrap();
        atlas.allocate(size2(8, 8)).unwrap();
        atlas.allocate(size2(82, 80)).unwrap();
        atlas.allocate(size2(56, 56)).unwrap();
        atlas.allocate(size2(64, 66)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(40, 40)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(155, 52)).unwrap();
        atlas.allocate(size2(256, 52)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(24, 24)).unwrap();
        atlas.allocate(size2(64, 64)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(84, 84)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(8, 2)).unwrap();
        atlas.allocate(size2(34, 34)).unwrap();
        atlas.allocate(size2(34, 34)).unwrap();
        atlas.allocate(size2(192, 192)).unwrap();
        atlas.allocate(size2(192, 192)).unwrap();
        atlas.allocate(size2(52, 52)).unwrap();
        atlas.allocate(size2(144, 144)).unwrap();
        atlas.allocate(size2(192, 192)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(144, 144)).unwrap();
        atlas.allocate(size2(24, 24)).unwrap();
        atlas.allocate(size2(192, 192)).unwrap();
        atlas.allocate(size2(192, 192)).unwrap();
        atlas.allocate(size2(432, 243)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();
        atlas.allocate(size2(8, 2)).unwrap();
        atlas.allocate(size2(2, 8)).unwrap();
        atlas.allocate(size2(9, 9)).unwrap();
        atlas.allocate(size2(14, 14)).unwrap();
        atlas.allocate(size2(14, 14)).unwrap();
        atlas.allocate(size2(14, 14)).unwrap();
        atlas.allocate(size2(14, 14)).unwrap();
        atlas.allocate(size2(8, 8)).unwrap();
        atlas.allocate(size2(27, 27)).unwrap();
        atlas.allocate(size2(27, 27)).unwrap();
        atlas.allocate(size2(27, 27)).unwrap();
        atlas.allocate(size2(27, 27)).unwrap();
        atlas.allocate(size2(11, 12)).unwrap();
        atlas.allocate(size2(29, 28)).unwrap();
        atlas.allocate(size2(32, 32)).unwrap();

        for _ in &atlas {}
    }
}

#[test]
fn fuzz_01() {
    let s = 65472;

    let mut atlas = AtlasAllocator::new(size2(s, 64));
    let alloc = atlas.allocate(size2(s, 64)).unwrap();
    assert_eq!(alloc.rectangle.size().width, s);
    assert_eq!(alloc.rectangle.size().height, 64);

    let mut atlas = AtlasAllocator::new(size2(64, s));
    let alloc = atlas.allocate(size2(64, s)).unwrap();
    assert_eq!(alloc.rectangle.size().width, 64);
    assert_eq!(alloc.rectangle.size().height, s);

    let mut atlas = AtlasAllocator::new(size2(s, 64));
    let alloc = atlas.allocate(size2(s - 1, 64)).unwrap();
    assert_eq!(alloc.rectangle.size().width, s);
    assert_eq!(alloc.rectangle.size().height, 64);

    let mut atlas = AtlasAllocator::new(size2(64, s));
    let alloc = atlas.allocate(size2(64, s - 1)).unwrap();
    assert_eq!(alloc.rectangle.size().width, 64);
    assert_eq!(alloc.rectangle.size().height, s);

    // Because of potential alignment we won't necessarily
    // succeed at allocation something this big
    let s = std::u16::MAX as i32;

    let mut atlas = AtlasAllocator::new(size2(s, 64));
    if let Some(alloc) = atlas.allocate(size2(s, 64)) {
        assert_eq!(alloc.rectangle.size().width, s);
        assert_eq!(alloc.rectangle.size().height, 64);
    }

    let mut atlas = AtlasAllocator::new(size2(64, s));
    if let Some(alloc) = atlas.allocate(size2(64, s)) {
        assert_eq!(alloc.rectangle.size().width, 64);
        assert_eq!(alloc.rectangle.size().height, s);
    }
}


#[test]
fn fuzz_02() {
    let mut atlas = AtlasAllocator::new(size2(1000, 1000));

    assert!(atlas.allocate(size2(255, 65599)).is_none());
}

#[test]
fn fuzz_03() {
    let mut atlas = AtlasAllocator::new(size2(1000, 1000));

    let sizes = &[
        size2(999, 128),
        size2(168492810, 10),
        size2(45, 96),
        size2(-16711926, 0),
    ];

    let mut allocations = Vec::new();
    let mut allocated_space = 0;

    for size in sizes {
        if let Some(alloc) = atlas.allocate(*size) {
            allocations.push(alloc);
            allocated_space += alloc.rectangle.area();
            assert_eq!(allocated_space, atlas.allocated_space());
        }
    }

    for alloc in &allocations {
        atlas.deallocate(alloc.id);

        allocated_space -= alloc.rectangle.area();
        assert_eq!(allocated_space, atlas.allocated_space());
    }

    assert_eq!(atlas.allocated_space(), 0);
}

#[test]
fn fuzz_04() {
    let mut atlas = AtlasAllocator::new(size2(1000, 1000));

    assert!(atlas.allocate(size2(2560, 2147483647)).is_none());
}

#[test]
fn issue_17_1() {
    let mut atlas = AtlasAllocator::new(size2(1024, 1024));

    let a = atlas.allocate(size2(100, 300)).unwrap();
    let b = atlas.allocate(size2(500, 200)).unwrap();

    assert_eq!(a.rectangle, atlas.get(a.id));
    assert_eq!(b.rectangle, atlas.get(b.id));

    atlas.deallocate(a.id);

    let c = atlas.allocate(size2(300, 200)).unwrap();

    assert_eq!(b.rectangle, atlas.get(b.id));
    assert_eq!(c.rectangle, atlas.get(c.id));

    atlas.deallocate(c.id);
    atlas.deallocate(b.id);
}

#[test]
fn issue_17_2() {
    let mut atlas = AtlasAllocator::new(size2(1000, 1000));

    assert!(atlas.allocate(size2(100, 1001)).is_none());
    assert!(atlas.allocate(size2(1001, 1000)).is_none());
    let a = atlas.allocate(size2(1000, 1000)).unwrap();

    assert_eq!(a.rectangle, atlas.get(a.id));

    atlas.deallocate(a.id);
}