webrender/
image_tiling.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use crate::api::TileSize;
use crate::api::units::*;
use crate::segment::EdgeAaSegmentMask;
use euclid::{point2, size2};
use std::i32;
use std::ops::Range;

/// If repetitions are far enough apart that only one is within
/// the primitive rect, then we can simplify the parameters and
/// treat the primitive as not repeated.
/// This can let us avoid unnecessary work later to handle some
/// of the parameters.
pub fn simplify_repeated_primitive(
    stretch_size: &LayoutSize,
    tile_spacing: &mut LayoutSize,
    prim_rect: &mut LayoutRect,
) {
    let stride = *stretch_size + *tile_spacing;

    if stride.width >= prim_rect.width() {
        tile_spacing.width = 0.0;
        prim_rect.max.x = f32::min(prim_rect.min.x + stretch_size.width, prim_rect.max.x);
    }
    if stride.height >= prim_rect.height() {
        tile_spacing.height = 0.0;
        prim_rect.max.y = f32::min(prim_rect.min.y + stretch_size.height, prim_rect.max.y);
    }
}

pub struct Repetition {
    pub origin: LayoutPoint,
    pub edge_flags: EdgeAaSegmentMask,
}

pub struct RepetitionIterator {
    current_x: i32,
    x_count: i32,
    current_y: i32,
    y_count: i32,
    row_flags: EdgeAaSegmentMask,
    current_origin: LayoutPoint,
    initial_origin: LayoutPoint,
    stride: LayoutSize,
}

impl RepetitionIterator {
    pub fn num_repetitions(&self) -> usize {
        (self.y_count * self.x_count) as usize
    }
}

impl Iterator for RepetitionIterator {
    type Item = Repetition;

    fn next(&mut self) -> Option<Self::Item> {
        if self.current_x == self.x_count {
            self.current_y += 1;
            if self.current_y >= self.y_count {
                return None;
            }
            self.current_x = 0;

            self.row_flags = EdgeAaSegmentMask::empty();
            if self.current_y == self.y_count - 1 {
                self.row_flags |= EdgeAaSegmentMask::BOTTOM;
            }

            self.current_origin.x = self.initial_origin.x;
            self.current_origin.y += self.stride.height;
        }

        let mut edge_flags = self.row_flags;
        if self.current_x == 0 {
            edge_flags |= EdgeAaSegmentMask::LEFT;
        }

        if self.current_x == self.x_count - 1 {
            edge_flags |= EdgeAaSegmentMask::RIGHT;
        }

        let repetition = Repetition {
            origin: self.current_origin,
            edge_flags,
        };

        self.current_origin.x += self.stride.width;
        self.current_x += 1;

        Some(repetition)
    }
}

pub fn repetitions(
    prim_rect: &LayoutRect,
    visible_rect: &LayoutRect,
    stride: LayoutSize,
) -> RepetitionIterator {
    let visible_rect = match prim_rect.intersection(&visible_rect) {
        Some(rect) => rect,
        None => {
            return RepetitionIterator {
                current_origin: LayoutPoint::zero(),
                initial_origin: LayoutPoint::zero(),
                current_x: 0,
                current_y: 0,
                x_count: 0,
                y_count: 0,
                stride,
                row_flags: EdgeAaSegmentMask::empty(),
            }
        }
    };

    assert!(stride.width > 0.0);
    assert!(stride.height > 0.0);

    let nx = if visible_rect.min.x > prim_rect.min.x {
        f32::floor((visible_rect.min.x - prim_rect.min.x) / stride.width)
    } else {
        0.0
    };

    let ny = if visible_rect.min.y > prim_rect.min.y {
        f32::floor((visible_rect.min.y - prim_rect.min.y) / stride.height)
    } else {
        0.0
    };

    let x0 = prim_rect.min.x + nx * stride.width;
    let y0 = prim_rect.min.y + ny * stride.height;

    let x_most = visible_rect.max.x;
    let y_most = visible_rect.max.y;

    let x_count = f32::ceil((x_most - x0) / stride.width) as i32;
    let y_count = f32::ceil((y_most - y0) / stride.height) as i32;

    let mut row_flags = EdgeAaSegmentMask::TOP;
    if y_count == 1 {
        row_flags |= EdgeAaSegmentMask::BOTTOM;
    }

    RepetitionIterator {
        current_origin: LayoutPoint::new(x0, y0),
        initial_origin: LayoutPoint::new(x0, y0),
        current_x: 0,
        current_y: 0,
        x_count,
        y_count,
        row_flags,
        stride,
    }
}

#[derive(Debug)]
pub struct Tile {
    pub rect: LayoutRect,
    pub offset: TileOffset,
    pub edge_flags: EdgeAaSegmentMask,
}

#[derive(Debug)]
pub struct TileIteratorExtent {
    /// Range of visible tiles to iterate over in number of tiles.
    tile_range: Range<i32>,
    /// Range of tiles of the full image including tiles that are culled out.
    image_tiles: Range<i32>,
    /// Size of the first tile in layout space.
    first_tile_layout_size: f32,
    /// Size of the last tile in layout space.
    last_tile_layout_size: f32,
    /// Position of blob point (0, 0) in layout space.
    layout_tiling_origin: f32,
    /// Position of the top-left corner of the primitive rect in layout space.
    layout_prim_start: f32,
}

#[derive(Debug)]
pub struct TileIterator {
    current_tile: TileOffset,
    x: TileIteratorExtent,
    y: TileIteratorExtent,
    regular_tile_size: LayoutSize,
}

impl Iterator for TileIterator {
    type Item = Tile;

    fn next(&mut self) -> Option<Self::Item> {
        // If we reach the end of a row, reset to the beginning of the next row.
        if self.current_tile.x >= self.x.tile_range.end {
            self.current_tile.y += 1;
            self.current_tile.x = self.x.tile_range.start;
        }

        // Stop iterating if we reach the last tile. We may start here if there
        // were no tiles to iterate over.
        if self.current_tile.x >= self.x.tile_range.end || self.current_tile.y >= self.y.tile_range.end {
            return None;
        }

        let tile_offset = self.current_tile;

        let mut segment_rect = LayoutRect::from_origin_and_size(
            LayoutPoint::new(
                self.x.layout_tiling_origin + tile_offset.x as f32 * self.regular_tile_size.width,
                self.y.layout_tiling_origin + tile_offset.y as f32 * self.regular_tile_size.height,
            ),
            self.regular_tile_size,
        );

        let mut edge_flags = EdgeAaSegmentMask::empty();

        if tile_offset.x == self.x.image_tiles.start {
            edge_flags |= EdgeAaSegmentMask::LEFT;
            segment_rect.min.x = self.x.layout_prim_start;
            // TODO(nical) we may not need to do this.
            segment_rect.max.x = segment_rect.min.x + self.x.first_tile_layout_size;
        }
        if tile_offset.x == self.x.image_tiles.end - 1 {
            edge_flags |= EdgeAaSegmentMask::RIGHT;
            segment_rect.max.x = segment_rect.min.x + self.x.last_tile_layout_size;
        }

        if tile_offset.y == self.y.image_tiles.start {
            segment_rect.min.y = self.y.layout_prim_start;
            segment_rect.max.y = segment_rect.min.y + self.y.first_tile_layout_size;
            edge_flags |= EdgeAaSegmentMask::TOP;
        }
        if tile_offset.y == self.y.image_tiles.end - 1 {
            segment_rect.max.y = segment_rect.min.y + self.y.last_tile_layout_size;
            edge_flags |= EdgeAaSegmentMask::BOTTOM;
        }

        assert!(tile_offset.y < self.y.tile_range.end);
        let tile = Tile {
            rect: segment_rect,
            offset: tile_offset,
            edge_flags,
        };

        self.current_tile.x += 1;

        Some(tile)
    }
}

pub fn tiles(
    prim_rect: &LayoutRect,
    visible_rect: &LayoutRect,
    image_rect: &DeviceIntRect,
    device_tile_size: i32,
) -> TileIterator {
    // The image resource is tiled. We have to generate an image primitive
    // for each tile.
    // We need to do this because the image is broken up into smaller tiles in the texture
    // cache and the image shader is not able to work with this type of sparse representation.

    // The tiling logic works as follows:
    //
    //  +-#################-+  -+
    //  | #//|    |    |//# |   | image size
    //  | #//|    |    |//# |   |
    //  +-#--+----+----+--#-+   |  -+
    //  | #//|    |    |//# |   |   | regular tile size
    //  | #//|    |    |//# |   |   |
    //  +-#--+----+----+--#-+   |  -+-+
    //  | #//|////|////|//# |   |     | "leftover" height
    //  | ################# |  -+  ---+
    //  +----+----+----+----+
    //
    // In the ascii diagram above, a large image is split into tiles of almost regular size.
    // The tiles on the edges (hatched in the diagram) can be smaller than the regular tiles
    // and are handled separately in the code (we'll call them boundary tiles).
    //
    // Each generated segment corresponds to a tile in the texture cache, with the
    // assumption that the boundary tiles are sized to fit their own irregular size in the
    // texture cache.
    //
    // Because we can have very large virtual images we iterate over the visible portion of
    // the image in layer space instead of iterating over all device tiles.

    let visible_rect = match prim_rect.intersection(&visible_rect) {
        Some(rect) => rect,
        None => {
            return TileIterator {
                current_tile: TileOffset::zero(),
                x: TileIteratorExtent {
                    tile_range: 0..0,
                    image_tiles: 0..0,
                    first_tile_layout_size: 0.0,
                    last_tile_layout_size: 0.0,
                    layout_tiling_origin: 0.0,
                    layout_prim_start: prim_rect.min.x,
                },
                y: TileIteratorExtent {
                    tile_range: 0..0,
                    image_tiles: 0..0,
                    first_tile_layout_size: 0.0,
                    last_tile_layout_size: 0.0,
                    layout_tiling_origin: 0.0,
                    layout_prim_start: prim_rect.min.y,
                },
                regular_tile_size: LayoutSize::zero(),
            }
        }
    };

    // Size of regular tiles in layout space.
    let layout_tile_size = LayoutSize::new(
        device_tile_size as f32 / image_rect.width() as f32 * prim_rect.width(),
        device_tile_size as f32 / image_rect.height() as f32 * prim_rect.height(),
    );

    // The decomposition logic is exactly the same on each axis so we reduce
    // this to a 1-dimensional problem in an attempt to make the code simpler.

    let x_extent = tiles_1d(
        layout_tile_size.width,
        visible_rect.x_range(),
        prim_rect.min.x,
        image_rect.x_range(),
        device_tile_size,
    );

    let y_extent = tiles_1d(
        layout_tile_size.height,
        visible_rect.y_range(),
        prim_rect.min.y,
        image_rect.y_range(),
        device_tile_size,
    );

    TileIterator {
        current_tile: point2(
            x_extent.tile_range.start,
            y_extent.tile_range.start,
        ),
        x: x_extent,
        y: y_extent,
        regular_tile_size: layout_tile_size,
    }
}

/// Decompose tiles along an arbitrary axis.
///
/// This does most of the heavy lifting needed for `tiles` but in a single dimension for
/// the sake of simplicity since the problem is independent on the x and y axes.
fn tiles_1d(
    layout_tile_size: f32,
    layout_visible_range: Range<f32>,
    layout_prim_start: f32,
    device_image_range: Range<i32>,
    device_tile_size: i32,
) -> TileIteratorExtent {
    // A few sanity checks.
    debug_assert!(layout_tile_size > 0.0);
    debug_assert!(layout_visible_range.end >= layout_visible_range.start);
    debug_assert!(device_image_range.end > device_image_range.start);
    debug_assert!(device_tile_size > 0);

    // Sizes of the boundary tiles in pixels.
    let first_tile_device_size = first_tile_size_1d(&device_image_range, device_tile_size);
    let last_tile_device_size = last_tile_size_1d(&device_image_range, device_tile_size);

    // [start..end[ Range of tiles of this row/column (in number of tiles) without
    // taking culling into account.
    let image_tiles = tile_range_1d(&device_image_range, device_tile_size);

    // Layout offset of tile (0, 0) with respect to the top-left corner of the display item.
    let layout_offset = device_image_range.start as f32 * layout_tile_size / device_tile_size as f32;
    // Position in layout space of tile (0, 0).
    let layout_tiling_origin = layout_prim_start - layout_offset;

    // [start..end[ Range of the visible tiles (because of culling).
    let visible_tiles_start = f32::floor((layout_visible_range.start - layout_tiling_origin) / layout_tile_size) as i32;
    let visible_tiles_end = f32::ceil((layout_visible_range.end - layout_tiling_origin) / layout_tile_size) as i32;

    // Combine the above two to get the tiles in the image that are visible this frame.
    let mut tiles_start = i32::max(image_tiles.start, visible_tiles_start);
    let tiles_end = i32::min(image_tiles.end, visible_tiles_end);
    if tiles_start > tiles_end {
        tiles_start = tiles_end;
    }

    // The size in layout space of the boundary tiles.
    let first_tile_layout_size = if tiles_start == image_tiles.start {
        first_tile_device_size as f32 * layout_tile_size / device_tile_size as f32
    } else {
        // boundary tile was culled out, so the new first tile is a regularly sized tile.
        layout_tile_size
    };

    // Same here.
    let last_tile_layout_size = if tiles_end == image_tiles.end {
        last_tile_device_size as f32 * layout_tile_size / device_tile_size as f32
    } else {
        layout_tile_size
    };

    TileIteratorExtent {
        tile_range: tiles_start..tiles_end,
        image_tiles,
        first_tile_layout_size,
        last_tile_layout_size,
        layout_tiling_origin,
        layout_prim_start,
    }
}

/// Compute the range of tiles (in number of tiles) that intersect the provided
/// image range (in pixels) in an arbitrary dimension.
///
/// ```ignore
///
///         0
///         :
///   #-+---+---+---+---+---+--#
///   # |   |   |   |   |   |  #
///   #-+---+---+---+---+---+--#
/// ^       :                   ^
///
///  +------------------------+  image_range
///        +---+  regular_tile_size
///
/// ```
fn tile_range_1d(
    image_range: &Range<i32>,
    regular_tile_size: i32,
) -> Range<i32> {
    // Integer division truncates towards zero so with negative values if the first/last
    // tile isn't a full tile we can get offset by one which we account for here.

    let mut start = image_range.start / regular_tile_size;
    if image_range.start % regular_tile_size < 0 {
        start -= 1;
    }

    let mut end = image_range.end / regular_tile_size;
    if image_range.end % regular_tile_size > 0 {
        end += 1;
    }

    start..end
}

// Sizes of the first boundary tile in pixels.
//
// It can be smaller than the regular tile size if the image is not a multiple
// of the regular tile size.
fn first_tile_size_1d(
    image_range: &Range<i32>,
    regular_tile_size: i32,
) -> i32 {
    // We have to account for how the % operation behaves for negative values.
    let image_size = image_range.end - image_range.start;
    i32::min(
        match image_range.start % regular_tile_size {
            //             .      #------+------+      .
            //             .      #//////|      |      .
            0 => regular_tile_size,
            //   (zero) -> 0      .   #--+------+      .
            //             .      .   #//|      |      .
            // %(m):                  ~~>
            m if m > 0 => regular_tile_size - m,
            //             .      .   #--+------+      0 <- (zero)
            //             .      .   #//|      |      .
            // %(m):                  <~~
            m => -m,
        },
        image_size
    )
}

// Sizes of the last boundary tile in pixels.
//
// It can be smaller than the regular tile size if the image is not a multiple
// of the regular tile size.
fn last_tile_size_1d(
    image_range: &Range<i32>,
    regular_tile_size: i32,
) -> i32 {
    // We have to account for how the modulo operation behaves for negative values.
    let image_size = image_range.end - image_range.start;
    i32::min(
        match image_range.end % regular_tile_size {
            //                    +------+------#      .
            // tiles:      .      |      |//////#      .
            0 => regular_tile_size,
            //             .      +------+--#   .      0 <- (zero)
            //             .      |      |//#   .      .
            // modulo (m):                   <~~
            m if m < 0 => regular_tile_size + m,
            //   (zero) -> 0      +------+--#   .      .
            //             .      |      |//#   .      .
            // modulo (m):                ~~>
            m => m,
        },
        image_size,
    )
}

pub fn compute_tile_rect(
    image_rect: &DeviceIntRect,
    regular_tile_size: TileSize,
    tile: TileOffset,
) -> DeviceIntRect {
    let regular_tile_size = regular_tile_size as i32;
    DeviceIntRect::from_origin_and_size(
        point2(
            compute_tile_origin_1d(image_rect.x_range(), regular_tile_size, tile.x as i32),
            compute_tile_origin_1d(image_rect.y_range(), regular_tile_size, tile.y as i32),
        ),
        size2(
            compute_tile_size_1d(image_rect.x_range(), regular_tile_size, tile.x as i32),
            compute_tile_size_1d(image_rect.y_range(), regular_tile_size, tile.y as i32),
        ),
    )
}

fn compute_tile_origin_1d(
    img_range: Range<i32>,
    regular_tile_size: i32,
    tile_offset: i32,
) -> i32 {
    let tile_range = tile_range_1d(&img_range, regular_tile_size);
    if tile_offset == tile_range.start {
        img_range.start
    } else {
        tile_offset * regular_tile_size
    }
}

// Compute the width and height in pixels of a tile depending on its position in the image.
pub fn compute_tile_size(
    image_rect: &DeviceIntRect,
    regular_tile_size: TileSize,
    tile: TileOffset,
) -> DeviceIntSize {
    let regular_tile_size = regular_tile_size as i32;
    size2(
        compute_tile_size_1d(image_rect.x_range(), regular_tile_size, tile.x as i32),
        compute_tile_size_1d(image_rect.y_range(), regular_tile_size, tile.y as i32),
    )
}

fn compute_tile_size_1d(
    img_range: Range<i32>,
    regular_tile_size: i32,
    tile_offset: i32,
) -> i32 {
    let tile_range = tile_range_1d(&img_range, regular_tile_size);

    // Most tiles are going to have base_size as width and height,
    // except for tiles around the edges that are shrunk to fit the image data.
    let actual_size = if tile_offset == tile_range.start {
        first_tile_size_1d(&img_range, regular_tile_size)
    } else if tile_offset == tile_range.end - 1 {
        last_tile_size_1d(&img_range, regular_tile_size)
    } else {
        regular_tile_size
    };

    assert!(actual_size > 0);

    actual_size
}

pub fn compute_tile_range(
    visible_area: &DeviceIntRect,
    tile_size: u16,
) -> TileRange {
    let tile_size = tile_size as i32;
    let x_range = tile_range_1d(&visible_area.x_range(), tile_size);
    let y_range = tile_range_1d(&visible_area.y_range(), tile_size);

    TileRange {
        min: point2(x_range.start, y_range.start),
        max: point2(x_range.end, y_range.end),
    }
}

pub fn for_each_tile_in_range(
    range: &TileRange,
    mut callback: impl FnMut(TileOffset),
) {
    for y in range.y_range() {
        for x in range.x_range() {
            callback(point2(x, y));
        }
    }
}

pub fn compute_valid_tiles_if_bounds_change(
    prev_rect: &DeviceIntRect,
    new_rect: &DeviceIntRect,
    tile_size: u16,
) -> Option<TileRange> {
    let intersection = match prev_rect.intersection(new_rect) {
        Some(rect) => rect,
        None => {
            return Some(TileRange::zero());
        }
    };

    let left = prev_rect.min.x != new_rect.min.x;
    let right = prev_rect.max.x != new_rect.max.x;
    let top = prev_rect.min.y != new_rect.min.y;
    let bottom = prev_rect.max.y != new_rect.max.y;

    if !left && !right && !top && !bottom {
        // Bounds have not changed.
        return None;
    }

    let tw = 1.0 / (tile_size as f32);
    let th = 1.0 / (tile_size as f32);

    let tiles = intersection
        .cast::<f32>()
        .scale(tw, th);

    let min_x = if left { f32::ceil(tiles.min.x) } else { f32::floor(tiles.min.x) };
    let min_y = if top { f32::ceil(tiles.min.y) } else { f32::floor(tiles.min.y) };
    let max_x = if right { f32::floor(tiles.max.x) } else { f32::ceil(tiles.max.x) };
    let max_y = if bottom { f32::floor(tiles.max.y) } else { f32::ceil(tiles.max.y) };

    Some(TileRange {
        min: point2(min_x as i32, min_y as i32),
        max: point2(max_x as i32, max_y as i32),
    })
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::collections::HashSet;
    use euclid::rect;

    // this checks some additional invariants
    fn checked_for_each_tile(
        prim_rect: &LayoutRect,
        visible_rect: &LayoutRect,
        device_image_rect: &DeviceIntRect,
        device_tile_size: i32,
        callback: &mut dyn FnMut(&LayoutRect, TileOffset, EdgeAaSegmentMask),
    ) {
        let mut coverage = LayoutRect::zero();
        let mut seen_tiles = HashSet::new();
        for tile in tiles(
            prim_rect,
            visible_rect,
            device_image_rect,
            device_tile_size,
        ) {
            // make sure we don't get sent duplicate tiles
            assert!(!seen_tiles.contains(&tile.offset));
            seen_tiles.insert(tile.offset);
            coverage = coverage.union(&tile.rect);
            assert!(prim_rect.contains_box(&tile.rect));
            callback(&tile.rect, tile.offset, tile.edge_flags);
        }
        assert!(prim_rect.contains_box(&coverage));
        assert!(coverage.contains_box(&visible_rect.intersection(&prim_rect).unwrap_or(LayoutRect::zero())));
    }

    #[test]
    fn basic() {
        let mut count = 0;
        checked_for_each_tile(&rect(0., 0., 1000., 1000.).to_box2d(),
            &rect(75., 75., 400., 400.).to_box2d(),
            &rect(0, 0, 400, 400).to_box2d(),
            36,
            &mut |_tile_rect, _tile_offset, _tile_flags| {
                count += 1;
            },
        );
        assert_eq!(count, 36);
    }

    #[test]
    fn empty() {
        let mut count = 0;
        checked_for_each_tile(&rect(0., 0., 74., 74.).to_box2d(),
            &rect(75., 75., 400., 400.).to_box2d(),
            &rect(0, 0, 400, 400).to_box2d(),
            36,
            &mut |_tile_rect, _tile_offset, _tile_flags| {
              count += 1;
            },
        );
        assert_eq!(count, 0);
    }

    #[test]
    fn test_tiles_1d() {
        // Exactly one full tile at positive offset.
        let result = tiles_1d(64.0, -10000.0..10000.0, 0.0, 0..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Exactly one full tile at negative offset.
        let result = tiles_1d(64.0, -10000.0..10000.0, -64.0, -64..0, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 0);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Two full tiles at negative and positive offsets.
        let result = tiles_1d(64.0, -10000.0..10000.0, -64.0, -64..64, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // One partial tile at positive offset, non-zero origin, culled out.
        let result = tiles_1d(64.0, -100.0..10.0, 64.0, 64..310, 64);
        assert_eq!(result.tile_range.start, result.tile_range.end);

        // Two tiles at negative and positive offsets, one of which is culled out.
        // The remaining tile is partially culled but it should still generate a full tile.
        let result = tiles_1d(64.0, 10.0..10000.0, -64.0, -64..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);
        let result = tiles_1d(64.0, -10000.0..-10.0, -64.0, -64..64, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 0);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Stretched tile in layout space device tile size is 64 and layout tile size is 128.
        // So the resulting tile sizes in layout space should be multiplied by two.
        let result = tiles_1d(128.0, -10000.0..10000.0, -64.0, -64..32, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 128.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Two visible tiles (the rest is culled out).
        let result = tiles_1d(10.0, 0.0..20.0, 0.0, 0..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 10.0);
        assert_eq!(result.last_tile_layout_size, 10.0);

        // Two visible tiles at negative layout offsets (the rest is culled out).
        let result = tiles_1d(10.0, -20.0..0.0, -20.0, 0..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 10.0);
        assert_eq!(result.last_tile_layout_size, 10.0);
    }

    #[test]
    fn test_tile_range_1d() {
        assert_eq!(tile_range_1d(&(0..256), 256), 0..1);
        assert_eq!(tile_range_1d(&(0..257), 256), 0..2);
        assert_eq!(tile_range_1d(&(-1..257), 256), -1..2);
        assert_eq!(tile_range_1d(&(-256..256), 256), -1..1);
        assert_eq!(tile_range_1d(&(-20..-10), 6), -4..-1);
        assert_eq!(tile_range_1d(&(20..100), 256), 0..1);
    }

    #[test]
    fn test_first_last_tile_size_1d() {
        assert_eq!(first_tile_size_1d(&(0..10), 64), 10);
        assert_eq!(first_tile_size_1d(&(-20..0), 64), 20);

        assert_eq!(last_tile_size_1d(&(0..10), 64), 10);
        assert_eq!(last_tile_size_1d(&(-20..0), 64), 20);
    }

    #[test]
    fn doubly_partial_tiles() {
        // In the following tests the image is a single tile and none of the sides of the tile
        // align with the tile grid.
        // This can only happen when we have a single non-aligned partial tile and no regular
        // tiles.
        assert_eq!(first_tile_size_1d(&(300..310), 64), 10);
        assert_eq!(first_tile_size_1d(&(-20..-10), 64), 10);

        assert_eq!(last_tile_size_1d(&(300..310), 64), 10);
        assert_eq!(last_tile_size_1d(&(-20..-10), 64), 10);


        // One partial tile at positve offset, non-zero origin.
        let result = tiles_1d(64.0, -10000.0..10000.0, 0.0, 300..310, 64);
        assert_eq!(result.tile_range.start, 4);
        assert_eq!(result.tile_range.end, 5);
        assert_eq!(result.first_tile_layout_size, 10.0);
        assert_eq!(result.last_tile_layout_size, 10.0);
    }

    #[test]
    fn smaller_than_tile_size_at_origin() {
        let r = compute_tile_rect(
            &rect(0, 0, 80, 80).to_box2d(),
            256,
            point2(0, 0),
        );

        assert_eq!(r, rect(0, 0, 80, 80).to_box2d());
    }

    #[test]
    fn smaller_than_tile_size_with_offset() {
        let r = compute_tile_rect(
            &rect(20, 20, 80, 80).to_box2d(),
            256,
            point2(0, 0),
        );

        assert_eq!(r, rect(20, 20, 80, 80).to_box2d());
    }
}