rustls/client/
ech.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
use alloc::boxed::Box;
use alloc::vec;
use alloc::vec::Vec;

use pki_types::{DnsName, EchConfigListBytes, ServerName};
use subtle::ConstantTimeEq;

use crate::client::tls13;
use crate::crypto::hash::Hash;
use crate::crypto::hpke::{EncapsulatedSecret, Hpke, HpkePublicKey, HpkeSealer, HpkeSuite};
use crate::crypto::SecureRandom;
use crate::hash_hs::{HandshakeHash, HandshakeHashBuffer};
use crate::log::{debug, trace, warn};
use crate::msgs::base::{Payload, PayloadU16};
use crate::msgs::codec::{Codec, Reader};
use crate::msgs::enums::{ExtensionType, HpkeKem};
use crate::msgs::handshake::{
    ClientExtension, ClientHelloPayload, EchConfigContents, EchConfigPayload, Encoding,
    EncryptedClientHello, EncryptedClientHelloOuter, HandshakeMessagePayload, HandshakePayload,
    HelloRetryRequest, HpkeKeyConfig, HpkeSymmetricCipherSuite, PresharedKeyBinder,
    PresharedKeyOffer, Random, ServerHelloPayload,
};
use crate::msgs::message::{Message, MessagePayload};
use crate::msgs::persist;
use crate::msgs::persist::Retrieved;
use crate::tls13::key_schedule::{
    server_ech_hrr_confirmation_secret, KeyScheduleEarly, KeyScheduleHandshakeStart,
};
use crate::CipherSuite::TLS_EMPTY_RENEGOTIATION_INFO_SCSV;
use crate::{
    AlertDescription, CommonState, EncryptedClientHelloError, Error, HandshakeType,
    PeerIncompatible, PeerMisbehaved, ProtocolVersion, Tls13CipherSuite,
};

/// Controls how Encrypted Client Hello (ECH) is used in a client handshake.
#[derive(Clone, Debug)]
pub enum EchMode {
    /// ECH is enabled and the ClientHello will be encrypted based on the provided
    /// configuration.
    Enable(EchConfig),

    /// No ECH configuration is available but the client should act as though it were.
    ///
    /// This is an anti-ossification measure, sometimes referred to as "GREASE"[^0].
    /// [^0]: <https://www.rfc-editor.org/rfc/rfc8701>
    Grease(EchGreaseConfig),
}

impl EchMode {
    /// Returns true if the ECH mode will use a FIPS approved HPKE suite.
    pub fn fips(&self) -> bool {
        match self {
            Self::Enable(ech_config) => ech_config.suite.fips(),
            Self::Grease(grease_config) => grease_config.suite.fips(),
        }
    }
}

impl From<EchConfig> for EchMode {
    fn from(config: EchConfig) -> Self {
        Self::Enable(config)
    }
}

impl From<EchGreaseConfig> for EchMode {
    fn from(config: EchGreaseConfig) -> Self {
        Self::Grease(config)
    }
}

/// Configuration for performing encrypted client hello.
///
/// Note: differs from the protocol-encoded EchConfig (`EchConfigMsg`).
#[derive(Clone, Debug)]
pub struct EchConfig {
    /// The selected EchConfig.
    pub(crate) config: EchConfigPayload,

    /// An HPKE instance corresponding to a suite from the `config` we have selected as
    /// a compatible choice.
    pub(crate) suite: &'static dyn Hpke,
}

impl EchConfig {
    /// Construct an EchConfig by selecting a ECH config from the provided bytes that is compatible
    /// with one of the given HPKE suites.
    ///
    /// The config list bytes should be sourced from a DNS-over-HTTPS lookup resolving the `HTTPS`
    /// resource record for the host name of the server you wish to connect via ECH,
    /// and extracting the ECH configuration from the `ech` parameter. The extracted bytes should
    /// be base64 decoded to yield the `EchConfigListBytes` you provide to rustls.
    ///
    /// One of the provided ECH configurations must be compatible with the HPKE provider's supported
    /// suites or an error will be returned.
    ///
    /// See the [ech-client.rs] example for a complete example of fetching ECH configs from DNS.
    ///
    /// [ech-client.rs]: https://github.com/rustls/rustls/blob/main/examples/src/bin/ech-client.rs
    pub fn new(
        ech_config_list: EchConfigListBytes<'_>,
        hpke_suites: &[&'static dyn Hpke],
    ) -> Result<Self, Error> {
        let ech_configs = Vec::<EchConfigPayload>::read(&mut Reader::init(&ech_config_list))
            .map_err(|_| {
                Error::InvalidEncryptedClientHello(EncryptedClientHelloError::InvalidConfigList)
            })?;

        // Note: we name the index var _i because if the log feature is disabled
        //       it is unused.
        #[cfg_attr(not(feature = "std"), allow(clippy::unused_enumerate_index))]
        for (_i, config) in ech_configs.iter().enumerate() {
            let contents = match config {
                EchConfigPayload::V18(contents) => contents,
                EchConfigPayload::Unknown {
                    version: _version, ..
                } => {
                    warn!(
                        "ECH config {} has unsupported version {:?}",
                        _i + 1,
                        _version
                    );
                    continue; // Unsupported version.
                }
            };

            if contents.has_unknown_mandatory_extension() || contents.has_duplicate_extension() {
                warn!("ECH config has duplicate, or unknown mandatory extensions: {contents:?}",);
                continue; // Unsupported, or malformed extensions.
            }

            let key_config = &contents.key_config;
            for cipher_suite in &key_config.symmetric_cipher_suites {
                if cipher_suite.aead_id.tag_len().is_none() {
                    continue; // Unsupported EXPORT_ONLY AEAD cipher suite.
                }

                let suite = HpkeSuite {
                    kem: key_config.kem_id,
                    sym: *cipher_suite,
                };
                if let Some(hpke) = hpke_suites
                    .iter()
                    .find(|hpke| hpke.suite() == suite)
                {
                    debug!(
                        "selected ECH config ID {:?} suite {:?} public_name {:?}",
                        key_config.config_id, suite, contents.public_name
                    );
                    return Ok(Self {
                        config: config.clone(),
                        suite: *hpke,
                    });
                }
            }
        }

        Err(EncryptedClientHelloError::NoCompatibleConfig.into())
    }

    /// Compute the HPKE `SetupBaseS` `info` parameter for this ECH configuration.
    ///
    /// See <https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-17#section-6.1>.
    pub(crate) fn hpke_info(&self) -> Vec<u8> {
        let mut info = Vec::with_capacity(128);
        // "tls ech" || 0x00 || ECHConfig
        info.extend_from_slice(b"tls ech\0");
        self.config.encode(&mut info);
        info
    }
}

/// Configuration for GREASE Encrypted Client Hello.
#[derive(Clone, Debug)]
pub struct EchGreaseConfig {
    pub(crate) suite: &'static dyn Hpke,
    pub(crate) placeholder_key: HpkePublicKey,
}

impl EchGreaseConfig {
    /// Construct a GREASE ECH configuration.
    ///
    /// This configuration is used when the client wishes to offer ECH to prevent ossification,
    /// but doesn't have a real ECH configuration to use for the remote server. In this case
    /// a placeholder or "GREASE"[^0] extension is used.
    ///
    /// Returns an error if the HPKE provider does not support the given suite.
    ///
    /// [^0]: <https://www.rfc-editor.org/rfc/rfc8701>
    pub fn new(suite: &'static dyn Hpke, placeholder_key: HpkePublicKey) -> Self {
        Self {
            suite,
            placeholder_key,
        }
    }

    /// Build a GREASE ECH extension based on the placeholder configuration.
    ///
    /// See <https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#name-grease-ech> for
    /// more information.
    pub(crate) fn grease_ext(
        &self,
        secure_random: &'static dyn SecureRandom,
        inner_name: ServerName<'static>,
        outer_hello: &ClientHelloPayload,
    ) -> Result<ClientExtension, Error> {
        trace!("Preparing GREASE ECH extension");

        // Pick a random config id.
        let mut config_id: [u8; 1] = [0; 1];
        secure_random.fill(&mut config_id[..])?;

        let suite = self.suite.suite();

        // Construct a dummy ECH state - we don't have a real ECH config from a server since
        // this is for GREASE.
        let mut grease_state = EchState::new(
            &EchConfig {
                config: EchConfigPayload::V18(EchConfigContents {
                    key_config: HpkeKeyConfig {
                        config_id: config_id[0],
                        kem_id: HpkeKem::DHKEM_P256_HKDF_SHA256,
                        public_key: PayloadU16(self.placeholder_key.0.clone()),
                        symmetric_cipher_suites: vec![suite.sym],
                    },
                    maximum_name_length: 0,
                    public_name: DnsName::try_from("filler").unwrap(),
                    extensions: Vec::default(),
                }),
                suite: self.suite,
            },
            inner_name,
            false,
            secure_random,
            false, // Does not matter if we enable/disable SNI here. Inner hello is not used.
        )?;

        // Construct an inner hello using the outer hello - this allows us to know the size of
        // dummy payload we should use for the GREASE extension.
        let encoded_inner_hello = grease_state.encode_inner_hello(outer_hello, None, &None);

        // Generate a payload of random data equivalent in length to a real inner hello.
        let payload_len = encoded_inner_hello.len()
            + suite
                .sym
                .aead_id
                .tag_len()
                // Safety: we have confirmed the AEAD is supported when building the config. All
                //  supported AEADs have a tag length.
                .unwrap();
        let mut payload = vec![0; payload_len];
        secure_random.fill(&mut payload)?;

        // Return the GREASE extension.
        Ok(ClientExtension::EncryptedClientHello(
            EncryptedClientHello::Outer(EncryptedClientHelloOuter {
                cipher_suite: suite.sym,
                config_id: config_id[0],
                enc: PayloadU16(grease_state.enc.0),
                payload: PayloadU16::new(payload),
            }),
        ))
    }
}

/// An enum representing ECH offer status.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum EchStatus {
    /// ECH was not offered - it is a normal TLS handshake.
    NotOffered,
    /// GREASE ECH was sent. This is not considered offering ECH.
    Grease,
    /// ECH was offered but we do not yet know whether the offer was accepted or rejected.
    Offered,
    /// ECH was offered and the server accepted.
    Accepted,
    /// ECH was offered and the server rejected.
    Rejected,
}

/// Contextual data for a TLS client handshake that has offered encrypted client hello (ECH).
pub(crate) struct EchState {
    // The public DNS name from the ECH configuration we've chosen - this is included as the SNI
    // value for the "outer" client hello. It can only be a DnsName, not an IP address.
    pub(crate) outer_name: DnsName<'static>,
    // If we're resuming in the inner hello, this is the early key schedule to use for encrypting
    // early data if the ECH offer is accepted.
    pub(crate) early_data_key_schedule: Option<KeyScheduleEarly>,
    // A random value we use for the inner hello.
    pub(crate) inner_hello_random: Random,
    // A transcript buffer maintained for the inner hello. Once ECH is confirmed we switch to
    // using this transcript for the handshake.
    pub(crate) inner_hello_transcript: HandshakeHashBuffer,
    // A source of secure random data.
    secure_random: &'static dyn SecureRandom,
    // An HPKE sealer context that can be used for encrypting ECH data.
    sender: Box<dyn HpkeSealer>,
    // The ID of the ECH configuration we've chosen - this is included in the outer ECH extension.
    config_id: u8,
    // The private server name we'll use for the inner protected hello.
    inner_name: ServerName<'static>,
    // The advertised maximum name length from the ECH configuration we've chosen - this is used
    // for padding calculations.
    maximum_name_length: u8,
    // A supported symmetric cipher suite from the ECH configuration we've chosen - this is
    // included in the outer ECH extension.
    cipher_suite: HpkeSymmetricCipherSuite,
    // A secret encapsulated to the public key of the remote server. This is included in the
    // outer ECH extension for non-retry outer hello messages.
    enc: EncapsulatedSecret,
    // Whether the inner client hello should contain a server name indication (SNI) extension.
    enable_sni: bool,
    // The extensions sent in the inner hello.
    sent_extensions: Vec<ExtensionType>,
}

impl EchState {
    pub(crate) fn new(
        config: &EchConfig,
        inner_name: ServerName<'static>,
        client_auth_enabled: bool,
        secure_random: &'static dyn SecureRandom,
        enable_sni: bool,
    ) -> Result<Self, Error> {
        let EchConfigPayload::V18(config_contents) = &config.config else {
            // the public EchConfig::new() constructor ensures we only have supported
            // configurations.
            unreachable!("ECH config version mismatch");
        };
        let key_config = &config_contents.key_config;

        // Encapsulate a secret for the server's public key, and set up a sender context
        // we can use to seal messages.
        let (enc, sender) = config.suite.setup_sealer(
            &config.hpke_info(),
            &HpkePublicKey(key_config.public_key.0.clone()),
        )?;

        // Start a new transcript buffer for the inner hello.
        let mut inner_hello_transcript = HandshakeHashBuffer::new();
        if client_auth_enabled {
            inner_hello_transcript.set_client_auth_enabled();
        }

        Ok(Self {
            secure_random,
            sender,
            config_id: key_config.config_id,
            inner_name,
            outer_name: config_contents.public_name.clone(),
            maximum_name_length: config_contents.maximum_name_length,
            cipher_suite: config.suite.suite().sym,
            enc,
            inner_hello_random: Random::new(secure_random)?,
            inner_hello_transcript,
            early_data_key_schedule: None,
            enable_sni,
            sent_extensions: Vec::new(),
        })
    }

    /// Construct a ClientHelloPayload offering ECH.
    ///
    /// An outer hello, with a protected inner hello for the `inner_name` will be returned, and the
    /// ECH context will be updated to reflect the inner hello that was offered.
    ///
    /// If `retry_req` is `Some`, then the outer hello will be constructed for a hello retry request.
    ///
    /// If `resuming` is `Some`, then the inner hello will be constructed for a resumption handshake.
    pub(crate) fn ech_hello(
        &mut self,
        mut outer_hello: ClientHelloPayload,
        retry_req: Option<&HelloRetryRequest>,
        resuming: &Option<Retrieved<&persist::Tls13ClientSessionValue>>,
    ) -> Result<ClientHelloPayload, Error> {
        trace!(
            "Preparing ECH offer {}",
            if retry_req.is_some() { "for retry" } else { "" }
        );

        // Construct the encoded inner hello and update the transcript.
        let encoded_inner_hello = self.encode_inner_hello(&outer_hello, retry_req, resuming);

        // Complete the ClientHelloOuterAAD with an ech extension, the payload should be a placeholder
        // of size L, all zeroes. L == length of encrypting encoded client hello inner w/ the selected
        // HPKE AEAD. (sum of plaintext + tag length, typically).
        let payload_len = encoded_inner_hello.len()
            + self
                .cipher_suite
                .aead_id
                .tag_len()
                // Safety: we've already verified this AEAD is supported when loading the config
                // that was used to create the ECH context. All supported AEADs have a tag length.
                .unwrap();

        // Outer hello's created in response to a hello retry request omit the enc value.
        let enc = match retry_req.is_some() {
            true => Vec::default(),
            false => self.enc.0.clone(),
        };

        fn outer_hello_ext(ctx: &EchState, enc: Vec<u8>, payload: Vec<u8>) -> ClientExtension {
            ClientExtension::EncryptedClientHello(EncryptedClientHello::Outer(
                EncryptedClientHelloOuter {
                    cipher_suite: ctx.cipher_suite,
                    config_id: ctx.config_id,
                    enc: PayloadU16::new(enc),
                    payload: PayloadU16::new(payload),
                },
            ))
        }

        // The outer handshake is not permitted to resume a session. If we're resuming in the
        // inner handshake we remove the PSK extension from the outer hello, replacing it
        // with a GREASE PSK to implement the "ClientHello Malleability Mitigation" mentioned
        // in 10.12.3.
        if let Some(ClientExtension::PresharedKey(psk_offer)) = outer_hello.extensions.last_mut() {
            self.grease_psk(psk_offer)?;
        }

        // To compute the encoded AAD we add a placeholder extension with an empty payload.
        outer_hello
            .extensions
            .push(outer_hello_ext(self, enc.clone(), vec![0; payload_len]));

        // Next we compute the proper extension payload.
        let payload = self
            .sender
            .seal(&outer_hello.get_encoding(), &encoded_inner_hello)?;

        // And then we replace the placeholder extension with the real one.
        outer_hello.extensions.pop();
        outer_hello
            .extensions
            .push(outer_hello_ext(self, enc, payload));

        Ok(outer_hello)
    }

    /// Confirm whether an ECH offer was accepted based on examining the server hello.
    pub(crate) fn confirm_acceptance(
        self,
        ks: &mut KeyScheduleHandshakeStart,
        server_hello: &ServerHelloPayload,
        hash: &'static dyn Hash,
    ) -> Result<Option<EchAccepted>, Error> {
        // Start the inner transcript hash now that we know the hash algorithm to use.
        let inner_transcript = self
            .inner_hello_transcript
            .start_hash(hash);

        // Fork the transcript that we've started with the inner hello to use for a confirmation step.
        // We need to preserve the original inner_transcript to use if this confirmation succeeds.
        let mut confirmation_transcript = inner_transcript.clone();

        // Add the server hello confirmation - this differs from the standard server hello encoding.
        confirmation_transcript.add_message(&Self::server_hello_conf(server_hello));

        // Derive a confirmation secret from the inner hello random and the confirmation transcript.
        let derived = ks.server_ech_confirmation_secret(
            self.inner_hello_random.0.as_ref(),
            confirmation_transcript.current_hash(),
        );

        // Check that first 8 digits of the derived secret match the last 8 digits of the original
        // server random. This match signals that the server accepted the ECH offer.
        // Indexing safety: Random is [0; 32] by construction.

        match ConstantTimeEq::ct_eq(derived.as_ref(), server_hello.random.0[24..].as_ref()).into() {
            true => {
                trace!("ECH accepted by server");
                Ok(Some(EchAccepted {
                    transcript: inner_transcript,
                    random: self.inner_hello_random,
                    sent_extensions: self.sent_extensions,
                }))
            }
            false => {
                trace!("ECH rejected by server");
                Ok(None)
            }
        }
    }

    pub(crate) fn confirm_hrr_acceptance(
        &self,
        hrr: &HelloRetryRequest,
        cs: &Tls13CipherSuite,
        common: &mut CommonState,
    ) -> Result<bool, Error> {
        // The client checks for the "encrypted_client_hello" extension.
        let ech_conf = match hrr.ech() {
            // If none is found, the server has implicitly rejected ECH.
            None => return Ok(false),
            // Otherwise, if it has a length other than 8, the client aborts the
            // handshake with a "decode_error" alert.
            Some(ech_conf) if ech_conf.len() != 8 => {
                return Err({
                    common.send_fatal_alert(
                        AlertDescription::DecodeError,
                        PeerMisbehaved::IllegalHelloRetryRequestWithInvalidEch,
                    )
                })
            }
            Some(ech_conf) => ech_conf,
        };

        // Otherwise the client computes hrr_accept_confirmation as described in Section
        // 7.2.1
        let confirmation_transcript = self.inner_hello_transcript.clone();
        let mut confirmation_transcript =
            confirmation_transcript.start_hash(cs.common.hash_provider);
        confirmation_transcript.rollup_for_hrr();
        confirmation_transcript.add_message(&Self::hello_retry_request_conf(hrr));

        let derived = server_ech_hrr_confirmation_secret(
            cs.hkdf_provider,
            &self.inner_hello_random.0,
            confirmation_transcript.current_hash(),
        );

        match ConstantTimeEq::ct_eq(derived.as_ref(), ech_conf).into() {
            true => {
                trace!("ECH accepted by server in hello retry request");
                Ok(true)
            }
            false => {
                trace!("ECH rejected by server in hello retry request");
                Ok(false)
            }
        }
    }

    /// Update the ECH context inner hello transcript based on a received hello retry request message.
    ///
    /// This will start the in-progress transcript using the given `hash`, convert it into an HRR
    /// buffer, and then add the hello retry message `m`.
    pub(crate) fn transcript_hrr_update(&mut self, hash: &'static dyn Hash, m: &Message<'_>) {
        trace!("Updating ECH inner transcript for HRR");

        let inner_transcript = self
            .inner_hello_transcript
            .clone()
            .start_hash(hash);

        let mut inner_transcript_buffer = inner_transcript.into_hrr_buffer();
        inner_transcript_buffer.add_message(m);
        self.inner_hello_transcript = inner_transcript_buffer;
    }

    // 5.1 "Encoding the ClientHelloInner"
    fn encode_inner_hello(
        &mut self,
        outer_hello: &ClientHelloPayload,
        retryreq: Option<&HelloRetryRequest>,
        resuming: &Option<Retrieved<&persist::Tls13ClientSessionValue>>,
    ) -> Vec<u8> {
        // Start building an inner hello using the outer_hello as a template.
        let mut inner_hello = ClientHelloPayload {
            // Some information is copied over as-is.
            client_version: outer_hello.client_version,
            session_id: outer_hello.session_id,
            compression_methods: outer_hello.compression_methods.clone(),

            // We will build up the included extensions ourselves.
            extensions: vec![],

            // Set the inner hello random to the one we generated when creating the ECH state.
            // We hold on to the inner_hello_random in the ECH state to use later for confirming
            // whether ECH was accepted or not.
            random: self.inner_hello_random,

            // We remove the empty renegotiation info SCSV from the outer hello's ciphersuite.
            // Similar to the TLS 1.2 specific extensions we will filter out, this is seen as a
            // TLS 1.2 only feature by bogo.
            cipher_suites: outer_hello
                .cipher_suites
                .iter()
                .filter(|cs| **cs != TLS_EMPTY_RENEGOTIATION_INFO_SCSV)
                .cloned()
                .collect(),
        };

        // The inner hello will always have an inner variant of the ECH extension added.
        // See Section 6.1 rule 4.
        inner_hello
            .extensions
            .push(ClientExtension::EncryptedClientHello(
                EncryptedClientHello::Inner,
            ));

        let inner_sni = match &self.inner_name {
            // The inner hello only gets a SNI value if enable_sni is true and the inner name
            // is a domain name (not an IP address).
            ServerName::DnsName(dns_name) if self.enable_sni => Some(dns_name),
            _ => None,
        };

        // Now we consider each of the outer hello's extensions - we can either:
        // 1. Omit the extension if it isn't appropriate (e.g. is a TLS 1.2 extension).
        // 2. Add the extension to the inner hello as-is.
        // 3. Compress the extension, by collecting it into a list of to-be-compressed
        //    extensions we'll handle separately.
        let mut compressed_exts = Vec::with_capacity(outer_hello.extensions.len());
        let mut compressed_ext_types = Vec::with_capacity(outer_hello.extensions.len());
        for ext in &outer_hello.extensions {
            // Some outer hello extensions are only useful in the context where a TLS 1.3
            // connection allows TLS 1.2. This isn't the case for ECH so we skip adding them
            // to the inner hello.
            if matches!(
                ext.ext_type(),
                ExtensionType::ExtendedMasterSecret
                    | ExtensionType::SessionTicket
                    | ExtensionType::ECPointFormats
            ) {
                continue;
            }

            if ext.ext_type() == ExtensionType::ServerName {
                // We may want to replace the outer hello SNI with our own inner hello specific SNI.
                if let Some(sni_value) = inner_sni {
                    inner_hello
                        .extensions
                        .push(ClientExtension::make_sni(&sni_value.borrow()));
                }
                // We don't want to add, or compress, the SNI from the outer hello.
                continue;
            }

            // Compressed extensions need to be put aside to include in one contiguous block.
            // Uncompressed extensions get added directly to the inner hello.
            if ext.ext_type().ech_compress() {
                compressed_exts.push(ext.clone());
                compressed_ext_types.push(ext.ext_type());
            } else {
                inner_hello.extensions.push(ext.clone());
            }
        }

        // We've added all the uncompressed extensions. Now we need to add the contiguous
        // block of to-be-compressed extensions. Where we do this depends on whether the
        // last uncompressed extension is a PSK for resumption. In this case we must
        // add the to-be-compressed extensions _before_ the PSK.
        let compressed_exts_index =
            if let Some(ClientExtension::PresharedKey(_)) = inner_hello.extensions.last() {
                inner_hello.extensions.len() - 1
            } else {
                inner_hello.extensions.len()
            };
        inner_hello.extensions.splice(
            compressed_exts_index..compressed_exts_index,
            compressed_exts,
        );

        // Note which extensions we're sending in the inner hello. This may differ from
        // the outer hello (e.g. the inner hello may omit SNI while the outer hello will
        // always have the ECH cover name in SNI).
        self.sent_extensions = inner_hello
            .extensions
            .iter()
            .map(|ext| ext.ext_type())
            .collect();

        // If we're resuming, we need to update the PSK binder in the inner hello.
        if let Some(resuming) = resuming.as_ref() {
            let mut chp = HandshakeMessagePayload {
                typ: HandshakeType::ClientHello,
                payload: HandshakePayload::ClientHello(inner_hello),
            };

            // Retain the early key schedule we get from processing the binder.
            self.early_data_key_schedule = Some(tls13::fill_in_psk_binder(
                resuming,
                &self.inner_hello_transcript,
                &mut chp,
            ));

            // fill_in_psk_binder works on an owned HandshakeMessagePayload, so we need to
            // extract our inner hello back out of it to retain ownership.
            inner_hello = match chp.payload {
                HandshakePayload::ClientHello(chp) => chp,
                // Safety: we construct the HMP above and know its type unconditionally.
                _ => unreachable!(),
            };
        }

        trace!("ECH Inner Hello: {:#?}", inner_hello);

        // Encode the inner hello according to the rules required for ECH. This differs
        // from the standard encoding in several ways. Notably this is where we will
        // replace the block of contiguous to-be-compressed extensions with a marker.
        let mut encoded_hello = inner_hello.ech_inner_encoding(compressed_ext_types);

        // Calculate padding
        // max_name_len = L
        let max_name_len = self.maximum_name_length;
        let max_name_len = if max_name_len > 0 { max_name_len } else { 255 };

        let padding_len = match &self.inner_name {
            ServerName::DnsName(name) => {
                // name.len() = D
                // max(0, L - D)
                core::cmp::max(
                    0,
                    max_name_len.saturating_sub(name.as_ref().len() as u8) as usize,
                )
            }
            _ => {
                // L + 9
                // "This is the length of a "server_name" extension with an L-byte name."
                // We widen to usize here to avoid overflowing u8 + u8.
                max_name_len as usize + 9
            }
        };

        // Let L be the length of the EncodedClientHelloInner with all the padding computed so far
        // Let N = 31 - ((L - 1) % 32) and add N bytes of padding.
        let padding_len = 31 - ((encoded_hello.len() + padding_len - 1) % 32);
        encoded_hello.extend(vec![0; padding_len]);

        // Construct the inner hello message that will be used for the transcript.
        let inner_hello_msg = Message {
            version: match retryreq {
                // <https://datatracker.ietf.org/doc/html/rfc8446#section-5.1>:
                // "This value MUST be set to 0x0303 for all records generated
                //  by a TLS 1.3 implementation ..."
                Some(_) => ProtocolVersion::TLSv1_2,
                // "... other than an initial ClientHello (i.e., one not
                // generated after a HelloRetryRequest), where it MAY also be
                // 0x0301 for compatibility purposes"
                //
                // (retryreq == None means we're in the "initial ClientHello" case)
                None => ProtocolVersion::TLSv1_0,
            },
            payload: MessagePayload::handshake(HandshakeMessagePayload {
                typ: HandshakeType::ClientHello,
                payload: HandshakePayload::ClientHello(inner_hello),
            }),
        };

        // Update the inner transcript buffer with the inner hello message.
        self.inner_hello_transcript
            .add_message(&inner_hello_msg);

        encoded_hello
    }

    // See https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#name-grease-psk
    fn grease_psk(&self, psk_offer: &mut PresharedKeyOffer) -> Result<(), Error> {
        for ident in psk_offer.identities.iter_mut() {
            // "For each PSK identity advertised in the ClientHelloInner, the
            // client generates a random PSK identity with the same length."
            self.secure_random
                .fill(&mut ident.identity.0)?;
            // "It also generates a random, 32-bit, unsigned integer to use as
            // the obfuscated_ticket_age."
            let mut ticket_age = [0_u8; 4];
            self.secure_random
                .fill(&mut ticket_age)?;
            ident.obfuscated_ticket_age = u32::from_be_bytes(ticket_age);
        }

        // "Likewise, for each inner PSK binder, the client generates a random string
        // of the same length."
        psk_offer.binders = psk_offer
            .binders
            .iter()
            .map(|old_binder| {
                // We can't access the wrapped binder PresharedKeyBinder's PayloadU8 mutably,
                // so we construct new PresharedKeyBinder's from scratch with the same length.
                let mut new_binder = vec![0; old_binder.as_ref().len()];
                self.secure_random
                    .fill(&mut new_binder)?;
                Ok::<PresharedKeyBinder, Error>(PresharedKeyBinder::from(new_binder))
            })
            .collect::<Result<_, _>>()?;
        Ok(())
    }

    fn server_hello_conf(server_hello: &ServerHelloPayload) -> Message<'_> {
        Self::ech_conf_message(HandshakeMessagePayload {
            typ: HandshakeType::ServerHello,
            payload: HandshakePayload::ServerHello(server_hello.clone()),
        })
    }

    fn hello_retry_request_conf(retry_req: &HelloRetryRequest) -> Message<'_> {
        Self::ech_conf_message(HandshakeMessagePayload {
            typ: HandshakeType::HelloRetryRequest,
            payload: HandshakePayload::HelloRetryRequest(retry_req.clone()),
        })
    }

    fn ech_conf_message(hmp: HandshakeMessagePayload<'_>) -> Message<'_> {
        let mut hmp_encoded = Vec::new();
        hmp.payload_encode(&mut hmp_encoded, Encoding::EchConfirmation);
        Message {
            version: ProtocolVersion::TLSv1_3,
            payload: MessagePayload::Handshake {
                encoded: Payload::new(hmp_encoded),
                parsed: hmp,
            },
        }
    }
}

/// Returned from EchState::check_acceptance when the server has accepted the ECH offer.
///
/// Holds the state required to continue the handshake with the inner hello from the ECH offer.
pub(crate) struct EchAccepted {
    pub(crate) transcript: HandshakeHash,
    pub(crate) random: Random,
    pub(crate) sent_extensions: Vec<ExtensionType>,
}

pub(crate) fn fatal_alert_required(
    retry_configs: Option<Vec<EchConfigPayload>>,
    common: &mut CommonState,
) -> Error {
    common.send_fatal_alert(
        AlertDescription::EncryptedClientHelloRequired,
        PeerIncompatible::ServerRejectedEncryptedClientHello(retry_configs),
    )
}