1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
// This file is part of ICU4X.
//
// The contents of this file implement algorithms from Calendrical Calculations
// by Reingold & Dershowitz, Cambridge University Press, 4th edition (2018),
// which have been released as Lisp code at <https://github.com/EdReingold/calendar-code2/>
// under the Apache-2.0 license. Accordingly, this file is released under
// the Apache License, Version 2.0 which can be found at the calendrical_calculations
// package root or at http://www.apache.org/licenses/LICENSE-2.0.
use core::fmt;
use core::ops::{Add, AddAssign, Sub, SubAssign};
#[allow(unused_imports)]
use core_maths::*;
/// The *Rata Die*, or *R.D.*, or `fixed_date`: number of days since January 1, 1 CE.
///
/// See: <https://en.wikipedia.org/wiki/Rata_Die>
///
/// It is a logic error to construct a RataDie
/// except from a date that is in range of one of the official calendars.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct RataDie(i64);
impl RataDie {
/// Create a RataDie
pub const fn new(fixed_date: i64) -> Self {
let result = Self(fixed_date);
#[cfg(debug_assertions)]
result.check();
result
}
/// Check that it is in range
#[cfg(debug_assertions)]
pub const fn check(&self) {
if self.0 > i64::MAX / 256 {
debug_assert!(
false,
"RataDie is not designed to store values near to the overflow boundary"
);
}
if self.0 < i64::MIN / 256 {
debug_assert!(
false,
"RataDie is not designed to store values near to the overflow boundary"
);
}
}
/// A valid RataDie that is intended to be below all dates representable in calendars
///
/// For testing only
#[doc(hidden)]
pub const fn big_negative() -> Self {
Self::new(i64::MIN / 256 / 256)
}
/// Convert this to an i64 value representing the RataDie
pub const fn to_i64_date(self) -> i64 {
self.0
}
/// Convert this to an f64 value representing the RataDie
pub const fn to_f64_date(self) -> f64 {
self.0 as f64
}
/// Calculate the number of days between two RataDie in a const-friendly way
pub const fn const_diff(self, rhs: Self) -> i64 {
self.0 - rhs.0
}
/// Convert this to a [`Moment`]
pub const fn as_moment(&self) -> Moment {
Moment::new(self.0 as f64)
}
}
impl fmt::Debug for RataDie {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let rd = self.0;
if let Ok((y, m, d)) = crate::iso::iso_from_fixed(*self) {
write!(f, "{rd} R.D. ({y}-{m:02}-{d:02})")
} else {
write!(f, "{rd} R.D. (out of bounds)")
}
}
}
/// Shift a RataDie N days into the future
impl Add<i64> for RataDie {
type Output = Self;
fn add(self, rhs: i64) -> Self::Output {
let result = Self(self.0 + rhs);
#[cfg(debug_assertions)]
result.check();
result
}
}
impl AddAssign<i64> for RataDie {
fn add_assign(&mut self, rhs: i64) {
self.0 += rhs;
#[cfg(debug_assertions)]
self.check();
}
}
/// Shift a RataDie N days into the past
impl Sub<i64> for RataDie {
type Output = Self;
fn sub(self, rhs: i64) -> Self::Output {
let result = Self(self.0 - rhs);
#[cfg(debug_assertions)]
result.check();
result
}
}
impl SubAssign<i64> for RataDie {
fn sub_assign(&mut self, rhs: i64) {
self.0 -= rhs;
#[cfg(debug_assertions)]
self.check();
}
}
/// Calculate the number of days between two RataDie
impl Sub for RataDie {
type Output = i64;
fn sub(self, rhs: Self) -> Self::Output {
self.0 - rhs.0
}
}
/// A moment is a RataDie with a fractional part giving the time of day.
///
/// NOTE: This should not cause overflow errors for most cases, but consider
/// alternative implementations if necessary.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
pub struct Moment(f64);
/// Add a number of days to a Moment
impl Add<f64> for Moment {
type Output = Self;
fn add(self, rhs: f64) -> Self::Output {
Self(self.0 + rhs)
}
}
impl AddAssign<f64> for Moment {
fn add_assign(&mut self, rhs: f64) {
self.0 += rhs;
}
}
/// Subtract a number of days from a Moment
impl Sub<f64> for Moment {
type Output = Self;
fn sub(self, rhs: f64) -> Self::Output {
Self(self.0 - rhs)
}
}
impl SubAssign<f64> for Moment {
fn sub_assign(&mut self, rhs: f64) {
self.0 -= rhs;
}
}
/// Calculate the number of days between two moments
impl Sub for Moment {
type Output = f64;
fn sub(self, rhs: Self) -> Self::Output {
self.0 - rhs.0
}
}
impl Moment {
/// Create a new moment
pub const fn new(value: f64) -> Moment {
Moment(value)
}
/// Get the inner field of a Moment
pub const fn inner(&self) -> f64 {
self.0
}
/// Get the RataDie of a Moment
pub fn as_rata_die(&self) -> RataDie {
RataDie::new(self.0.floor() as i64)
}
}
#[test]
fn test_moment_to_rata_die_conversion() {
for i in -1000..=1000 {
let moment = Moment::new(i as f64);
let rata_die = moment.as_rata_die();
assert_eq!(rata_die.to_i64_date(), i);
}
}