1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use crate::classify;
use crate::expr::Expr;
use crate::precedence::Precedence;

pub(crate) struct FixupContext {
    // Print expression such that it can be parsed back as a statement
    // consisting of the original expression.
    //
    // The effect of this is for binary operators in statement position to set
    // `leftmost_subexpression_in_stmt` when printing their left-hand operand.
    //
    //     (match x {}) - 1;  // match needs parens when LHS of binary operator
    //
    //     match x {};  // not when its own statement
    //
    #[cfg(feature = "full")]
    stmt: bool,

    // This is the difference between:
    //
    //     (match x {}) - 1;  // subexpression needs parens
    //
    //     let _ = match x {} - 1;  // no parens
    //
    // There are 3 distinguishable contexts in which `print_expr` might be
    // called with the expression `$match` as its argument, where `$match`
    // represents an expression of kind `ExprKind::Match`:
    //
    //   - stmt=false leftmost_subexpression_in_stmt=false
    //
    //     Example: `let _ = $match - 1;`
    //
    //     No parentheses required.
    //
    //   - stmt=false leftmost_subexpression_in_stmt=true
    //
    //     Example: `$match - 1;`
    //
    //     Must parenthesize `($match)`, otherwise parsing back the output as a
    //     statement would terminate the statement after the closing brace of
    //     the match, parsing `-1;` as a separate statement.
    //
    //   - stmt=true leftmost_subexpression_in_stmt=false
    //
    //     Example: `$match;`
    //
    //     No parentheses required.
    #[cfg(feature = "full")]
    leftmost_subexpression_in_stmt: bool,

    // Print expression such that it can be parsed as a match arm.
    //
    // This is almost equivalent to `stmt`, but the grammar diverges a tiny bit
    // between statements and match arms when it comes to braced macro calls.
    // Macro calls with brace delimiter terminate a statement without a
    // semicolon, but do not terminate a match-arm without comma.
    //
    //     m! {} - 1;  // two statements: a macro call followed by -1 literal
    //
    //     match () {
    //         _ => m! {} - 1,  // binary subtraction operator
    //     }
    //
    #[cfg(feature = "full")]
    match_arm: bool,

    // This is almost equivalent to `leftmost_subexpression_in_stmt`, other than
    // for braced macro calls.
    //
    // If we have `m! {} - 1` as an expression, the leftmost subexpression
    // `m! {}` will need to be parenthesized in the statement case but not the
    // match-arm case.
    //
    //     (m! {}) - 1;  // subexpression needs parens
    //
    //     match () {
    //         _ => m! {} - 1,  // no parens
    //     }
    //
    #[cfg(feature = "full")]
    leftmost_subexpression_in_match_arm: bool,

    // This is the difference between:
    //
    //     if let _ = (Struct {}) {}  // needs parens
    //
    //     match () {
    //         () if let _ = Struct {} => {}  // no parens
    //     }
    //
    #[cfg(feature = "full")]
    parenthesize_exterior_struct_lit: bool,

    // This is the difference between:
    //
    //     let _ = 1 + return 1;  // no parens if rightmost subexpression
    //
    //     let _ = 1 + (return 1) + 1;  // needs parens
    //
    #[cfg(feature = "full")]
    parenthesize_exterior_jump: bool,

    // This is the difference between:
    //
    //     let _ = (return) - 1;  // without paren, this would return -1
    //
    //     let _ = return + 1;  // no paren because '+' cannot begin expr
    //
    #[cfg(feature = "full")]
    next_operator_can_begin_expr: bool,

    // This is the difference between:
    //
    //     let _ = x as u8 + T;
    //
    //     let _ = (x as u8) < T;
    //
    // Without parens, the latter would want to parse `u8<T...` as a type.
    next_operator_can_begin_generics: bool,
}

impl FixupContext {
    /// The default amount of fixing is minimal fixing. Fixups should be turned
    /// on in a targeted fashion where needed.
    pub const NONE: Self = FixupContext {
        #[cfg(feature = "full")]
        stmt: false,
        #[cfg(feature = "full")]
        leftmost_subexpression_in_stmt: false,
        #[cfg(feature = "full")]
        match_arm: false,
        #[cfg(feature = "full")]
        leftmost_subexpression_in_match_arm: false,
        #[cfg(feature = "full")]
        parenthesize_exterior_struct_lit: false,
        #[cfg(feature = "full")]
        parenthesize_exterior_jump: false,
        #[cfg(feature = "full")]
        next_operator_can_begin_expr: false,
        next_operator_can_begin_generics: false,
    };

    /// Create the initial fixup for printing an expression in statement
    /// position.
    #[cfg(feature = "full")]
    pub fn new_stmt() -> Self {
        FixupContext {
            stmt: true,
            ..FixupContext::NONE
        }
    }

    /// Create the initial fixup for printing an expression as the right-hand
    /// side of a match arm.
    #[cfg(feature = "full")]
    pub fn new_match_arm() -> Self {
        FixupContext {
            match_arm: true,
            ..FixupContext::NONE
        }
    }

    /// Create the initial fixup for printing an expression as the "condition"
    /// of an `if` or `while`. There are a few other positions which are
    /// grammatically equivalent and also use this, such as the iterator
    /// expression in `for` and the scrutinee in `match`.
    #[cfg(feature = "full")]
    pub fn new_condition() -> Self {
        FixupContext {
            parenthesize_exterior_struct_lit: true,
            ..FixupContext::NONE
        }
    }

    /// Transform this fixup into the one that should apply when printing the
    /// leftmost subexpression of the current expression.
    ///
    /// The leftmost subexpression is any subexpression that has the same first
    /// token as the current expression, but has a different last token.
    ///
    /// For example in `$a + $b` and `$a.method()`, the subexpression `$a` is a
    /// leftmost subexpression.
    ///
    /// Not every expression has a leftmost subexpression. For example neither
    /// `-$a` nor `[$a]` have one.
    pub fn leftmost_subexpression(self) -> Self {
        FixupContext {
            #[cfg(feature = "full")]
            stmt: false,
            #[cfg(feature = "full")]
            leftmost_subexpression_in_stmt: self.stmt || self.leftmost_subexpression_in_stmt,
            #[cfg(feature = "full")]
            match_arm: false,
            #[cfg(feature = "full")]
            leftmost_subexpression_in_match_arm: self.match_arm
                || self.leftmost_subexpression_in_match_arm,
            #[cfg(feature = "full")]
            parenthesize_exterior_jump: true,
            ..self
        }
    }

    /// Transform this fixup into the one that should apply when printing a
    /// leftmost subexpression followed by a `.` or `?` token, which confer
    /// different statement boundary rules compared to other leftmost
    /// subexpressions.
    pub fn leftmost_subexpression_with_dot(self) -> Self {
        FixupContext {
            #[cfg(feature = "full")]
            stmt: self.stmt || self.leftmost_subexpression_in_stmt,
            #[cfg(feature = "full")]
            leftmost_subexpression_in_stmt: false,
            #[cfg(feature = "full")]
            match_arm: self.match_arm || self.leftmost_subexpression_in_match_arm,
            #[cfg(feature = "full")]
            leftmost_subexpression_in_match_arm: false,
            #[cfg(feature = "full")]
            parenthesize_exterior_jump: true,
            ..self
        }
    }

    /// Transform this fixup into the one that should apply when printing a
    /// leftmost subexpression followed by punctuation that is legal as the
    /// first token of an expression.
    pub fn leftmost_subexpression_with_begin_operator(
        self,
        #[cfg(feature = "full")] next_operator_can_begin_expr: bool,
        next_operator_can_begin_generics: bool,
    ) -> Self {
        FixupContext {
            #[cfg(feature = "full")]
            next_operator_can_begin_expr,
            next_operator_can_begin_generics,
            ..self.leftmost_subexpression()
        }
    }

    /// Transform this fixup into the one that should apply when printing any
    /// subexpression that is neither a leftmost subexpression nor surrounded in
    /// delimiters.
    ///
    /// This is for any subexpression that has a different first token than the
    /// current expression, and is not surrounded by a paren/bracket/brace. For
    /// example the `$b` in `$a + $b` and `-$b`, but not the one in `[$b]` or
    /// `$a.f($b)`.
    pub fn subsequent_subexpression(self) -> Self {
        FixupContext {
            #[cfg(feature = "full")]
            stmt: false,
            #[cfg(feature = "full")]
            leftmost_subexpression_in_stmt: false,
            #[cfg(feature = "full")]
            match_arm: false,
            #[cfg(feature = "full")]
            leftmost_subexpression_in_match_arm: false,
            ..self
        }
    }

    /// Determine whether parentheses are needed around the given expression to
    /// head off an unintended statement boundary.
    ///
    /// The documentation on `FixupContext::leftmost_subexpression_in_stmt` has
    /// examples.
    #[cfg(feature = "full")]
    pub fn would_cause_statement_boundary(self, expr: &Expr) -> bool {
        (self.leftmost_subexpression_in_stmt && !classify::requires_semi_to_be_stmt(expr))
            || ((self.stmt || self.leftmost_subexpression_in_stmt) && matches!(expr, Expr::Let(_)))
            || (self.leftmost_subexpression_in_match_arm
                && !classify::requires_comma_to_be_match_arm(expr))
    }

    /// Determine whether parentheses are needed around the given `let`
    /// scrutinee.
    ///
    /// In `if let _ = $e {}`, some examples of `$e` that would need parentheses
    /// are:
    ///
    ///   - `Struct {}.f()`, because otherwise the `{` would be misinterpreted
    ///     as the opening of the if's then-block.
    ///
    ///   - `true && false`, because otherwise this would be misinterpreted as a
    ///     "let chain".
    #[cfg(feature = "full")]
    pub fn needs_group_as_let_scrutinee(self, expr: &Expr) -> bool {
        self.parenthesize_exterior_struct_lit && classify::confusable_with_adjacent_block(expr)
            || self.trailing_precedence(expr) < Precedence::Let
    }

    /// Determines the effective precedence of a left subexpression. Some
    /// expressions have lower precedence when adjacent to particular operators.
    pub fn leading_precedence(self, expr: &Expr) -> Precedence {
        #[cfg(feature = "full")]
        if self.next_operator_can_begin_expr {
            // Decrease precedence of value-less jumps when followed by an
            // operator that would otherwise get interpreted as beginning a
            // value for the jump.
            if let Expr::Break(_) | Expr::Return(_) | Expr::Yield(_) = expr {
                return Precedence::Jump;
            }
        }
        self.precedence(expr)
    }

    /// Determines the effective precedence of a right subexpression. Some
    /// expressions have higher precedence on the right side of a binary
    /// operator than on the left.
    pub fn trailing_precedence(self, expr: &Expr) -> Precedence {
        #[cfg(feature = "full")]
        if !self.parenthesize_exterior_jump {
            match expr {
                // Increase precedence of expressions that extend to the end of
                // current statement or group.
                Expr::Break(_)
                | Expr::Closure(_)
                | Expr::Let(_)
                | Expr::Return(_)
                | Expr::Yield(_) => {
                    return Precedence::Prefix;
                }
                Expr::Range(e) if e.start.is_none() => return Precedence::Prefix,
                _ => {}
            }
        }
        self.precedence(expr)
    }

    fn precedence(self, expr: &Expr) -> Precedence {
        if self.next_operator_can_begin_generics {
            if let Expr::Cast(cast) = expr {
                if classify::trailing_unparameterized_path(&cast.ty) {
                    return Precedence::MIN;
                }
            }
        }
        Precedence::of(expr)
    }
}

impl Copy for FixupContext {}

impl Clone for FixupContext {
    fn clone(&self) -> Self {
        *self
    }
}