1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/* Copyright 2013 Jeff Muizelaar
 *
 * Use of this source code is governed by a MIT-style license that can be
 * found in the LICENSE file.
 *
 * Portions Copyright 2006 The Android Open Source Project
 *
 * Use of that source code is governed by a BSD-style license that can be
 * found in the LICENSE.skia file.
 */


use typed_arena::Arena;

use crate::{IntRect, Point};
use crate::blitter::RasterBlitter;
use crate::path_builder::Winding;
use crate::geom::intrect;

use std::ptr::NonNull;

// One reason to have separate Edge/ActiveEdge is reduce the
// memory usage of inactive edges. On the other hand
// managing the lifetime of ActiveEdges is a lot
// trickier than Edges. Edges can stay alive for the entire
// rasterization. ActiveEdges will come and go in a much
// less predictable order. On the other hand having the
// ActiveEdges close together in memory would help
// avoid cache misses. If we did switch to having separate
// active edges it might be wise to store the active edges
// in an array instead of as a linked list. This will work
// well for the bubble sorting, but will cause more problems
// for insertion.

struct Edge {
    //XXX: it is probably worth renaming this to top and bottom
    x1: Dot2,
    y1: Dot2,
    x2: Dot2,
    y2: Dot2,
    control_x: Dot2,
    control_y: Dot2,
}

// Fixed point representation:
// We use 30.2 for the end points and 16.16 for the intermediate
// results. I believe this essentially limits us to a 16.16 space.
//
// Prior Work:
// - Cairo used to be 16.16 but switched to 24.8. Cairo converts paths
//   early to this fixed representation
// - Fitz uses different precision depending on the AA settings
//   and uses the following Bresenham style adjustment in its step function
//   to avoid having to worry about intermediate precision
//       edge->x += edge->xmove;
//       edge->e += edge->adj_up;
//       if (edge->e > 0) {
//           edge->x += edge->xdir;
//           edge->e -= edge->adj_down;
//       }

/// 16.16 fixed point representation.
type Dot16 = i32;
/// 30.2 fixed point representation.
type Dot2 = i32;
/// 26.6 fixed point representation.
type Dot6 = i32;
/// A "sliding fixed point" representation 16.16 >> shift.
type ShiftedDot16 = i32;


fn div_fixed16_fixed16(a: Dot16, b: Dot16) -> Dot16 {
    (((a as i64) << 16) / (b as i64)) as i32
}

#[inline]
fn dot2_to_dot16(val: Dot2) -> Dot16 {
    val << (16 - SAMPLE_SHIFT)
}

#[inline]
fn dot16_to_dot2(val: Dot2) -> Dot16 {
    val >> (16 - SAMPLE_SHIFT)
}

#[inline]
fn dot2_to_int(val: Dot2) -> i32 {
    val >> SAMPLE_SHIFT
}

#[inline]
fn int_to_dot2(val: i32) -> Dot2 {
    val << SAMPLE_SHIFT
}

#[inline]
fn f32_to_dot2(val: f32) -> Dot2 {
    (val * SAMPLE_SIZE) as i32
}

#[inline]
fn dot2_to_dot6(val: Dot2) -> Dot6 {
    val << 4
}

// it is possible to fit this into 64 bytes on x86-64
// with the following layout:
//
// 4 x2,y2
// 8 next
// 6*4 slope_x,fullx,next_x,next_y, old_x,old_y
// 4*4 dx,ddx,dy,ddy
// 2 cury
// 1 count
// 1 shift
//
// some example counts 5704 curves, 1720 lines 7422 edges
pub struct ActiveEdge {
    x2: Dot2,
    y2: Dot2,
    next: Option<NonNull<ActiveEdge>>,
    slope_x: Dot16,
    fullx: Dot16,
    next_x: Dot16,
    next_y: Dot16,

    dx: Dot16,
    ddx: ShiftedDot16,
    dy: Dot16,
    ddy: ShiftedDot16,

    old_x: Dot16,
    old_y: Dot16,

    // Shift is used to "scale" how fast we move along the quadratic curve.
    // The key is that we scale dx and dy by the same amount so it doesn't need to have a physical unit
    // as long as it doesn't overshoot.
    // shift isdiv_fixed16_fixed16 probably also needed to balance number of bits that we need and make sure we don't
    // overflow the 32 bits we have.
    // It looks like some of quantities are stored in a "sliding fixed point" representation where the
    // point depends on the shift.
    shift: i32,
    // we need to use count so that we make sure that we always line the last point up
    // exactly. i.e. we don't have a great way to know when we're at the end implicitly.
    count: i32,
    winding: i8, // the direction of the edge
}

impl ActiveEdge {
    fn new() -> ActiveEdge {
        ActiveEdge {
            x2: 0,
            y2: 0,
            next: None,
            slope_x: 0,
            fullx: 0,
            next_x: 0,
            next_y: 0,
            dx: 0,
            ddx: 0,
            dy: 0,
            ddy: 0,
            old_x: 0,
            old_y: 0,
            shift: 0,
            count: 0,
            winding: 0,
        }
    }

    // we want this to inline into step_edges() to
    // avoid the call overhead
    fn step(&mut self, cury: Dot2) {
        // if we have a shift that means we have a curve
        if self.shift != 0 {
            if cury >= dot16_to_dot2(self.next_y) {
                self.old_y = self.next_y;
                self.old_x = self.next_x;
                self.fullx = self.next_x;
                // increment until we have a next_y that's greater
                while self.count > 0 && cury >= dot16_to_dot2(self.next_y) {
                    self.next_x += self.dx >> self.shift;
                    self.dx += self.ddx;
                    self.next_y += self.dy >> self.shift;
                    self.dy += self.ddy;
                    self.count -= 1;
                }
                if self.count == 0 {
                    // for the last line sgement we can
                    // just set next_y,x to the end point
                    self.next_y = dot2_to_dot16(self.y2);
                    self.next_x = dot2_to_dot16(self.x2);
                }
                // update slope if we're going to be using it
                // we want to avoid dividing by 0 which can happen if we exited the loop above early
                if (cury + 1) < self.y2 {
                    self.slope_x = div_fixed16_fixed16(self.next_x - self.old_x, self.next_y - self.old_y) >> 2;
                }
            }
            self.fullx += self.slope_x;
        } else {
            // XXX: look into bresenham to control error here
            self.fullx += self.slope_x;
        }
    }
}



pub struct Rasterizer {
    edge_starts: Vec<Option<NonNull<ActiveEdge>>>,
    width: i32,
    height: i32,
    cur_y: Dot2,

    // we use this rect to track the bounds of the added edges
    bounds_top: i32,
    bounds_bottom: i32,
    bounds_left: i32,
    bounds_right: i32,

    active_edges: Option<NonNull<ActiveEdge>>,

    edge_arena: Arena<ActiveEdge>,
}

impl Rasterizer {
    pub fn new(width: i32, height: i32) -> Rasterizer {
        let mut edge_starts = Vec::new();
        for _ in 0..int_to_dot2(height) {
            edge_starts.push(None);
        }
        Rasterizer {
            width: int_to_dot2(width),
            height: int_to_dot2(height),
            bounds_right: 0,
            bounds_left: width,
            bounds_top: height,
            bounds_bottom: 0,
            cur_y: 0,
            edge_starts,
            edge_arena: Arena::new(),
            active_edges: None,
        }
    }
}

// A cheap version of the "Alpha max plus beta min" algorithm (⍺=1, β=0.5)
fn cheap_distance(mut dx: Dot6, mut dy: Dot6) -> Dot6 {
    dx = dx.abs();
    dy = dy.abs();
    // return max + min/2
    if dx > dy {
        dx + (dy >> 1)
    } else {
        dy + (dx >> 1)
    }
}

fn diff_to_shift(dx: Dot6, dy: Dot6) -> i32 {
    // cheap calc of distance from center of p0-p2 to the center of the curve
    let mut dist = cheap_distance(dx, dy);

    // shift down dist (it is currently in dot6)
    // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
    // this is chosen by heuristic: make it as big as possible (to minimize segments)
    // ... but small enough so that our curves still look smooth
    dist = (dist + (1 << 4)) >> 5;

    // each subdivision (shift value) cuts this dist (error) by 1/4
    (32 - ((dist as u32).leading_zeros()) as i32) >> 1
}

// this metric is taken from skia
fn compute_curve_steps(e: &Edge) -> i32 {
    let dx = e.control_x * 2 - e.x1 - e.x2;
    let dy = e.control_y * 2 - e.y1 - e.y2;
    let shift = diff_to_shift(dot2_to_dot6(dx), dot2_to_dot6(dy));
    assert!(shift >= 0);

    shift
}

const SAMPLE_SIZE: f32 = (1 << SAMPLE_SHIFT) as f32;
pub const SAMPLE_SHIFT: i32 = 2;

/*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
    Note that this limits the number of lines we use to approximate a curve.
    If we need to increase this, we need to store fCurveCount in something
    larger than int8_t.
*/
const MAX_COEFF_SHIFT: i32 = 6;

// An example number of edges is 7422 but
// can go as high as edge count: 374640
// with curve count: 67680
impl Rasterizer {

    // Overflow:
    // cairo just does _cairo_fixed_from_double (x) which ends up having some
    // weird behaviour around overflow because of the double to fixed conversion trick that it does.

    // Fitz clips edges to the bounding box
    #[allow(non_snake_case)]
    pub fn add_edge(&mut self, mut start: Point, mut end: Point, curve: bool, control: Point) {
        if curve {
            //println!("add_edge {}, {} - {}, {} - {}, {}", start.x, start.y, control.x, control.y, end.x, end.y);
        } else {
            //println!("add_edge {}, {} - {}, {}", start.x, start.y, end.x, end.y);
        }
        // order the points from top to bottom

        // how do we deal with edges to the right and left of the canvas?
        let e = self.edge_arena.alloc(ActiveEdge::new());
        if end.y < start.y {
            std::mem::swap(&mut start, &mut end);
            e.winding = -1;
        } else {
            e.winding = 1;
        }
        let edge = Edge {
            x1: f32_to_dot2(start.x),
            y1: f32_to_dot2(start.y),
            control_x: f32_to_dot2(control.x),
            control_y: f32_to_dot2(control.y),
            x2: f32_to_dot2(end.x),
            y2: f32_to_dot2(end.y),
        };
        e.x2 = edge.x2;
        e.y2 = edge.y2;

        e.next = None;
        //e.curx = e.edge.x1;
        let mut cury = edge.y1;
        e.fullx = dot2_to_dot16(edge.x1);

        // if the edge is completely above or completely below we can drop it
        if edge.y2 < 0 || edge.y1 >= self.height {
            return;
        }

        // drop horizontal edges
        if cury >= e.y2 {
            return;
        }

        self.bounds_top = self.bounds_top.min(dot2_to_int(edge.y1));
        self.bounds_bottom = self.bounds_bottom.max(dot2_to_int(edge.y2 + 3));

        self.bounds_left = self.bounds_left.min(dot2_to_int(edge.x1));
        self.bounds_left = self.bounds_left.min(dot2_to_int(edge.x2));

        self.bounds_right = self.bounds_right.max(dot2_to_int(edge.x1 + 3));
        self.bounds_right = self.bounds_right.max(dot2_to_int(edge.x2 + 3));

        if curve {
            self.bounds_left = self.bounds_left.min(dot2_to_int(edge.control_x));
            self.bounds_right = self.bounds_right.max(dot2_to_int(edge.control_x + 3));

            // Based on Skia
            // we'll iterate t from 0..1 (0-256)
            // range of A is 4 times coordinate-range
            // we can get more accuracy here by using the input points instead of the rounded versions
            // A is derived from `dot2_to_dot16(2 * (from - 2 * ctrl + to))`, it is the second derivative of the
            // quadratic bézier.
            let mut A = (edge.x1 - edge.control_x - edge.control_x + edge.x2) << (15 - SAMPLE_SHIFT);
            let mut B = edge.control_x - edge.x1; // The derivative at the start of the curve is 2 * (ctrl - from).
            //let mut C = edge.x1;
            let mut shift = compute_curve_steps(&edge);

            if shift == 0 {
                shift = 1;
            } else if shift > MAX_COEFF_SHIFT {
                shift = MAX_COEFF_SHIFT;
            }
            e.shift = shift;
            e.count = 1 << shift;
            e.dx = 2 * (A >> shift) + 2 * B * (1 << (16 - SAMPLE_SHIFT));
            e.ddx = 2 * (A >> (shift - 1));

            A = (edge.y1 - edge.control_y - edge.control_y + edge.y2) << (15 - SAMPLE_SHIFT);
            B = edge.control_y - edge.y1;
            //C = edge.y1;
            e.dy = 2 * (A >> shift) + 2 * B * (1 << (16 - SAMPLE_SHIFT));
            e.ddy = 2 * (A >> (shift - 1));

            // compute the first next_x,y
            e.count -= 1;
            e.next_x = (e.fullx) + (e.dx >> e.shift);
            e.next_y = (cury * (1 << (16 - SAMPLE_SHIFT))) + (e.dy >> e.shift);
            e.dx += e.ddx;
            e.dy += e.ddy;

            // skia does this part in UpdateQuad. unfortunately we duplicate it
            while e.count > 0 && cury >= dot16_to_dot2(e.next_y) {
                e.next_x += e.dx >> shift;
                e.dx += e.ddx;
                e.next_y += e.dy >> shift;
                e.dy += e.ddy;
                e.count -= 1;
            }
            if e.count == 0 {
                e.next_y = dot2_to_dot16(edge.y2);
                e.next_x = dot2_to_dot16(edge.x2);
            }
            e.slope_x = (e.next_x - (e.fullx)) / dot16_to_dot2(e.next_y - dot2_to_dot16(cury));
        } else {
            e.shift = 0;
            e.slope_x = (edge.x2 - edge.x1) * (1 << (16 - SAMPLE_SHIFT)) / (edge.y2 - edge.y1);
        }

        if cury < 0 {
            // XXX: we could compute an intersection with the top and bottom so we don't need to step them into view
            // for curves we can just step them into place.
            while cury < 0 {
                e.step(cury);
                cury += 1;
            }

            // cury was adjusted so check again for horizontal edges
            if cury >= e.y2 {
                return;
            }
        }

        // add to the beginning of the edge start list
        // if edges are added from left to right
        // they'll be in this list from right to left
        // this works out later during insertion
        e.next = self.edge_starts[cury as usize];
        self.edge_starts[cury as usize] = Some(NonNull::from(e));
    }

    fn step_edges(&mut self) {
        let mut prev_ptr = &mut self.active_edges as *mut _;
        let mut edge = self.active_edges;
        let cury = self.cur_y; // avoid any aliasing problems
        while let Some(mut e_ptr) = edge {
            let e = unsafe { e_ptr.as_mut() };
            e.step(cury);
            // avoid aliasing between edge->next and prev_ptr so that we can reuse next
            let next = e.next;
            // remove any finished edges
            if (cury + 1) >= e.y2 {
                // remove from active list
                unsafe { *prev_ptr = next };
            } else {
                prev_ptr = &mut e.next;
            }
            edge = next;
        }
    }
    /*
        int comparisons;
        static inline void dump_edges(ActiveEdge *e)
        {
        while (e) {
        printf("%d ", e.fullx);
        e = e.next;
        }
        printf("\n");
        }
    */
    // Insertion sort the new edges into the active list
    // The new edges could be showing up at any x coordinate
    // but existing active edges will be sorted.
    //
    // Merge in the new edges. Since both lists are sorted we can do
    // this in a single pass.
    // Note: we could do just O(1) append the list of new active edges
    // to the existing active edge list, but then we'd have to sort
    // the entire resulting list
    fn insert_starting_edges(&mut self) {
        let mut new_edges: Option<NonNull<ActiveEdge>> = None;
        let mut edge = self.edge_starts[self.cur_y as usize];
        // insertion sort all of the new edges
        while let Some(mut e_ptr) = edge {
            let e = unsafe { e_ptr.as_mut() };
            let mut prev_ptr = &mut new_edges as *mut _;
            let mut new = new_edges;
            while let Some(mut new_ptr) = new {
                let a = unsafe { new_ptr.as_mut() };
                if e.fullx <= a.fullx {
                    break;
                }
                // comparisons++;
                prev_ptr = &mut a.next;
                new = a.next;
            }
            edge = e.next;
            e.next = new;
            unsafe { *prev_ptr = Some(e_ptr) };
        }

        // merge the sorted new_edges into active_edges
        let mut prev_ptr = &mut self.active_edges as *mut _;
        let mut active = self.active_edges;
        let mut edge = new_edges;
        while let Some(mut e_ptr) = edge {
            let e = unsafe { e_ptr.as_mut() };
            while let Some(mut a_ptr) = active {
                let a = unsafe { a_ptr.as_mut() };
                if e.fullx <= a.fullx {
                    break;
                }

                // comparisons++;
                prev_ptr = &mut a.next;
                active = a.next;
            }
            edge = e.next;
            e.next = active;
            let next_prev_ptr = &mut e.next as *mut _;
            unsafe { *prev_ptr = Some(e_ptr) };
            prev_ptr = next_prev_ptr;
        }
    }

    // Skia does stepping and scanning of edges in a single
    // pass over the edge list.
    fn scan_edges(&mut self, blitter: &mut dyn RasterBlitter, winding_mode: Winding) {
        let mut edge = self.active_edges;
        let mut winding = 0;

        // handle edges that begin to the left of the bitmap
        while let Some(mut e_ptr) = edge {
            let e = unsafe { e_ptr.as_mut() };
            if e.fullx >= 0 {
                break;
            }
            winding += e.winding as i32;
            edge = e.next;
        }

        let mut prevx = 0;
        while let Some(mut e_ptr) = edge {
            let e = unsafe { e_ptr.as_mut() };

            let inside = match winding_mode {
                Winding::EvenOdd => winding & 1 != 0,
                Winding::NonZero => winding != 0,
            };

            if inside {
                blitter.blit_span(
                    self.cur_y,
                    dot16_to_dot2(prevx + (1 << (15 - SAMPLE_SHIFT))),
                    dot16_to_dot2(e.fullx + (1 << (15 - SAMPLE_SHIFT))),
                );
            }

            if dot16_to_dot2(e.fullx) >= self.width {
                break;
            }
            winding += e.winding as i32;
            prevx = e.fullx;
            edge = e.next;
        }

        // we don't need to worry about any edges beyond width
    }

    // You may have heard that one should never use a bubble sort.
    // However in our situation a bubble sort is actually a good choice.
    // The input list will be mostly sorted except for a couple of lines
    // that have need to be swapped. Further it is common that our edges are
    // already sorted and bubble sort lets us avoid doing any memory writes.

    // Some statistics from using a bubble sort on an
    // example scene. You can see that bubble sort does
    // noticeably better than O (n lg n).
    // summary(edges*bubble_sort_iterations)
    //   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
    //    0.0     9.0    69.0   131.5   206.0  1278.0
    // summary(edges*log2(edges))
    //   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's
    //   0.00   28.53  347.10  427.60  787.20 1286.00    2.00
    fn sort_edges(&mut self) {
        if self.active_edges.is_none() {
            return;
        }

        let mut swapped;
        loop {
            swapped = false;
            let mut edge = self.active_edges.unwrap();
            let mut next_edge = unsafe { edge.as_mut() }.next;
            let mut prev = &mut self.active_edges as *mut _;
            while let Some(mut next_ptr) = next_edge {
                let next = unsafe { next_ptr.as_mut() };
                if unsafe { edge.as_mut() }.fullx > next.fullx {
                    // swap edge and next
                    unsafe { edge.as_mut() }.next = next.next;
                    next.next = Some(edge);
                    unsafe { (*prev) = Some(next_ptr) };
                    swapped = true;
                }
                prev = (&mut unsafe { edge.as_mut() }.next) as *mut _;
                edge = next_ptr;
                next_edge = unsafe { edge.as_mut() }.next;
            }
            if !swapped {
                break;
            }
        }
    }

    pub fn rasterize(&mut self, blitter: &mut dyn RasterBlitter, winding_mode: Winding) {
        let start = int_to_dot2(self.bounds_top).max(0);
        let end = int_to_dot2(self.bounds_bottom).min(self.height);

        self.cur_y = start;
        while self.cur_y < end {
            // we do 4x4 super-sampling so we need
            // to scan 4 times before painting a line of pixels
            for _ in 0..4 {
                // insert the new edges into the sorted list
                self.insert_starting_edges();
                // scan over the edge list producing a list of spans
                self.scan_edges(blitter, winding_mode);
                // step all of the edges to the next scanline
                // dropping the ones that end
                self.step_edges();
                // sort the remaining edges
                self.sort_edges();
                self.cur_y += 1;
            }
        }
    }

    pub fn get_bounds(&self) -> IntRect {
        intrect(self.bounds_left.max(0),
                self.bounds_top.max(0),
                self.bounds_right.min(dot2_to_int(self.width)),
                self.bounds_bottom.min(dot2_to_int(self.height)))
    }

    pub fn reset(&mut self) {
        if self.bounds_bottom < self.bounds_top {
            debug_assert_eq!(self.active_edges, None);
            for e in &mut self.edge_starts {
                debug_assert_eq!(*e, None);
            }
            debug_assert_eq!(self.bounds_bottom, 0);
            debug_assert_eq!(self.bounds_right, 0);
            debug_assert_eq!(self.bounds_top, dot2_to_int(self.height));
            debug_assert_eq!(self.bounds_left, dot2_to_int(self.width));
            // Currently we allocate an edge in the arena even if we don't
            // end up putting it in the edge_starts list. Avoiding that
            // would let us avoiding having to reinitialize the arena
            self.edge_arena = Arena::new();
            return;
        }
        let start = int_to_dot2(self.bounds_top).max(0) as usize;
        let end = int_to_dot2(self.bounds_bottom).min(self.height) as usize;
        self.active_edges = None;
        for e in &mut self.edge_starts[start..end] {
            *e = None;
        }
        self.edge_arena = Arena::new();
        self.bounds_bottom = 0;
        self.bounds_right = 0;
        self.bounds_top = dot2_to_int(self.height);
        self.bounds_left = dot2_to_int(self.width);
    }
}