webrender/
texture_cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use api::{DirtyRect, ExternalImageType, ImageFormat, ImageBufferKind};
use api::{DebugFlags, ImageDescriptor};
use api::units::*;
#[cfg(test)]
use api::{DocumentId, IdNamespace};
use crate::device::{TextureFilter, TextureFormatPair};
use crate::freelist::{FreeList, FreeListHandle, WeakFreeListHandle};
use crate::gpu_cache::{GpuCache, GpuCacheHandle};
use crate::gpu_types::{ImageSource, UvRectKind};
use crate::internal_types::{
    CacheTextureId, Swizzle, SwizzleSettings, FrameStamp, FrameId,
    TextureUpdateList, TextureUpdateSource, TextureSource,
    TextureCacheAllocInfo, TextureCacheUpdate, TextureCacheCategory,
};
use crate::lru_cache::LRUCache;
use crate::profiler::{self, TransactionProfile};
use crate::resource_cache::{CacheItem, CachedImageData};
use crate::texture_pack::{
    AllocatorList, AllocId, AtlasAllocatorList, ShelfAllocator, ShelfAllocatorOptions,
};
use std::cell::Cell;
use std::mem;
use std::rc::Rc;
use euclid::size2;
use malloc_size_of::{MallocSizeOf, MallocSizeOfOps};

/// Information about which shader will use the entry.
///
/// For batching purposes, it's beneficial to group some items in their
/// own textures if we know that they are used by a specific shader.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TargetShader {
    Default,
    Text,
}

/// The size of each region in shared cache texture arrays.
pub const TEXTURE_REGION_DIMENSIONS: i32 = 512;

/// Items in the texture cache can either be standalone textures,
/// or a sub-rect inside the shared cache.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum EntryDetails {
    Standalone {
        /// Number of bytes this entry allocates
        size_in_bytes: usize,
    },
    Cache {
        /// Origin within the texture layer where this item exists.
        origin: DeviceIntPoint,
        /// ID of the allocation specific to its allocator.
        alloc_id: AllocId,
        /// The allocated size in bytes for this entry.
        allocated_size_in_bytes: usize,
    },
}

impl EntryDetails {
    fn describe(&self) -> DeviceIntPoint {
        match *self {
            EntryDetails::Standalone { .. }  => DeviceIntPoint::zero(),
            EntryDetails::Cache { origin, .. } => origin,
        }
    }
}

#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum AutoCacheEntryMarker {}

#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ManualCacheEntryMarker {}

// Stores information related to a single entry in the texture
// cache. This is stored for each item whether it's in the shared
// cache or a standalone texture.
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CacheEntry {
    /// Size of the requested item, in device pixels. Does not include any
    /// padding for alignment that the allocator may have added to this entry's
    /// allocation.
    pub size: DeviceIntSize,
    /// Details specific to standalone or shared items.
    pub details: EntryDetails,
    /// Arbitrary user data associated with this item.
    pub user_data: [f32; 4],
    /// The last frame this item was requested for rendering.
    // TODO(gw): This stamp is only used for picture cache tiles, and some checks
    //           in the glyph cache eviction code. We could probably remove it
    //           entirely in future (or move to PictureCacheEntry).
    pub last_access: FrameStamp,
    /// Handle to the resource rect in the GPU cache.
    pub uv_rect_handle: GpuCacheHandle,
    /// Image format of the data that the entry expects.
    pub input_format: ImageFormat,
    pub filter: TextureFilter,
    pub swizzle: Swizzle,
    /// The actual device texture ID this is part of.
    pub texture_id: CacheTextureId,
    /// Optional notice when the entry is evicted from the cache.
    pub eviction_notice: Option<EvictionNotice>,
    /// The type of UV rect this entry specifies.
    pub uv_rect_kind: UvRectKind,

    pub shader: TargetShader,
}

malloc_size_of::malloc_size_of_is_0!(
    CacheEntry,
    AutoCacheEntryMarker, ManualCacheEntryMarker
);

impl CacheEntry {
    // Create a new entry for a standalone texture.
    fn new_standalone(
        texture_id: CacheTextureId,
        last_access: FrameStamp,
        params: &CacheAllocParams,
        swizzle: Swizzle,
        size_in_bytes: usize,
    ) -> Self {
        CacheEntry {
            size: params.descriptor.size,
            user_data: params.user_data,
            last_access,
            details: EntryDetails::Standalone {
                size_in_bytes,
            },
            texture_id,
            input_format: params.descriptor.format,
            filter: params.filter,
            swizzle,
            uv_rect_handle: GpuCacheHandle::new(),
            eviction_notice: None,
            uv_rect_kind: params.uv_rect_kind,
            shader: TargetShader::Default,
        }
    }

    // Update the GPU cache for this texture cache entry.
    // This ensures that the UV rect, and texture layer index
    // are up to date in the GPU cache for vertex shaders
    // to fetch from.
    fn update_gpu_cache(&mut self, gpu_cache: &mut GpuCache) {
        if let Some(mut request) = gpu_cache.request(&mut self.uv_rect_handle) {
            let origin = self.details.describe();
            let image_source = ImageSource {
                p0: origin.to_f32(),
                p1: (origin + self.size).to_f32(),
                user_data: self.user_data,
                uv_rect_kind: self.uv_rect_kind,
            };
            image_source.write_gpu_blocks(&mut request);
        }
    }

    fn evict(&self) {
        if let Some(eviction_notice) = self.eviction_notice.as_ref() {
            eviction_notice.notify();
        }
    }

    fn alternative_input_format(&self) -> ImageFormat {
        match self.input_format {
            ImageFormat::RGBA8 => ImageFormat::BGRA8,
            ImageFormat::BGRA8 => ImageFormat::RGBA8,
            other => other,
        }
    }
}


/// A texture cache handle is a weak reference to a cache entry.
///
/// If the handle has not been inserted into the cache yet, or if the entry was
/// previously inserted and then evicted, lookup of the handle will fail, and
/// the cache handle needs to re-upload this item to the texture cache (see
/// request() below).

#[derive(MallocSizeOf,Clone,PartialEq,Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TextureCacheHandle {
    /// A fresh handle.
    Empty,

    /// A handle for an entry with automatic eviction.
    Auto(WeakFreeListHandle<AutoCacheEntryMarker>),

    /// A handle for an entry with manual eviction.
    Manual(WeakFreeListHandle<ManualCacheEntryMarker>)
}

impl TextureCacheHandle {
    pub fn invalid() -> Self {
        TextureCacheHandle::Empty
    }
}

/// Describes the eviction policy for a given entry in the texture cache.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum Eviction {
    /// The entry will be evicted under the normal rules (which differ between
    /// standalone and shared entries).
    Auto,
    /// The entry will not be evicted until the policy is explicitly set to a
    /// different value.
    Manual,
}

// An eviction notice is a shared condition useful for detecting
// when a TextureCacheHandle gets evicted from the TextureCache.
// It is optionally installed to the TextureCache when an update()
// is scheduled. A single notice may be shared among any number of
// TextureCacheHandle updates. The notice may then be subsequently
// checked to see if any of the updates using it have been evicted.
#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct EvictionNotice {
    evicted: Rc<Cell<bool>>,
}

impl EvictionNotice {
    fn notify(&self) {
        self.evicted.set(true);
    }

    pub fn check(&self) -> bool {
        if self.evicted.get() {
            self.evicted.set(false);
            true
        } else {
            false
        }
    }
}

/// The different budget types for the texture cache. Each type has its own
/// memory budget. Once the budget is exceeded, entries with automatic eviction
/// are evicted. Entries with manual eviction share the same budget but are not
/// evicted once the budget is exceeded.
/// Keeping separate budgets ensures that we don't evict entries from unrelated
/// textures if one texture gets full.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u8)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
enum BudgetType {
    SharedColor8Linear,
    SharedColor8Nearest,
    SharedColor8Glyphs,
    SharedAlpha8,
    SharedAlpha8Glyphs,
    SharedAlpha16,
    Standalone,
}

impl BudgetType {
    pub const COUNT: usize = 7;

    pub const VALUES: [BudgetType; BudgetType::COUNT] = [
        BudgetType::SharedColor8Linear,
        BudgetType::SharedColor8Nearest,
        BudgetType::SharedColor8Glyphs,
        BudgetType::SharedAlpha8,
        BudgetType::SharedAlpha8Glyphs,
        BudgetType::SharedAlpha16,
        BudgetType::Standalone,
    ];

    pub const PRESSURE_COUNTERS: [usize; BudgetType::COUNT] = [
        profiler::ATLAS_COLOR8_LINEAR_PRESSURE,
        profiler::ATLAS_COLOR8_NEAREST_PRESSURE,
        profiler::ATLAS_COLOR8_GLYPHS_PRESSURE,
        profiler::ATLAS_ALPHA8_PRESSURE,
        profiler::ATLAS_ALPHA8_GLYPHS_PRESSURE,
        profiler::ATLAS_ALPHA16_PRESSURE,
        profiler::ATLAS_STANDALONE_PRESSURE,
    ];

    pub fn iter() -> impl Iterator<Item = BudgetType> {
        BudgetType::VALUES.iter().cloned()
    }
}

/// A set of lazily allocated, fixed size, texture arrays for each format the
/// texture cache supports.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct SharedTextures {
    color8_nearest: AllocatorList<ShelfAllocator, TextureParameters>,
    alpha8_linear: AllocatorList<ShelfAllocator, TextureParameters>,
    alpha8_glyphs: AllocatorList<ShelfAllocator, TextureParameters>,
    alpha16_linear: AllocatorList<ShelfAllocator, TextureParameters>,
    color8_linear: AllocatorList<ShelfAllocator, TextureParameters>,
    color8_glyphs: AllocatorList<ShelfAllocator, TextureParameters>,
    bytes_per_texture_of_type: [i32 ; BudgetType::COUNT],
    next_compaction_idx: usize,
}

impl SharedTextures {
    /// Mints a new set of shared textures.
    fn new(color_formats: TextureFormatPair<ImageFormat>, config: &TextureCacheConfig) -> Self {
        let mut bytes_per_texture_of_type = [0 ; BudgetType::COUNT];

        // Used primarily for cached shadow masks. There can be lots of
        // these on some pages like francine, but most pages don't use it
        // much.
        // Most content tends to fit into two 512x512 textures. We are
        // conservatively using 1024x1024 to fit everything in a single
        // texture and avoid breaking batches, but it's worth checking
        // whether it would actually lead to a lot of batch breaks in
        // practice.
        let alpha8_linear = AllocatorList::new(
            config.alpha8_texture_size,
            ShelfAllocatorOptions {
                num_columns: 1,
                alignment: size2(8, 8),
                .. ShelfAllocatorOptions::default()
            },
            TextureParameters {
                formats: TextureFormatPair::from(ImageFormat::R8),
                filter: TextureFilter::Linear,
            },
        );
        bytes_per_texture_of_type[BudgetType::SharedAlpha8 as usize] =
            config.alpha8_texture_size * config.alpha8_texture_size;

        // The cache for alpha glyphs (separate to help with batching).
        let alpha8_glyphs = AllocatorList::new(
            config.alpha8_glyph_texture_size,
            ShelfAllocatorOptions {
                num_columns: if config.alpha8_glyph_texture_size >= 1024 { 2 } else { 1 },
                alignment: size2(4, 8),
                .. ShelfAllocatorOptions::default()
            },
            TextureParameters {
                formats: TextureFormatPair::from(ImageFormat::R8),
                filter: TextureFilter::Linear,
            },
        );
        bytes_per_texture_of_type[BudgetType::SharedAlpha8Glyphs as usize] =
            config.alpha8_glyph_texture_size * config.alpha8_glyph_texture_size;

        // Used for experimental hdr yuv texture support, but not used in
        // production Firefox.
        let alpha16_linear = AllocatorList::new(
            config.alpha16_texture_size,
            ShelfAllocatorOptions {
                num_columns: if config.alpha16_texture_size >= 1024 { 2 } else { 1 },
                alignment: size2(8, 8),
                .. ShelfAllocatorOptions::default()
            },
            TextureParameters {
                formats: TextureFormatPair::from(ImageFormat::R16),
                filter: TextureFilter::Linear,
            },
        );
        bytes_per_texture_of_type[BudgetType::SharedAlpha16 as usize] =
            ImageFormat::R16.bytes_per_pixel() *
            config.alpha16_texture_size * config.alpha16_texture_size;

        // The primary cache for images, etc.
        let color8_linear = AllocatorList::new(
            config.color8_linear_texture_size,
            ShelfAllocatorOptions {
                num_columns: if config.color8_linear_texture_size >= 1024 { 2 } else { 1 },
                alignment: size2(16, 16),
                .. ShelfAllocatorOptions::default()
            },
            TextureParameters {
                formats: color_formats.clone(),
                filter: TextureFilter::Linear,
            },
        );
        bytes_per_texture_of_type[BudgetType::SharedColor8Linear as usize] =
            color_formats.internal.bytes_per_pixel() *
            config.color8_linear_texture_size * config.color8_linear_texture_size;

        // The cache for subpixel-AA and bitmap glyphs (separate to help with batching).
        let color8_glyphs = AllocatorList::new(
            config.color8_glyph_texture_size,
            ShelfAllocatorOptions {
                num_columns: if config.color8_glyph_texture_size >= 1024 { 2 } else { 1 },
                alignment: size2(4, 8),
                .. ShelfAllocatorOptions::default()
            },
            TextureParameters {
                formats: color_formats.clone(),
                filter: TextureFilter::Linear,
            },
        );
        bytes_per_texture_of_type[BudgetType::SharedColor8Glyphs as usize] =
            color_formats.internal.bytes_per_pixel() *
            config.color8_glyph_texture_size * config.color8_glyph_texture_size;

        // Used for image-rendering: crisp. This is mostly favicons, which
        // are small. Some other images use it too, but those tend to be
        // larger than 512x512 and thus don't use the shared cache anyway.
        let color8_nearest = AllocatorList::new(
            config.color8_nearest_texture_size,
            ShelfAllocatorOptions::default(),
            TextureParameters {
                formats: color_formats.clone(),
                filter: TextureFilter::Nearest,
            }
        );
        bytes_per_texture_of_type[BudgetType::SharedColor8Nearest as usize] =
            color_formats.internal.bytes_per_pixel() *
            config.color8_nearest_texture_size * config.color8_nearest_texture_size;

        Self {
            alpha8_linear,
            alpha8_glyphs,
            alpha16_linear,
            color8_linear,
            color8_glyphs,
            color8_nearest,
            bytes_per_texture_of_type,
            next_compaction_idx: 0,
        }
    }

    /// Clears each texture in the set, with the given set of pending updates.
    fn clear(&mut self, updates: &mut TextureUpdateList) {
        let texture_dealloc_cb = &mut |texture_id| {
            updates.push_free(texture_id);
        };

        self.alpha8_linear.clear(texture_dealloc_cb);
        self.alpha8_glyphs.clear(texture_dealloc_cb);
        self.alpha16_linear.clear(texture_dealloc_cb);
        self.color8_linear.clear(texture_dealloc_cb);
        self.color8_nearest.clear(texture_dealloc_cb);
        self.color8_glyphs.clear(texture_dealloc_cb);
    }

    /// Returns a mutable borrow for the shared texture array matching the parameters.
    fn select(
        &mut self, external_format: ImageFormat, filter: TextureFilter, shader: TargetShader,
    ) -> (&mut dyn AtlasAllocatorList<TextureParameters>, BudgetType) {
        match external_format {
            ImageFormat::R8 => {
                assert_eq!(filter, TextureFilter::Linear);
                match shader {
                    TargetShader::Text => {
                        (&mut self.alpha8_glyphs, BudgetType::SharedAlpha8Glyphs)
                    },
                    _ => (&mut self.alpha8_linear, BudgetType::SharedAlpha8),
                }
            }
            ImageFormat::R16 => {
                assert_eq!(filter, TextureFilter::Linear);
                (&mut self.alpha16_linear, BudgetType::SharedAlpha16)
            }
            ImageFormat::RGBA8 |
            ImageFormat::BGRA8 => {
                match (filter, shader) {
                    (TextureFilter::Linear, TargetShader::Text) => {
                        (&mut self.color8_glyphs, BudgetType::SharedColor8Glyphs)
                    },
                    (TextureFilter::Linear, _) => {
                        (&mut self.color8_linear, BudgetType::SharedColor8Linear)
                    },
                    (TextureFilter::Nearest, _) => {
                        (&mut self.color8_nearest, BudgetType::SharedColor8Nearest)
                    },
                    _ => panic!("Unexpected filter {:?}", filter),
                }
            }
            _ => panic!("Unexpected format {:?}", external_format),
        }
    }

    /// How many bytes a single texture of the given type takes up, for the
    /// configured texture sizes.
    fn bytes_per_shared_texture(&self, budget_type: BudgetType) -> usize {
        self.bytes_per_texture_of_type[budget_type as usize] as usize
    }

    fn has_multiple_textures(&self, budget_type: BudgetType) -> bool {
        match budget_type {
            BudgetType::SharedColor8Linear => self.color8_linear.allocated_textures() > 1,
            BudgetType::SharedColor8Nearest => self.color8_nearest.allocated_textures() > 1,
            BudgetType::SharedColor8Glyphs => self.color8_glyphs.allocated_textures() > 1,
            BudgetType::SharedAlpha8 => self.alpha8_linear.allocated_textures() > 1,
            BudgetType::SharedAlpha8Glyphs => self.alpha8_glyphs.allocated_textures() > 1,
            BudgetType::SharedAlpha16 => self.alpha16_linear.allocated_textures() > 1,
            BudgetType::Standalone => false,
        }
    }
}

/// Container struct for the various parameters used in cache allocation.
struct CacheAllocParams {
    descriptor: ImageDescriptor,
    filter: TextureFilter,
    user_data: [f32; 4],
    uv_rect_kind: UvRectKind,
    shader: TargetShader,
}

/// Startup parameters for the texture cache.
///
/// Texture sizes must be at least 512.
#[derive(Clone)]
pub struct TextureCacheConfig {
    pub color8_linear_texture_size: i32,
    pub color8_nearest_texture_size: i32,
    pub color8_glyph_texture_size: i32,
    pub alpha8_texture_size: i32,
    pub alpha8_glyph_texture_size: i32,
    pub alpha16_texture_size: i32,
}

impl TextureCacheConfig {
    pub const DEFAULT: Self = TextureCacheConfig {
        color8_linear_texture_size: 2048,
        color8_nearest_texture_size: 512,
        color8_glyph_texture_size: 2048,
        alpha8_texture_size: 1024,
        alpha8_glyph_texture_size: 2048,
        alpha16_texture_size: 512,
    };
}

/// General-purpose manager for images in GPU memory. This includes images,
/// rasterized glyphs, rasterized blobs, cached render tasks, etc.
///
/// The texture cache is owned and managed by the RenderBackend thread, and
/// produces a series of commands to manipulate the textures on the Renderer
/// thread. These commands are executed before any rendering is performed for
/// a given frame.
///
/// Entries in the texture cache are not guaranteed to live past the end of the
/// frame in which they are requested, and may be evicted. The API supports
/// querying whether an entry is still available.
///
/// The TextureCache is different from the GpuCache in that the former stores
/// images, whereas the latter stores data and parameters for use in the shaders.
/// This means that the texture cache can be visualized, which is a good way to
/// understand how it works. Enabling gfx.webrender.debug.texture-cache shows a
/// live view of its contents in Firefox.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextureCache {
    /// Set of texture arrays in different formats used for the shared cache.
    shared_textures: SharedTextures,

    /// Maximum texture size supported by hardware.
    max_texture_size: i32,

    /// Maximum texture size before it is considered preferable to break the
    /// texture into tiles.
    tiling_threshold: i32,

    /// Settings on using texture unit swizzling.
    swizzle: Option<SwizzleSettings>,

    /// The current set of debug flags.
    debug_flags: DebugFlags,

    /// The next unused virtual texture ID. Monotonically increasing.
    pub next_id: CacheTextureId,

    /// A list of allocations and updates that need to be applied to the texture
    /// cache in the rendering thread this frame.
    #[cfg_attr(all(feature = "serde", any(feature = "capture", feature = "replay")), serde(skip))]
    pub pending_updates: TextureUpdateList,

    /// The current `FrameStamp`. Used for cache eviction policies.
    now: FrameStamp,

    /// Cache of texture cache handles with automatic lifetime management, evicted
    /// in a least-recently-used order.
    lru_cache: LRUCache<CacheEntry, AutoCacheEntryMarker>,

    /// Cache of texture cache entries with manual liftime management.
    manual_entries: FreeList<CacheEntry, ManualCacheEntryMarker>,

    /// Strong handles for the manual_entries FreeList.
    manual_handles: Vec<FreeListHandle<ManualCacheEntryMarker>>,

    /// Memory usage of allocated entries in all of the shared or standalone
    /// textures. Includes both manually and automatically evicted entries.
    bytes_allocated: [usize ; BudgetType::COUNT],
}

impl TextureCache {
    /// The maximum number of items that will be evicted per frame. This limit helps avoid jank
    /// on frames where we want to evict a large number of items. Instead, we'd prefer to drop
    /// the items incrementally over a number of frames, even if that means the total allocated
    /// size of the cache is above the desired threshold for a small number of frames.
    const MAX_EVICTIONS_PER_FRAME: usize = 32;

    pub fn new(
        max_texture_size: i32,
        tiling_threshold: i32,
        color_formats: TextureFormatPair<ImageFormat>,
        swizzle: Option<SwizzleSettings>,
        config: &TextureCacheConfig,
    ) -> Self {
        let pending_updates = TextureUpdateList::new();

        // Shared texture cache controls swizzling on a per-entry basis, assuming that
        // the texture as a whole doesn't need to be swizzled (but only some entries do).
        // It would be possible to support this, but not needed at the moment.
        assert!(color_formats.internal != ImageFormat::BGRA8 ||
            swizzle.map_or(true, |s| s.bgra8_sampling_swizzle == Swizzle::default())
        );

        let next_texture_id = CacheTextureId(1);

        TextureCache {
            shared_textures: SharedTextures::new(color_formats, config),
            max_texture_size,
            tiling_threshold,
            swizzle,
            debug_flags: DebugFlags::empty(),
            next_id: next_texture_id,
            pending_updates,
            now: FrameStamp::INVALID,
            lru_cache: LRUCache::new(BudgetType::COUNT),
            manual_entries: FreeList::new(),
            manual_handles: Vec::new(),
            bytes_allocated: [0 ; BudgetType::COUNT],
        }
    }

    /// Creates a TextureCache and sets it up with a valid `FrameStamp`, which
    /// is useful for avoiding panics when instantiating the `TextureCache`
    /// directly from unit test code.
    #[cfg(test)]
    pub fn new_for_testing(
        max_texture_size: i32,
        image_format: ImageFormat,
    ) -> Self {
        let mut cache = Self::new(
            max_texture_size,
            max_texture_size,
            TextureFormatPair::from(image_format),
            None,
            &TextureCacheConfig::DEFAULT,
        );
        let mut now = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
        now.advance();
        cache.begin_frame(now, &mut TransactionProfile::new());
        cache
    }

    pub fn set_debug_flags(&mut self, flags: DebugFlags) {
        self.debug_flags = flags;
    }

    /// Clear all entries in the texture cache. This is a fairly drastic
    /// step that should only be called very rarely.
    pub fn clear_all(&mut self) {
        // Evict all manual eviction handles
        let manual_handles = mem::replace(
            &mut self.manual_handles,
            Vec::new(),
        );
        for handle in manual_handles {
            let entry = self.manual_entries.free(handle);
            self.evict_impl(entry);
        }

        // Evict all auto (LRU) cache handles
        for budget_type in BudgetType::iter() {
            while let Some(entry) = self.lru_cache.pop_oldest(budget_type as u8) {
                entry.evict();
                self.free(&entry);
            }
        }

        // Free the picture and shared textures
        self.shared_textures.clear(&mut self.pending_updates);
        self.pending_updates.note_clear();
    }

    /// Called at the beginning of each frame.
    pub fn begin_frame(&mut self, stamp: FrameStamp, profile: &mut TransactionProfile) {
        debug_assert!(!self.now.is_valid());
        profile_scope!("begin_frame");
        self.now = stamp;

        // Texture cache eviction is done at the start of the frame. This ensures that
        // we won't evict items that have been requested on this frame.
        // It also frees up space in the cache for items allocated later in the frame
        // potentially reducing texture allocations and fragmentation.
        self.evict_items_from_cache_if_required(profile);
    }

    pub fn end_frame(&mut self, profile: &mut TransactionProfile) {
        debug_assert!(self.now.is_valid());

        let updates = &mut self.pending_updates; // To avoid referring to self in the closure.
        let callback = &mut|texture_id| { updates.push_free(texture_id); };

        // Release of empty shared textures is done at the end of the frame. That way, if the
        // eviction at the start of the frame frees up a texture, that is then subsequently
        // used during the frame, we avoid doing a free/alloc for it.
        self.shared_textures.alpha8_linear.release_empty_textures(callback);
        self.shared_textures.alpha8_glyphs.release_empty_textures(callback);
        self.shared_textures.alpha16_linear.release_empty_textures(callback);
        self.shared_textures.color8_linear.release_empty_textures(callback);
        self.shared_textures.color8_nearest.release_empty_textures(callback);
        self.shared_textures.color8_glyphs.release_empty_textures(callback);

        for budget in BudgetType::iter() {
            let threshold = self.get_eviction_threshold(budget);
            let pressure = self.bytes_allocated[budget as usize] as f32 / threshold as f32;
            profile.set(BudgetType::PRESSURE_COUNTERS[budget as usize], pressure);
        }

        profile.set(profiler::ATLAS_A8_PIXELS, self.shared_textures.alpha8_linear.allocated_space());
        profile.set(profiler::ATLAS_A8_TEXTURES, self.shared_textures.alpha8_linear.allocated_textures());
        profile.set(profiler::ATLAS_A8_GLYPHS_PIXELS, self.shared_textures.alpha8_glyphs.allocated_space());
        profile.set(profiler::ATLAS_A8_GLYPHS_TEXTURES, self.shared_textures.alpha8_glyphs.allocated_textures());
        profile.set(profiler::ATLAS_A16_PIXELS, self.shared_textures.alpha16_linear.allocated_space());
        profile.set(profiler::ATLAS_A16_TEXTURES, self.shared_textures.alpha16_linear.allocated_textures());
        profile.set(profiler::ATLAS_RGBA8_LINEAR_PIXELS, self.shared_textures.color8_linear.allocated_space());
        profile.set(profiler::ATLAS_RGBA8_LINEAR_TEXTURES, self.shared_textures.color8_linear.allocated_textures());
        profile.set(profiler::ATLAS_RGBA8_NEAREST_PIXELS, self.shared_textures.color8_nearest.allocated_space());
        profile.set(profiler::ATLAS_RGBA8_NEAREST_TEXTURES, self.shared_textures.color8_nearest.allocated_textures());
        profile.set(profiler::ATLAS_RGBA8_GLYPHS_PIXELS, self.shared_textures.color8_glyphs.allocated_space());
        profile.set(profiler::ATLAS_RGBA8_GLYPHS_TEXTURES, self.shared_textures.color8_glyphs.allocated_textures());

        let shared_bytes = [
            BudgetType::SharedColor8Linear,
            BudgetType::SharedColor8Nearest,
            BudgetType::SharedColor8Glyphs,
            BudgetType::SharedAlpha8,
            BudgetType::SharedAlpha8Glyphs,
            BudgetType::SharedAlpha16,
        ].iter().map(|b| self.bytes_allocated[*b as usize]).sum();

        profile.set(profiler::ATLAS_ITEMS_MEM, profiler::bytes_to_mb(shared_bytes));

        self.now = FrameStamp::INVALID;
    }

    pub fn run_compaction(&mut self, gpu_cache: &mut GpuCache) {
        // Use the same order as BudgetType::VALUES so that we can index self.bytes_allocated
        // with the same index.
        let allocator_lists = [
            &mut self.shared_textures.color8_linear,
            &mut self.shared_textures.color8_nearest,
            &mut self.shared_textures.color8_glyphs,
            &mut self.shared_textures.alpha8_linear,
            &mut self.shared_textures.alpha8_glyphs,
            &mut self.shared_textures.alpha16_linear,
        ];

        // Pick a texture type on which to try to run the compaction logic this frame.
        let idx = self.shared_textures.next_compaction_idx;

        // Number of moved pixels after which we stop attempting to move more items for this frame.
        // The constant is up for adjustment, the main goal is to avoid causing frame spikes on
        // low end GPUs.
        let area_threshold = 512*512; 

        let mut changes = Vec::new();
        allocator_lists[idx].try_compaction(area_threshold, &mut changes);

        if changes.is_empty() {
            // Nothing to do, we'll try another texture type next frame.
            self.shared_textures.next_compaction_idx = (self.shared_textures.next_compaction_idx + 1) % allocator_lists.len();
        }

        for change in changes {
            let bpp = allocator_lists[idx].texture_parameters().formats.internal.bytes_per_pixel();

            // While the area of the image does not change, the area it occupies in the texture
            // atlas may (in other words the number of wasted pixels can change), so we have
            // to keep track of that.
            let old_bytes = (change.old_rect.area() * bpp) as usize;
            let new_bytes = (change.new_rect.area() * bpp) as usize;
            self.bytes_allocated[idx] -= old_bytes;
            self.bytes_allocated[idx] += new_bytes;

            let entry = match change.handle {
                TextureCacheHandle::Auto(handle) => self.lru_cache.get_opt_mut(&handle).unwrap(),
                TextureCacheHandle::Manual(handle) => self.manual_entries.get_opt_mut(&handle).unwrap(),
                TextureCacheHandle::Empty => { panic!("invalid handle"); }
            };
            entry.texture_id = change.new_tex;
            entry.details = EntryDetails::Cache {
                origin: change.new_rect.min,
                alloc_id: change.new_id,
                allocated_size_in_bytes: new_bytes,
            };

            gpu_cache.invalidate(&entry.uv_rect_handle);
            entry.uv_rect_handle = GpuCacheHandle::new();

            let src_rect = DeviceIntRect::from_origin_and_size(change.old_rect.min, entry.size);
            let dst_rect = DeviceIntRect::from_origin_and_size(change.new_rect.min, entry.size);

            self.pending_updates.push_copy(change.old_tex, &src_rect, change.new_tex, &dst_rect);

            if self.debug_flags.contains(
                DebugFlags::TEXTURE_CACHE_DBG |
                DebugFlags::TEXTURE_CACHE_DBG_CLEAR_EVICTED)
            {
                self.pending_updates.push_debug_clear(
                    change.old_tex,
                    src_rect.min,
                    src_rect.width(),
                    src_rect.height(),
                );
            }
        }
    }

    // Request an item in the texture cache. All images that will
    // be used on a frame *must* have request() called on their
    // handle, to update the last used timestamp and ensure
    // that resources are not flushed from the cache too early.
    //
    // Returns true if the image needs to be uploaded to the
    // texture cache (either never uploaded, or has been
    // evicted on a previous frame).
    pub fn request(&mut self, handle: &TextureCacheHandle, gpu_cache: &mut GpuCache) -> bool {
        let now = self.now;
        let entry = match handle {
            TextureCacheHandle::Empty => None,
            TextureCacheHandle::Auto(handle) => {
                // Call touch rather than get_opt_mut so that the LRU index
                // knows that the entry has been used.
                self.lru_cache.touch(handle)
            },
            TextureCacheHandle::Manual(handle) => {
                self.manual_entries.get_opt_mut(handle)
            },
        };
        entry.map_or(true, |entry| {
            // If an image is requested that is already in the cache,
            // refresh the GPU cache data associated with this item.
            entry.last_access = now;
            entry.update_gpu_cache(gpu_cache);
            false
        })
    }

    fn get_entry_opt(&self, handle: &TextureCacheHandle) -> Option<&CacheEntry> {
        match handle {
            TextureCacheHandle::Empty => None,
            TextureCacheHandle::Auto(handle) => self.lru_cache.get_opt(handle),
            TextureCacheHandle::Manual(handle) => self.manual_entries.get_opt(handle),
        }
    }

    fn get_entry_opt_mut(&mut self, handle: &TextureCacheHandle) -> Option<&mut CacheEntry> {
        match handle {
            TextureCacheHandle::Empty => None,
            TextureCacheHandle::Auto(handle) => self.lru_cache.get_opt_mut(handle),
            TextureCacheHandle::Manual(handle) => self.manual_entries.get_opt_mut(handle),
        }
    }

    // Returns true if the image needs to be uploaded to the
    // texture cache (either never uploaded, or has been
    // evicted on a previous frame).
    pub fn needs_upload(&self, handle: &TextureCacheHandle) -> bool {
        !self.is_allocated(handle)
    }

    pub fn max_texture_size(&self) -> i32 {
        self.max_texture_size
    }

    pub fn tiling_threshold(&self) -> i32 {
        self.tiling_threshold
    }

    #[cfg(feature = "replay")]
    pub fn color_formats(&self) -> TextureFormatPair<ImageFormat> {
        self.shared_textures.color8_linear.texture_parameters().formats.clone()
    }

    #[cfg(feature = "replay")]
    pub fn swizzle_settings(&self) -> Option<SwizzleSettings> {
        self.swizzle
    }

    pub fn pending_updates(&mut self) -> TextureUpdateList {
        mem::replace(&mut self.pending_updates, TextureUpdateList::new())
    }

    // Update the data stored by a given texture cache handle.
    pub fn update(
        &mut self,
        handle: &mut TextureCacheHandle,
        descriptor: ImageDescriptor,
        filter: TextureFilter,
        data: Option<CachedImageData>,
        user_data: [f32; 4],
        mut dirty_rect: ImageDirtyRect,
        gpu_cache: &mut GpuCache,
        eviction_notice: Option<&EvictionNotice>,
        uv_rect_kind: UvRectKind,
        eviction: Eviction,
        shader: TargetShader,
    ) {
        debug_assert!(self.now.is_valid());
        // Determine if we need to allocate texture cache memory
        // for this item. We need to reallocate if any of the following
        // is true:
        // - Never been in the cache
        // - Has been in the cache but was evicted.
        // - Exists in the cache but dimensions / format have changed.
        let realloc = match self.get_entry_opt(handle) {
            Some(entry) => {
                entry.size != descriptor.size || (entry.input_format != descriptor.format &&
                    entry.alternative_input_format() != descriptor.format)
            }
            None => {
                // Not allocated, or was previously allocated but has been evicted.
                true
            }
        };

        if realloc {
            let params = CacheAllocParams { descriptor, filter, user_data, uv_rect_kind, shader };
            self.allocate(&params, handle, eviction);

            // If we reallocated, we need to upload the whole item again.
            dirty_rect = DirtyRect::All;
        }

        let entry = self.get_entry_opt_mut(handle)
            .expect("BUG: There must be an entry at this handle now");

        // Install the new eviction notice for this update, if applicable.
        entry.eviction_notice = eviction_notice.cloned();
        entry.uv_rect_kind = uv_rect_kind;

        // Invalidate the contents of the resource rect in the GPU cache.
        // This ensures that the update_gpu_cache below will add
        // the new information to the GPU cache.
        //TODO: only invalidate if the parameters change?
        gpu_cache.invalidate(&entry.uv_rect_handle);

        // Upload the resource rect and texture array layer.
        entry.update_gpu_cache(gpu_cache);

        // Create an update command, which the render thread processes
        // to upload the new image data into the correct location
        // in GPU memory.
        if let Some(data) = data {
            // If the swizzling is supported, we always upload in the internal
            // texture format (thus avoiding the conversion by the driver).
            // Otherwise, pass the external format to the driver.
            let origin = entry.details.describe();
            let texture_id = entry.texture_id;
            let size = entry.size;
            let use_upload_format = self.swizzle.is_none();
            let op = TextureCacheUpdate::new_update(
                data,
                &descriptor,
                origin,
                size,
                use_upload_format,
                &dirty_rect,
            );
            self.pending_updates.push_update(texture_id, op);
        }
    }

    // Check if a given texture handle has a valid allocation
    // in the texture cache.
    pub fn is_allocated(&self, handle: &TextureCacheHandle) -> bool {
        self.get_entry_opt(handle).is_some()
    }

    // Return the allocated size of the texture handle's associated data,
    // or otherwise indicate the handle is invalid.
    pub fn get_allocated_size(&self, handle: &TextureCacheHandle) -> Option<usize> {
        self.get_entry_opt(handle).map(|entry| {
            (entry.input_format.bytes_per_pixel() * entry.size.area()) as usize
        })
    }

    // Retrieve the details of an item in the cache. This is used
    // during batch creation to provide the resource rect address
    // to the shaders and texture ID to the batching logic.
    // This function will assert in debug modes if the caller
    // tries to get a handle that was not requested this frame.
    pub fn get(&self, handle: &TextureCacheHandle) -> CacheItem {
        let (texture_id, uv_rect, swizzle, uv_rect_handle, user_data) = self.get_cache_location(handle);
        CacheItem {
            uv_rect_handle,
            texture_id: TextureSource::TextureCache(
                texture_id,
                swizzle,
            ),
            uv_rect,
            user_data,
        }
    }

    /// A more detailed version of get(). This allows access to the actual
    /// device rect of the cache allocation.
    ///
    /// Returns a tuple identifying the texture, the layer, the region,
    /// and its GPU handle.
    pub fn get_cache_location(
        &self,
        handle: &TextureCacheHandle,
    ) -> (CacheTextureId, DeviceIntRect, Swizzle, GpuCacheHandle, [f32; 4]) {
        let entry = self
            .get_entry_opt(handle)
            .expect("BUG: was dropped from cache or not updated!");
        debug_assert_eq!(entry.last_access, self.now);
        let origin = entry.details.describe();
        (
            entry.texture_id,
            DeviceIntRect::from_origin_and_size(origin, entry.size),
            entry.swizzle,
            entry.uv_rect_handle,
            entry.user_data,
        )
    }

    /// Internal helper function to evict a strong texture cache handle
    fn evict_impl(
        &mut self,
        entry: CacheEntry,
    ) {
        entry.evict();
        self.free(&entry);
    }

    /// Evict a texture cache handle that was previously set to be in manual
    /// eviction mode.
    pub fn evict_handle(&mut self, handle: &TextureCacheHandle) {
        match handle {
            TextureCacheHandle::Manual(handle) => {
                // Find the strong handle that matches this weak handle. If this
                // ever shows up in profiles, we can make it a hash (but the number
                // of manual eviction handles is typically small).
                // Alternatively, we could make a more forgiving FreeList variant
                // which does not differentiate between strong and weak handles.
                let index = self.manual_handles.iter().position(|strong_handle| {
                    strong_handle.matches(handle)
                });
                if let Some(index) = index {
                    let handle = self.manual_handles.swap_remove(index);
                    let entry = self.manual_entries.free(handle);
                    self.evict_impl(entry);
                }
            }
            TextureCacheHandle::Auto(handle) => {
                if let Some(entry) = self.lru_cache.remove(handle) {
                    self.evict_impl(entry);
                }
            }
            _ => {}
        }
    }

    pub fn dump_color8_linear_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
        self.shared_textures.color8_linear.dump_as_svg(output)
    }

    pub fn dump_color8_glyphs_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
        self.shared_textures.color8_glyphs.dump_as_svg(output)
    }

    pub fn dump_alpha8_glyphs_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
        self.shared_textures.alpha8_glyphs.dump_as_svg(output)
    }

    pub fn dump_alpha8_linear_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
        self.shared_textures.alpha8_linear.dump_as_svg(output)
    }

    /// Get the eviction threshold, in bytes, for the given budget type.
    fn get_eviction_threshold(&self, budget_type: BudgetType) -> usize {
        if budget_type == BudgetType::Standalone {
            // For standalone textures, the only reason to evict textures is
            // to save GPU memory. Batching / draw call concerns do not apply
            // to standalone textures, because unused textures don't cause
            // extra draw calls.
            return 8 * 1024 * 1024;
        }

        // For shared textures, evicting an entry only frees up GPU memory if it
        // causes one of the shared textures to become empty, so we want to avoid
        // getting slightly above the capacity of a texture.
        // The other concern for shared textures is batching: The entries that
        // are needed in the current frame should be distributed across as few
        // shared textures as possible, to minimize the number of draw calls.
        // Ideally we only want one texture per type under simple workloads.

        let bytes_per_texture = self.shared_textures.bytes_per_shared_texture(budget_type);

        // Number of allocated bytes under which we don't bother with evicting anything
        // from the cache. Above the threshold we consider evicting the coldest items
        // depending on how cold they are.
        //
        // Above all else we want to make sure that even after a heavy workload, the
        // shared cache settles back to a single texture atlas per type over some reasonable
        // period of time.
        // This is achieved by the compaction logic which will try to consolidate items that
        // are spread over multiple textures into few ones, and by evicting old items
        // so that the compaction logic has room to do its job.
        //
        // The other goal is to leave enough empty space in the texture atlases
        // so that we are not too likely to have to allocate a new texture atlas on
        // the next frame if we switch to a new tab or load a new page. That's why
        // the following thresholds are rather low. Note that even when above the threshold,
        // we only evict cold items and ramp up the eviction pressure depending on the amount
        // of allocated memory (See should_continue_evicting).
        let ideal_utilization = match budget_type {
            BudgetType::SharedAlpha8Glyphs | BudgetType::SharedColor8Glyphs => {
                // Glyphs are usually small and tightly packed so they waste very little
                // space in the cache.
                bytes_per_texture * 2 / 3
            }
            _ => {
                // Other types of images come with a variety of sizes making them more
                // prone to wasting pixels and causing fragmentation issues so we put
                // more pressure on them.
                bytes_per_texture / 3
            }
        };

        ideal_utilization
    }

    /// Returns whether to continue eviction and how cold an item need to be to be evicted.
    ///
    /// If the None is returned, stop evicting.
    /// If the Some(n) is returned, continue evicting if the coldest item hasn't been used
    /// for more than n frames.
    fn should_continue_evicting(
        &self,
        budget_type: BudgetType,
        eviction_count: usize,
    ) -> Option<u64> {

        let threshold = self.get_eviction_threshold(budget_type);
        let bytes_allocated = self.bytes_allocated[budget_type as usize];

        let uses_multiple_atlases = self.shared_textures.has_multiple_textures(budget_type);

        // If current memory usage is below selected threshold, we can stop evicting items
        // except when using shared texture atlases and more than one texture is in use.
        // This is not very common but can happen due to fragmentation and the only way
        // to get rid of that fragmentation is to continue evicting.
        if bytes_allocated < threshold && !uses_multiple_atlases {
            return None;
        }

        // Number of frames since last use that is considered too recent for eviction,
        // depending on the cache pressure.
        let age_theshold = match bytes_allocated / threshold {
            0 => 400,
            1 => 200,
            2 => 100,
            3 => 50,
            4 => 25,
            5 => 10,
            6 => 5,
            _ => 1,
        };

        // If current memory usage is significantly more than the threshold, keep evicting this frame
        if bytes_allocated > 4 * threshold {
            return Some(age_theshold);
        }

        // Otherwise, only allow evicting up to a certain number of items per frame. This allows evictions
        // to be spread over a number of frames, to avoid frame spikes.
        if eviction_count < Self::MAX_EVICTIONS_PER_FRAME {
            return Some(age_theshold)
        }

        None
    }


    /// Evict old items from the shared and standalone caches, if we're over a
    /// threshold memory usage value
    fn evict_items_from_cache_if_required(&mut self, profile: &mut TransactionProfile) {
        let previous_frame_id = self.now.frame_id() - 1;
        let mut eviction_count = 0;
        let mut youngest_evicted = FrameId::first();

        for budget in BudgetType::iter() {
            while let Some(age_threshold) = self.should_continue_evicting(
                budget,
                eviction_count,
            ) {
                if let Some(entry) = self.lru_cache.peek_oldest(budget as u8) {
                    // Only evict this item if it wasn't used in the previous frame. The reason being that if it
                    // was used the previous frame then it will likely be used in this frame too, and we don't
                    // want to be continually evicting and reuploading the item every frame.
                    if entry.last_access.frame_id() + age_threshold > previous_frame_id {
                        // Since the LRU cache is ordered by frame access, we can break out of the loop here because
                        // we know that all remaining items were also used in the previous frame (or more recently).
                        break;
                    }
                    if entry.last_access.frame_id() > youngest_evicted {
                        youngest_evicted = entry.last_access.frame_id();
                    }
                    let entry = self.lru_cache.pop_oldest(budget as u8).unwrap();
                    entry.evict();
                    self.free(&entry);
                    eviction_count += 1;
                } else {
                    // The LRU cache is empty, all remaining items use manual
                    // eviction. In this case, there's nothing we can do until
                    // the calling code manually evicts items to reduce the
                    // allocated cache size.
                    break;
                }
            }
        }

        if eviction_count > 0 {
            profile.set(profiler::TEXTURE_CACHE_EVICTION_COUNT, eviction_count);
            profile.set(
                profiler::TEXTURE_CACHE_YOUNGEST_EVICTION,
                self.now.frame_id().as_u64() - youngest_evicted.as_u64()
            );
        }
    }

    // Free a cache entry from the standalone list or shared cache.
    fn free(&mut self, entry: &CacheEntry) {
        match entry.details {
            EntryDetails::Standalone { size_in_bytes, .. } => {
                self.bytes_allocated[BudgetType::Standalone as usize] -= size_in_bytes;

                // This is a standalone texture allocation. Free it directly.
                self.pending_updates.push_free(entry.texture_id);
            }
            EntryDetails::Cache { origin, alloc_id, allocated_size_in_bytes } => {
                let (allocator_list, budget_type) = self.shared_textures.select(
                    entry.input_format,
                    entry.filter,
                    entry.shader,
                );

                allocator_list.deallocate(entry.texture_id, alloc_id);

                self.bytes_allocated[budget_type as usize] -= allocated_size_in_bytes;

                if self.debug_flags.contains(
                    DebugFlags::TEXTURE_CACHE_DBG |
                    DebugFlags::TEXTURE_CACHE_DBG_CLEAR_EVICTED)
                {
                    self.pending_updates.push_debug_clear(
                        entry.texture_id,
                        origin,
                        entry.size.width,
                        entry.size.height,
                    );
                }
            }
        }
    }

    /// Allocate a block from the shared cache.
    fn allocate_from_shared_cache(
        &mut self,
        params: &CacheAllocParams,
    ) -> (CacheEntry, BudgetType) {
        let (allocator_list, budget_type) = self.shared_textures.select(
            params.descriptor.format,
            params.filter,
            params.shader,
        );

        // To avoid referring to self in the closure.
        let next_id = &mut self.next_id;
        let pending_updates = &mut self.pending_updates;

        let (texture_id, alloc_id, allocated_rect) = allocator_list.allocate(
            params.descriptor.size,
            &mut |size, parameters| {
                let texture_id = *next_id;
                next_id.0 += 1;
                pending_updates.push_alloc(
                    texture_id,
                    TextureCacheAllocInfo {
                        target: ImageBufferKind::Texture2D,
                        width: size.width,
                        height: size.height,
                        format: parameters.formats.internal,
                        filter: parameters.filter,
                        is_shared_cache: true,
                        has_depth: false,
                        category: TextureCacheCategory::Atlas,
                    },
                );

                texture_id
            },
        );

        let formats = &allocator_list.texture_parameters().formats;

        let swizzle = if formats.external == params.descriptor.format {
            Swizzle::default()
        } else {
            match self.swizzle {
                Some(_) => Swizzle::Bgra,
                None => Swizzle::default(),
            }
        };

        let bpp = formats.internal.bytes_per_pixel();
        let allocated_size_in_bytes = (allocated_rect.area() * bpp) as usize;
        self.bytes_allocated[budget_type as usize] += allocated_size_in_bytes;

        (CacheEntry {
            size: params.descriptor.size,
            user_data: params.user_data,
            last_access: self.now,
            details: EntryDetails::Cache {
                origin: allocated_rect.min,
                alloc_id,
                allocated_size_in_bytes,
            },
            uv_rect_handle: GpuCacheHandle::new(),
            input_format: params.descriptor.format,
            filter: params.filter,
            swizzle,
            texture_id,
            eviction_notice: None,
            uv_rect_kind: params.uv_rect_kind,
            shader: params.shader
        }, budget_type)
    }

    // Returns true if the given image descriptor *may* be
    // placed in the shared texture cache.
    pub fn is_allowed_in_shared_cache(
        &self,
        filter: TextureFilter,
        descriptor: &ImageDescriptor,
    ) -> bool {
        let mut allowed_in_shared_cache = true;

        if matches!(descriptor.format, ImageFormat::RGBA8 | ImageFormat::BGRA8)
            && filter == TextureFilter::Linear
        {
            // Allow the maximum that can fit in the linear color texture's two column layout.
            let max = self.shared_textures.color8_linear.size() / 2;
            allowed_in_shared_cache = descriptor.size.width.max(descriptor.size.height) <= max;
        } else if descriptor.size.width > TEXTURE_REGION_DIMENSIONS {
            allowed_in_shared_cache = false;
        }

        if descriptor.size.height > TEXTURE_REGION_DIMENSIONS {
            allowed_in_shared_cache = false;
        }

        // TODO(gw): For now, alpha formats of the texture cache can only be linearly sampled.
        //           Nearest sampling gets a standalone texture.
        //           This is probably rare enough that it can be fixed up later.
        if filter == TextureFilter::Nearest &&
           descriptor.format.bytes_per_pixel() <= 2
        {
            allowed_in_shared_cache = false;
        }

        allowed_in_shared_cache
    }

    /// Allocate a render target via the pending updates sent to the renderer
    pub fn alloc_render_target(
        &mut self,
        size: DeviceIntSize,
        format: ImageFormat,
    ) -> CacheTextureId {
        let texture_id = self.next_id;
        self.next_id.0 += 1;

        // Push a command to allocate device storage of the right size / format.
        let info = TextureCacheAllocInfo {
            target: ImageBufferKind::Texture2D,
            width: size.width,
            height: size.height,
            format,
            filter: TextureFilter::Linear,
            is_shared_cache: false,
            has_depth: false,
            category: TextureCacheCategory::RenderTarget,
        };

        self.pending_updates.push_alloc(texture_id, info);

        texture_id
    }

    /// Free an existing render target
    pub fn free_render_target(
        &mut self,
        id: CacheTextureId,
    ) {
        self.pending_updates.push_free(id);
    }

    /// Allocates a new standalone cache entry.
    fn allocate_standalone_entry(
        &mut self,
        params: &CacheAllocParams,
    ) -> (CacheEntry, BudgetType) {
        let texture_id = self.next_id;
        self.next_id.0 += 1;

        // Push a command to allocate device storage of the right size / format.
        let info = TextureCacheAllocInfo {
            target: ImageBufferKind::Texture2D,
            width: params.descriptor.size.width,
            height: params.descriptor.size.height,
            format: params.descriptor.format,
            filter: params.filter,
            is_shared_cache: false,
            has_depth: false,
            category: TextureCacheCategory::Standalone,
        };

        let size_in_bytes = (info.width * info.height * info.format.bytes_per_pixel()) as usize;
        self.bytes_allocated[BudgetType::Standalone as usize] += size_in_bytes;

        self.pending_updates.push_alloc(texture_id, info);

        // Special handing for BGRA8 textures that may need to be swizzled.
        let swizzle = if params.descriptor.format == ImageFormat::BGRA8 {
            self.swizzle.map(|s| s.bgra8_sampling_swizzle)
        } else {
            None
        };

        (CacheEntry::new_standalone(
            texture_id,
            self.now,
            params,
            swizzle.unwrap_or_default(),
            size_in_bytes,
        ), BudgetType::Standalone)
    }

    /// Allocates a cache entry for the given parameters, and updates the
    /// provided handle to point to the new entry.
    fn allocate(
        &mut self,
        params: &CacheAllocParams,
        handle: &mut TextureCacheHandle,
        eviction: Eviction,
    ) {
        debug_assert!(self.now.is_valid());
        assert!(!params.descriptor.size.is_empty());

        // If this image doesn't qualify to go in the shared (batching) cache,
        // allocate a standalone entry.
        let use_shared_cache = self.is_allowed_in_shared_cache(params.filter, &params.descriptor);
        let (new_cache_entry, budget_type) = if use_shared_cache {
            self.allocate_from_shared_cache(params)
        } else {
            self.allocate_standalone_entry(params)
        };

        let details = new_cache_entry.details.clone();
        let texture_id = new_cache_entry.texture_id;

        // If the handle points to a valid cache entry, we want to replace the
        // cache entry with our newly updated location. We also need to ensure
        // that the storage (region or standalone) associated with the previous
        // entry here gets freed.
        //
        // If the handle is invalid, we need to insert the data, and append the
        // result to the corresponding vector.
        let old_entry = match (&mut *handle, eviction) {
            (TextureCacheHandle::Auto(handle), Eviction::Auto) => {
                self.lru_cache.replace_or_insert(handle, budget_type as u8, new_cache_entry)
            },
            (TextureCacheHandle::Manual(handle), Eviction::Manual) => {
                let entry = self.manual_entries.get_opt_mut(handle)
                    .expect("Don't call this after evicting");
                Some(mem::replace(entry, new_cache_entry))
            },
            (TextureCacheHandle::Manual(_), Eviction::Auto) |
            (TextureCacheHandle::Auto(_), Eviction::Manual) => {
                panic!("Can't change eviction policy after initial allocation");
            },
            (TextureCacheHandle::Empty, Eviction::Auto) => {
                let new_handle = self.lru_cache.push_new(budget_type as u8, new_cache_entry);
                *handle = TextureCacheHandle::Auto(new_handle);
                None
            },
            (TextureCacheHandle::Empty, Eviction::Manual) => {
                let manual_handle = self.manual_entries.insert(new_cache_entry);
                let new_handle = manual_handle.weak();
                self.manual_handles.push(manual_handle);
                *handle = TextureCacheHandle::Manual(new_handle);
                None
            },
        };
        if let Some(old_entry) = old_entry {
            old_entry.evict();
            self.free(&old_entry);
        }

        if let EntryDetails::Cache { alloc_id, .. } = details {
            let allocator_list = self.shared_textures.select(
                params.descriptor.format,
                params.filter,
                params.shader,
            ).0;

            allocator_list.set_handle(texture_id, alloc_id, handle);
        }
    }

    pub fn shared_alpha_expected_format(&self) -> ImageFormat {
        self.shared_textures.alpha8_linear.texture_parameters().formats.external
    }

    pub fn shared_color_expected_format(&self) -> ImageFormat {
        self.shared_textures.color8_linear.texture_parameters().formats.external
    }


    #[cfg(test)]
    pub fn total_allocated_bytes_for_testing(&self) -> usize {
        BudgetType::iter().map(|b| self.bytes_allocated[b as usize]).sum()
    }

    pub fn report_memory(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.lru_cache.size_of(ops)
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextureParameters {
    pub formats: TextureFormatPair<ImageFormat>,
    pub filter: TextureFilter,
}

impl TextureCacheUpdate {
    // Constructs a TextureCacheUpdate operation to be passed to the
    // rendering thread in order to do an upload to the right
    // location in the texture cache.
    fn new_update(
        data: CachedImageData,
        descriptor: &ImageDescriptor,
        origin: DeviceIntPoint,
        size: DeviceIntSize,
        use_upload_format: bool,
        dirty_rect: &ImageDirtyRect,
    ) -> TextureCacheUpdate {
        let source = match data {
            CachedImageData::Blob => {
                panic!("The vector image should have been rasterized.");
            }
            CachedImageData::External(ext_image) => match ext_image.image_type {
                ExternalImageType::TextureHandle(_) => {
                    panic!("External texture handle should not go through texture_cache.");
                }
                ExternalImageType::Buffer => TextureUpdateSource::External {
                    id: ext_image.id,
                    channel_index: ext_image.channel_index,
                },
            },
            CachedImageData::Raw(bytes) => {
                let finish = descriptor.offset +
                    descriptor.size.width * descriptor.format.bytes_per_pixel() +
                    (descriptor.size.height - 1) * descriptor.compute_stride();
                assert!(bytes.len() >= finish as usize);

                TextureUpdateSource::Bytes { data: bytes }
            }
        };
        let format_override = if use_upload_format {
            Some(descriptor.format)
        } else {
            None
        };

        match *dirty_rect {
            DirtyRect::Partial(dirty) => {
                // the dirty rectangle doesn't have to be within the area but has to intersect it, at least
                let stride = descriptor.compute_stride();
                let offset = descriptor.offset + dirty.min.y * stride + dirty.min.x * descriptor.format.bytes_per_pixel();

                TextureCacheUpdate {
                    rect: DeviceIntRect::from_origin_and_size(
                        DeviceIntPoint::new(origin.x + dirty.min.x, origin.y + dirty.min.y),
                        DeviceIntSize::new(
                            dirty.width().min(size.width - dirty.min.x),
                            dirty.height().min(size.height - dirty.min.y),
                        ),
                    ),
                    source,
                    stride: Some(stride),
                    offset,
                    format_override,
                }
            }
            DirtyRect::All => {
                TextureCacheUpdate {
                    rect: DeviceIntRect::from_origin_and_size(origin, size),
                    source,
                    stride: descriptor.stride,
                    offset: descriptor.offset,
                    format_override,
                }
            }
        }
    }
}

#[cfg(test)]
mod test_texture_cache {
    #[test]
    fn check_allocation_size_balance() {
        // Allocate some glyphs, observe the total allocation size, and free
        // the glyphs again. Check that the total allocation size is back at the
        // original value.

        use crate::texture_cache::{TextureCache, TextureCacheHandle, Eviction, TargetShader};
        use crate::gpu_cache::GpuCache;
        use crate::device::TextureFilter;
        use crate::gpu_types::UvRectKind;
        use api::{ImageDescriptor, ImageDescriptorFlags, ImageFormat, DirtyRect};
        use api::units::*;
        use euclid::size2;
        let mut texture_cache = TextureCache::new_for_testing(2048, ImageFormat::BGRA8);
        let mut gpu_cache = GpuCache::new_for_testing();

        let sizes: &[DeviceIntSize] = &[
            size2(23, 27),
            size2(15, 22),
            size2(11, 5),
            size2(20, 25),
            size2(38, 41),
            size2(11, 19),
            size2(13, 21),
            size2(37, 40),
            size2(13, 15),
            size2(14, 16),
            size2(10, 9),
            size2(25, 28),
        ];

        let bytes_at_start = texture_cache.total_allocated_bytes_for_testing();

        let handles: Vec<TextureCacheHandle> = sizes.iter().map(|size| {
            let mut texture_cache_handle = TextureCacheHandle::invalid();
            texture_cache.request(&texture_cache_handle, &mut gpu_cache);
            texture_cache.update(
                &mut texture_cache_handle,
                ImageDescriptor {
                    size: *size,
                    stride: None,
                    format: ImageFormat::BGRA8,
                    flags: ImageDescriptorFlags::empty(),
                    offset: 0,
                },
                TextureFilter::Linear,
                None,
                [0.0; 4],
                DirtyRect::All,
                &mut gpu_cache,
                None,
                UvRectKind::Rect,
                Eviction::Manual,
                TargetShader::Text,
            );
            texture_cache_handle
        }).collect();

        let bytes_after_allocating = texture_cache.total_allocated_bytes_for_testing();
        assert!(bytes_after_allocating > bytes_at_start);

        for handle in handles {
            texture_cache.evict_handle(&handle);
        }

        let bytes_at_end = texture_cache.total_allocated_bytes_for_testing();
        assert_eq!(bytes_at_end, bytes_at_start);
    }
}