webrender/texture_cache.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{DirtyRect, ExternalImageType, ImageFormat, ImageBufferKind};
use api::{DebugFlags, ImageDescriptor};
use api::units::*;
#[cfg(test)]
use api::{DocumentId, IdNamespace};
use crate::device::{TextureFilter, TextureFormatPair};
use crate::freelist::{FreeList, FreeListHandle, WeakFreeListHandle};
use crate::gpu_cache::{GpuCache, GpuCacheHandle};
use crate::gpu_types::{ImageSource, UvRectKind};
use crate::internal_types::{
CacheTextureId, Swizzle, SwizzleSettings, FrameStamp, FrameId,
TextureUpdateList, TextureUpdateSource, TextureSource,
TextureCacheAllocInfo, TextureCacheUpdate, TextureCacheCategory,
};
use crate::lru_cache::LRUCache;
use crate::profiler::{self, TransactionProfile};
use crate::resource_cache::{CacheItem, CachedImageData};
use crate::texture_pack::{
AllocatorList, AllocId, AtlasAllocatorList, ShelfAllocator, ShelfAllocatorOptions,
};
use std::cell::Cell;
use std::mem;
use std::rc::Rc;
use euclid::size2;
use malloc_size_of::{MallocSizeOf, MallocSizeOfOps};
/// Information about which shader will use the entry.
///
/// For batching purposes, it's beneficial to group some items in their
/// own textures if we know that they are used by a specific shader.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TargetShader {
Default,
Text,
}
/// The size of each region in shared cache texture arrays.
pub const TEXTURE_REGION_DIMENSIONS: i32 = 512;
/// Items in the texture cache can either be standalone textures,
/// or a sub-rect inside the shared cache.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum EntryDetails {
Standalone {
/// Number of bytes this entry allocates
size_in_bytes: usize,
},
Cache {
/// Origin within the texture layer where this item exists.
origin: DeviceIntPoint,
/// ID of the allocation specific to its allocator.
alloc_id: AllocId,
/// The allocated size in bytes for this entry.
allocated_size_in_bytes: usize,
},
}
impl EntryDetails {
fn describe(&self) -> DeviceIntPoint {
match *self {
EntryDetails::Standalone { .. } => DeviceIntPoint::zero(),
EntryDetails::Cache { origin, .. } => origin,
}
}
}
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum AutoCacheEntryMarker {}
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ManualCacheEntryMarker {}
// Stores information related to a single entry in the texture
// cache. This is stored for each item whether it's in the shared
// cache or a standalone texture.
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CacheEntry {
/// Size of the requested item, in device pixels. Does not include any
/// padding for alignment that the allocator may have added to this entry's
/// allocation.
pub size: DeviceIntSize,
/// Details specific to standalone or shared items.
pub details: EntryDetails,
/// Arbitrary user data associated with this item.
pub user_data: [f32; 4],
/// The last frame this item was requested for rendering.
// TODO(gw): This stamp is only used for picture cache tiles, and some checks
// in the glyph cache eviction code. We could probably remove it
// entirely in future (or move to PictureCacheEntry).
pub last_access: FrameStamp,
/// Handle to the resource rect in the GPU cache.
pub uv_rect_handle: GpuCacheHandle,
/// Image format of the data that the entry expects.
pub input_format: ImageFormat,
pub filter: TextureFilter,
pub swizzle: Swizzle,
/// The actual device texture ID this is part of.
pub texture_id: CacheTextureId,
/// Optional notice when the entry is evicted from the cache.
pub eviction_notice: Option<EvictionNotice>,
/// The type of UV rect this entry specifies.
pub uv_rect_kind: UvRectKind,
pub shader: TargetShader,
}
malloc_size_of::malloc_size_of_is_0!(
CacheEntry,
AutoCacheEntryMarker, ManualCacheEntryMarker
);
impl CacheEntry {
// Create a new entry for a standalone texture.
fn new_standalone(
texture_id: CacheTextureId,
last_access: FrameStamp,
params: &CacheAllocParams,
swizzle: Swizzle,
size_in_bytes: usize,
) -> Self {
CacheEntry {
size: params.descriptor.size,
user_data: params.user_data,
last_access,
details: EntryDetails::Standalone {
size_in_bytes,
},
texture_id,
input_format: params.descriptor.format,
filter: params.filter,
swizzle,
uv_rect_handle: GpuCacheHandle::new(),
eviction_notice: None,
uv_rect_kind: params.uv_rect_kind,
shader: TargetShader::Default,
}
}
// Update the GPU cache for this texture cache entry.
// This ensures that the UV rect, and texture layer index
// are up to date in the GPU cache for vertex shaders
// to fetch from.
fn update_gpu_cache(&mut self, gpu_cache: &mut GpuCache) {
if let Some(mut request) = gpu_cache.request(&mut self.uv_rect_handle) {
let origin = self.details.describe();
let image_source = ImageSource {
p0: origin.to_f32(),
p1: (origin + self.size).to_f32(),
user_data: self.user_data,
uv_rect_kind: self.uv_rect_kind,
};
image_source.write_gpu_blocks(&mut request);
}
}
fn evict(&self) {
if let Some(eviction_notice) = self.eviction_notice.as_ref() {
eviction_notice.notify();
}
}
fn alternative_input_format(&self) -> ImageFormat {
match self.input_format {
ImageFormat::RGBA8 => ImageFormat::BGRA8,
ImageFormat::BGRA8 => ImageFormat::RGBA8,
other => other,
}
}
}
/// A texture cache handle is a weak reference to a cache entry.
///
/// If the handle has not been inserted into the cache yet, or if the entry was
/// previously inserted and then evicted, lookup of the handle will fail, and
/// the cache handle needs to re-upload this item to the texture cache (see
/// request() below).
#[derive(MallocSizeOf,Clone,PartialEq,Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TextureCacheHandle {
/// A fresh handle.
Empty,
/// A handle for an entry with automatic eviction.
Auto(WeakFreeListHandle<AutoCacheEntryMarker>),
/// A handle for an entry with manual eviction.
Manual(WeakFreeListHandle<ManualCacheEntryMarker>)
}
impl TextureCacheHandle {
pub fn invalid() -> Self {
TextureCacheHandle::Empty
}
}
/// Describes the eviction policy for a given entry in the texture cache.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum Eviction {
/// The entry will be evicted under the normal rules (which differ between
/// standalone and shared entries).
Auto,
/// The entry will not be evicted until the policy is explicitly set to a
/// different value.
Manual,
}
// An eviction notice is a shared condition useful for detecting
// when a TextureCacheHandle gets evicted from the TextureCache.
// It is optionally installed to the TextureCache when an update()
// is scheduled. A single notice may be shared among any number of
// TextureCacheHandle updates. The notice may then be subsequently
// checked to see if any of the updates using it have been evicted.
#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct EvictionNotice {
evicted: Rc<Cell<bool>>,
}
impl EvictionNotice {
fn notify(&self) {
self.evicted.set(true);
}
pub fn check(&self) -> bool {
if self.evicted.get() {
self.evicted.set(false);
true
} else {
false
}
}
}
/// The different budget types for the texture cache. Each type has its own
/// memory budget. Once the budget is exceeded, entries with automatic eviction
/// are evicted. Entries with manual eviction share the same budget but are not
/// evicted once the budget is exceeded.
/// Keeping separate budgets ensures that we don't evict entries from unrelated
/// textures if one texture gets full.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u8)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
enum BudgetType {
SharedColor8Linear,
SharedColor8Nearest,
SharedColor8Glyphs,
SharedAlpha8,
SharedAlpha8Glyphs,
SharedAlpha16,
Standalone,
}
impl BudgetType {
pub const COUNT: usize = 7;
pub const VALUES: [BudgetType; BudgetType::COUNT] = [
BudgetType::SharedColor8Linear,
BudgetType::SharedColor8Nearest,
BudgetType::SharedColor8Glyphs,
BudgetType::SharedAlpha8,
BudgetType::SharedAlpha8Glyphs,
BudgetType::SharedAlpha16,
BudgetType::Standalone,
];
pub const PRESSURE_COUNTERS: [usize; BudgetType::COUNT] = [
profiler::ATLAS_COLOR8_LINEAR_PRESSURE,
profiler::ATLAS_COLOR8_NEAREST_PRESSURE,
profiler::ATLAS_COLOR8_GLYPHS_PRESSURE,
profiler::ATLAS_ALPHA8_PRESSURE,
profiler::ATLAS_ALPHA8_GLYPHS_PRESSURE,
profiler::ATLAS_ALPHA16_PRESSURE,
profiler::ATLAS_STANDALONE_PRESSURE,
];
pub fn iter() -> impl Iterator<Item = BudgetType> {
BudgetType::VALUES.iter().cloned()
}
}
/// A set of lazily allocated, fixed size, texture arrays for each format the
/// texture cache supports.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct SharedTextures {
color8_nearest: AllocatorList<ShelfAllocator, TextureParameters>,
alpha8_linear: AllocatorList<ShelfAllocator, TextureParameters>,
alpha8_glyphs: AllocatorList<ShelfAllocator, TextureParameters>,
alpha16_linear: AllocatorList<ShelfAllocator, TextureParameters>,
color8_linear: AllocatorList<ShelfAllocator, TextureParameters>,
color8_glyphs: AllocatorList<ShelfAllocator, TextureParameters>,
bytes_per_texture_of_type: [i32 ; BudgetType::COUNT],
next_compaction_idx: usize,
}
impl SharedTextures {
/// Mints a new set of shared textures.
fn new(color_formats: TextureFormatPair<ImageFormat>, config: &TextureCacheConfig) -> Self {
let mut bytes_per_texture_of_type = [0 ; BudgetType::COUNT];
// Used primarily for cached shadow masks. There can be lots of
// these on some pages like francine, but most pages don't use it
// much.
// Most content tends to fit into two 512x512 textures. We are
// conservatively using 1024x1024 to fit everything in a single
// texture and avoid breaking batches, but it's worth checking
// whether it would actually lead to a lot of batch breaks in
// practice.
let alpha8_linear = AllocatorList::new(
config.alpha8_texture_size,
ShelfAllocatorOptions {
num_columns: 1,
alignment: size2(8, 8),
.. ShelfAllocatorOptions::default()
},
TextureParameters {
formats: TextureFormatPair::from(ImageFormat::R8),
filter: TextureFilter::Linear,
},
);
bytes_per_texture_of_type[BudgetType::SharedAlpha8 as usize] =
config.alpha8_texture_size * config.alpha8_texture_size;
// The cache for alpha glyphs (separate to help with batching).
let alpha8_glyphs = AllocatorList::new(
config.alpha8_glyph_texture_size,
ShelfAllocatorOptions {
num_columns: if config.alpha8_glyph_texture_size >= 1024 { 2 } else { 1 },
alignment: size2(4, 8),
.. ShelfAllocatorOptions::default()
},
TextureParameters {
formats: TextureFormatPair::from(ImageFormat::R8),
filter: TextureFilter::Linear,
},
);
bytes_per_texture_of_type[BudgetType::SharedAlpha8Glyphs as usize] =
config.alpha8_glyph_texture_size * config.alpha8_glyph_texture_size;
// Used for experimental hdr yuv texture support, but not used in
// production Firefox.
let alpha16_linear = AllocatorList::new(
config.alpha16_texture_size,
ShelfAllocatorOptions {
num_columns: if config.alpha16_texture_size >= 1024 { 2 } else { 1 },
alignment: size2(8, 8),
.. ShelfAllocatorOptions::default()
},
TextureParameters {
formats: TextureFormatPair::from(ImageFormat::R16),
filter: TextureFilter::Linear,
},
);
bytes_per_texture_of_type[BudgetType::SharedAlpha16 as usize] =
ImageFormat::R16.bytes_per_pixel() *
config.alpha16_texture_size * config.alpha16_texture_size;
// The primary cache for images, etc.
let color8_linear = AllocatorList::new(
config.color8_linear_texture_size,
ShelfAllocatorOptions {
num_columns: if config.color8_linear_texture_size >= 1024 { 2 } else { 1 },
alignment: size2(16, 16),
.. ShelfAllocatorOptions::default()
},
TextureParameters {
formats: color_formats.clone(),
filter: TextureFilter::Linear,
},
);
bytes_per_texture_of_type[BudgetType::SharedColor8Linear as usize] =
color_formats.internal.bytes_per_pixel() *
config.color8_linear_texture_size * config.color8_linear_texture_size;
// The cache for subpixel-AA and bitmap glyphs (separate to help with batching).
let color8_glyphs = AllocatorList::new(
config.color8_glyph_texture_size,
ShelfAllocatorOptions {
num_columns: if config.color8_glyph_texture_size >= 1024 { 2 } else { 1 },
alignment: size2(4, 8),
.. ShelfAllocatorOptions::default()
},
TextureParameters {
formats: color_formats.clone(),
filter: TextureFilter::Linear,
},
);
bytes_per_texture_of_type[BudgetType::SharedColor8Glyphs as usize] =
color_formats.internal.bytes_per_pixel() *
config.color8_glyph_texture_size * config.color8_glyph_texture_size;
// Used for image-rendering: crisp. This is mostly favicons, which
// are small. Some other images use it too, but those tend to be
// larger than 512x512 and thus don't use the shared cache anyway.
let color8_nearest = AllocatorList::new(
config.color8_nearest_texture_size,
ShelfAllocatorOptions::default(),
TextureParameters {
formats: color_formats.clone(),
filter: TextureFilter::Nearest,
}
);
bytes_per_texture_of_type[BudgetType::SharedColor8Nearest as usize] =
color_formats.internal.bytes_per_pixel() *
config.color8_nearest_texture_size * config.color8_nearest_texture_size;
Self {
alpha8_linear,
alpha8_glyphs,
alpha16_linear,
color8_linear,
color8_glyphs,
color8_nearest,
bytes_per_texture_of_type,
next_compaction_idx: 0,
}
}
/// Clears each texture in the set, with the given set of pending updates.
fn clear(&mut self, updates: &mut TextureUpdateList) {
let texture_dealloc_cb = &mut |texture_id| {
updates.push_free(texture_id);
};
self.alpha8_linear.clear(texture_dealloc_cb);
self.alpha8_glyphs.clear(texture_dealloc_cb);
self.alpha16_linear.clear(texture_dealloc_cb);
self.color8_linear.clear(texture_dealloc_cb);
self.color8_nearest.clear(texture_dealloc_cb);
self.color8_glyphs.clear(texture_dealloc_cb);
}
/// Returns a mutable borrow for the shared texture array matching the parameters.
fn select(
&mut self, external_format: ImageFormat, filter: TextureFilter, shader: TargetShader,
) -> (&mut dyn AtlasAllocatorList<TextureParameters>, BudgetType) {
match external_format {
ImageFormat::R8 => {
assert_eq!(filter, TextureFilter::Linear);
match shader {
TargetShader::Text => {
(&mut self.alpha8_glyphs, BudgetType::SharedAlpha8Glyphs)
},
_ => (&mut self.alpha8_linear, BudgetType::SharedAlpha8),
}
}
ImageFormat::R16 => {
assert_eq!(filter, TextureFilter::Linear);
(&mut self.alpha16_linear, BudgetType::SharedAlpha16)
}
ImageFormat::RGBA8 |
ImageFormat::BGRA8 => {
match (filter, shader) {
(TextureFilter::Linear, TargetShader::Text) => {
(&mut self.color8_glyphs, BudgetType::SharedColor8Glyphs)
},
(TextureFilter::Linear, _) => {
(&mut self.color8_linear, BudgetType::SharedColor8Linear)
},
(TextureFilter::Nearest, _) => {
(&mut self.color8_nearest, BudgetType::SharedColor8Nearest)
},
_ => panic!("Unexpected filter {:?}", filter),
}
}
_ => panic!("Unexpected format {:?}", external_format),
}
}
/// How many bytes a single texture of the given type takes up, for the
/// configured texture sizes.
fn bytes_per_shared_texture(&self, budget_type: BudgetType) -> usize {
self.bytes_per_texture_of_type[budget_type as usize] as usize
}
fn has_multiple_textures(&self, budget_type: BudgetType) -> bool {
match budget_type {
BudgetType::SharedColor8Linear => self.color8_linear.allocated_textures() > 1,
BudgetType::SharedColor8Nearest => self.color8_nearest.allocated_textures() > 1,
BudgetType::SharedColor8Glyphs => self.color8_glyphs.allocated_textures() > 1,
BudgetType::SharedAlpha8 => self.alpha8_linear.allocated_textures() > 1,
BudgetType::SharedAlpha8Glyphs => self.alpha8_glyphs.allocated_textures() > 1,
BudgetType::SharedAlpha16 => self.alpha16_linear.allocated_textures() > 1,
BudgetType::Standalone => false,
}
}
}
/// Container struct for the various parameters used in cache allocation.
struct CacheAllocParams {
descriptor: ImageDescriptor,
filter: TextureFilter,
user_data: [f32; 4],
uv_rect_kind: UvRectKind,
shader: TargetShader,
}
/// Startup parameters for the texture cache.
///
/// Texture sizes must be at least 512.
#[derive(Clone)]
pub struct TextureCacheConfig {
pub color8_linear_texture_size: i32,
pub color8_nearest_texture_size: i32,
pub color8_glyph_texture_size: i32,
pub alpha8_texture_size: i32,
pub alpha8_glyph_texture_size: i32,
pub alpha16_texture_size: i32,
}
impl TextureCacheConfig {
pub const DEFAULT: Self = TextureCacheConfig {
color8_linear_texture_size: 2048,
color8_nearest_texture_size: 512,
color8_glyph_texture_size: 2048,
alpha8_texture_size: 1024,
alpha8_glyph_texture_size: 2048,
alpha16_texture_size: 512,
};
}
/// General-purpose manager for images in GPU memory. This includes images,
/// rasterized glyphs, rasterized blobs, cached render tasks, etc.
///
/// The texture cache is owned and managed by the RenderBackend thread, and
/// produces a series of commands to manipulate the textures on the Renderer
/// thread. These commands are executed before any rendering is performed for
/// a given frame.
///
/// Entries in the texture cache are not guaranteed to live past the end of the
/// frame in which they are requested, and may be evicted. The API supports
/// querying whether an entry is still available.
///
/// The TextureCache is different from the GpuCache in that the former stores
/// images, whereas the latter stores data and parameters for use in the shaders.
/// This means that the texture cache can be visualized, which is a good way to
/// understand how it works. Enabling gfx.webrender.debug.texture-cache shows a
/// live view of its contents in Firefox.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextureCache {
/// Set of texture arrays in different formats used for the shared cache.
shared_textures: SharedTextures,
/// Maximum texture size supported by hardware.
max_texture_size: i32,
/// Maximum texture size before it is considered preferable to break the
/// texture into tiles.
tiling_threshold: i32,
/// Settings on using texture unit swizzling.
swizzle: Option<SwizzleSettings>,
/// The current set of debug flags.
debug_flags: DebugFlags,
/// The next unused virtual texture ID. Monotonically increasing.
pub next_id: CacheTextureId,
/// A list of allocations and updates that need to be applied to the texture
/// cache in the rendering thread this frame.
#[cfg_attr(all(feature = "serde", any(feature = "capture", feature = "replay")), serde(skip))]
pub pending_updates: TextureUpdateList,
/// The current `FrameStamp`. Used for cache eviction policies.
now: FrameStamp,
/// Cache of texture cache handles with automatic lifetime management, evicted
/// in a least-recently-used order.
lru_cache: LRUCache<CacheEntry, AutoCacheEntryMarker>,
/// Cache of texture cache entries with manual liftime management.
manual_entries: FreeList<CacheEntry, ManualCacheEntryMarker>,
/// Strong handles for the manual_entries FreeList.
manual_handles: Vec<FreeListHandle<ManualCacheEntryMarker>>,
/// Memory usage of allocated entries in all of the shared or standalone
/// textures. Includes both manually and automatically evicted entries.
bytes_allocated: [usize ; BudgetType::COUNT],
}
impl TextureCache {
/// The maximum number of items that will be evicted per frame. This limit helps avoid jank
/// on frames where we want to evict a large number of items. Instead, we'd prefer to drop
/// the items incrementally over a number of frames, even if that means the total allocated
/// size of the cache is above the desired threshold for a small number of frames.
const MAX_EVICTIONS_PER_FRAME: usize = 32;
pub fn new(
max_texture_size: i32,
tiling_threshold: i32,
color_formats: TextureFormatPair<ImageFormat>,
swizzle: Option<SwizzleSettings>,
config: &TextureCacheConfig,
) -> Self {
let pending_updates = TextureUpdateList::new();
// Shared texture cache controls swizzling on a per-entry basis, assuming that
// the texture as a whole doesn't need to be swizzled (but only some entries do).
// It would be possible to support this, but not needed at the moment.
assert!(color_formats.internal != ImageFormat::BGRA8 ||
swizzle.map_or(true, |s| s.bgra8_sampling_swizzle == Swizzle::default())
);
let next_texture_id = CacheTextureId(1);
TextureCache {
shared_textures: SharedTextures::new(color_formats, config),
max_texture_size,
tiling_threshold,
swizzle,
debug_flags: DebugFlags::empty(),
next_id: next_texture_id,
pending_updates,
now: FrameStamp::INVALID,
lru_cache: LRUCache::new(BudgetType::COUNT),
manual_entries: FreeList::new(),
manual_handles: Vec::new(),
bytes_allocated: [0 ; BudgetType::COUNT],
}
}
/// Creates a TextureCache and sets it up with a valid `FrameStamp`, which
/// is useful for avoiding panics when instantiating the `TextureCache`
/// directly from unit test code.
#[cfg(test)]
pub fn new_for_testing(
max_texture_size: i32,
image_format: ImageFormat,
) -> Self {
let mut cache = Self::new(
max_texture_size,
max_texture_size,
TextureFormatPair::from(image_format),
None,
&TextureCacheConfig::DEFAULT,
);
let mut now = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
now.advance();
cache.begin_frame(now, &mut TransactionProfile::new());
cache
}
pub fn set_debug_flags(&mut self, flags: DebugFlags) {
self.debug_flags = flags;
}
/// Clear all entries in the texture cache. This is a fairly drastic
/// step that should only be called very rarely.
pub fn clear_all(&mut self) {
// Evict all manual eviction handles
let manual_handles = mem::replace(
&mut self.manual_handles,
Vec::new(),
);
for handle in manual_handles {
let entry = self.manual_entries.free(handle);
self.evict_impl(entry);
}
// Evict all auto (LRU) cache handles
for budget_type in BudgetType::iter() {
while let Some(entry) = self.lru_cache.pop_oldest(budget_type as u8) {
entry.evict();
self.free(&entry);
}
}
// Free the picture and shared textures
self.shared_textures.clear(&mut self.pending_updates);
self.pending_updates.note_clear();
}
/// Called at the beginning of each frame.
pub fn begin_frame(&mut self, stamp: FrameStamp, profile: &mut TransactionProfile) {
debug_assert!(!self.now.is_valid());
profile_scope!("begin_frame");
self.now = stamp;
// Texture cache eviction is done at the start of the frame. This ensures that
// we won't evict items that have been requested on this frame.
// It also frees up space in the cache for items allocated later in the frame
// potentially reducing texture allocations and fragmentation.
self.evict_items_from_cache_if_required(profile);
}
pub fn end_frame(&mut self, profile: &mut TransactionProfile) {
debug_assert!(self.now.is_valid());
let updates = &mut self.pending_updates; // To avoid referring to self in the closure.
let callback = &mut|texture_id| { updates.push_free(texture_id); };
// Release of empty shared textures is done at the end of the frame. That way, if the
// eviction at the start of the frame frees up a texture, that is then subsequently
// used during the frame, we avoid doing a free/alloc for it.
self.shared_textures.alpha8_linear.release_empty_textures(callback);
self.shared_textures.alpha8_glyphs.release_empty_textures(callback);
self.shared_textures.alpha16_linear.release_empty_textures(callback);
self.shared_textures.color8_linear.release_empty_textures(callback);
self.shared_textures.color8_nearest.release_empty_textures(callback);
self.shared_textures.color8_glyphs.release_empty_textures(callback);
for budget in BudgetType::iter() {
let threshold = self.get_eviction_threshold(budget);
let pressure = self.bytes_allocated[budget as usize] as f32 / threshold as f32;
profile.set(BudgetType::PRESSURE_COUNTERS[budget as usize], pressure);
}
profile.set(profiler::ATLAS_A8_PIXELS, self.shared_textures.alpha8_linear.allocated_space());
profile.set(profiler::ATLAS_A8_TEXTURES, self.shared_textures.alpha8_linear.allocated_textures());
profile.set(profiler::ATLAS_A8_GLYPHS_PIXELS, self.shared_textures.alpha8_glyphs.allocated_space());
profile.set(profiler::ATLAS_A8_GLYPHS_TEXTURES, self.shared_textures.alpha8_glyphs.allocated_textures());
profile.set(profiler::ATLAS_A16_PIXELS, self.shared_textures.alpha16_linear.allocated_space());
profile.set(profiler::ATLAS_A16_TEXTURES, self.shared_textures.alpha16_linear.allocated_textures());
profile.set(profiler::ATLAS_RGBA8_LINEAR_PIXELS, self.shared_textures.color8_linear.allocated_space());
profile.set(profiler::ATLAS_RGBA8_LINEAR_TEXTURES, self.shared_textures.color8_linear.allocated_textures());
profile.set(profiler::ATLAS_RGBA8_NEAREST_PIXELS, self.shared_textures.color8_nearest.allocated_space());
profile.set(profiler::ATLAS_RGBA8_NEAREST_TEXTURES, self.shared_textures.color8_nearest.allocated_textures());
profile.set(profiler::ATLAS_RGBA8_GLYPHS_PIXELS, self.shared_textures.color8_glyphs.allocated_space());
profile.set(profiler::ATLAS_RGBA8_GLYPHS_TEXTURES, self.shared_textures.color8_glyphs.allocated_textures());
let shared_bytes = [
BudgetType::SharedColor8Linear,
BudgetType::SharedColor8Nearest,
BudgetType::SharedColor8Glyphs,
BudgetType::SharedAlpha8,
BudgetType::SharedAlpha8Glyphs,
BudgetType::SharedAlpha16,
].iter().map(|b| self.bytes_allocated[*b as usize]).sum();
profile.set(profiler::ATLAS_ITEMS_MEM, profiler::bytes_to_mb(shared_bytes));
self.now = FrameStamp::INVALID;
}
pub fn run_compaction(&mut self, gpu_cache: &mut GpuCache) {
// Use the same order as BudgetType::VALUES so that we can index self.bytes_allocated
// with the same index.
let allocator_lists = [
&mut self.shared_textures.color8_linear,
&mut self.shared_textures.color8_nearest,
&mut self.shared_textures.color8_glyphs,
&mut self.shared_textures.alpha8_linear,
&mut self.shared_textures.alpha8_glyphs,
&mut self.shared_textures.alpha16_linear,
];
// Pick a texture type on which to try to run the compaction logic this frame.
let idx = self.shared_textures.next_compaction_idx;
// Number of moved pixels after which we stop attempting to move more items for this frame.
// The constant is up for adjustment, the main goal is to avoid causing frame spikes on
// low end GPUs.
let area_threshold = 512*512;
let mut changes = Vec::new();
allocator_lists[idx].try_compaction(area_threshold, &mut changes);
if changes.is_empty() {
// Nothing to do, we'll try another texture type next frame.
self.shared_textures.next_compaction_idx = (self.shared_textures.next_compaction_idx + 1) % allocator_lists.len();
}
for change in changes {
let bpp = allocator_lists[idx].texture_parameters().formats.internal.bytes_per_pixel();
// While the area of the image does not change, the area it occupies in the texture
// atlas may (in other words the number of wasted pixels can change), so we have
// to keep track of that.
let old_bytes = (change.old_rect.area() * bpp) as usize;
let new_bytes = (change.new_rect.area() * bpp) as usize;
self.bytes_allocated[idx] -= old_bytes;
self.bytes_allocated[idx] += new_bytes;
let entry = match change.handle {
TextureCacheHandle::Auto(handle) => self.lru_cache.get_opt_mut(&handle).unwrap(),
TextureCacheHandle::Manual(handle) => self.manual_entries.get_opt_mut(&handle).unwrap(),
TextureCacheHandle::Empty => { panic!("invalid handle"); }
};
entry.texture_id = change.new_tex;
entry.details = EntryDetails::Cache {
origin: change.new_rect.min,
alloc_id: change.new_id,
allocated_size_in_bytes: new_bytes,
};
gpu_cache.invalidate(&entry.uv_rect_handle);
entry.uv_rect_handle = GpuCacheHandle::new();
let src_rect = DeviceIntRect::from_origin_and_size(change.old_rect.min, entry.size);
let dst_rect = DeviceIntRect::from_origin_and_size(change.new_rect.min, entry.size);
self.pending_updates.push_copy(change.old_tex, &src_rect, change.new_tex, &dst_rect);
if self.debug_flags.contains(
DebugFlags::TEXTURE_CACHE_DBG |
DebugFlags::TEXTURE_CACHE_DBG_CLEAR_EVICTED)
{
self.pending_updates.push_debug_clear(
change.old_tex,
src_rect.min,
src_rect.width(),
src_rect.height(),
);
}
}
}
// Request an item in the texture cache. All images that will
// be used on a frame *must* have request() called on their
// handle, to update the last used timestamp and ensure
// that resources are not flushed from the cache too early.
//
// Returns true if the image needs to be uploaded to the
// texture cache (either never uploaded, or has been
// evicted on a previous frame).
pub fn request(&mut self, handle: &TextureCacheHandle, gpu_cache: &mut GpuCache) -> bool {
let now = self.now;
let entry = match handle {
TextureCacheHandle::Empty => None,
TextureCacheHandle::Auto(handle) => {
// Call touch rather than get_opt_mut so that the LRU index
// knows that the entry has been used.
self.lru_cache.touch(handle)
},
TextureCacheHandle::Manual(handle) => {
self.manual_entries.get_opt_mut(handle)
},
};
entry.map_or(true, |entry| {
// If an image is requested that is already in the cache,
// refresh the GPU cache data associated with this item.
entry.last_access = now;
entry.update_gpu_cache(gpu_cache);
false
})
}
fn get_entry_opt(&self, handle: &TextureCacheHandle) -> Option<&CacheEntry> {
match handle {
TextureCacheHandle::Empty => None,
TextureCacheHandle::Auto(handle) => self.lru_cache.get_opt(handle),
TextureCacheHandle::Manual(handle) => self.manual_entries.get_opt(handle),
}
}
fn get_entry_opt_mut(&mut self, handle: &TextureCacheHandle) -> Option<&mut CacheEntry> {
match handle {
TextureCacheHandle::Empty => None,
TextureCacheHandle::Auto(handle) => self.lru_cache.get_opt_mut(handle),
TextureCacheHandle::Manual(handle) => self.manual_entries.get_opt_mut(handle),
}
}
// Returns true if the image needs to be uploaded to the
// texture cache (either never uploaded, or has been
// evicted on a previous frame).
pub fn needs_upload(&self, handle: &TextureCacheHandle) -> bool {
!self.is_allocated(handle)
}
pub fn max_texture_size(&self) -> i32 {
self.max_texture_size
}
pub fn tiling_threshold(&self) -> i32 {
self.tiling_threshold
}
#[cfg(feature = "replay")]
pub fn color_formats(&self) -> TextureFormatPair<ImageFormat> {
self.shared_textures.color8_linear.texture_parameters().formats.clone()
}
#[cfg(feature = "replay")]
pub fn swizzle_settings(&self) -> Option<SwizzleSettings> {
self.swizzle
}
pub fn pending_updates(&mut self) -> TextureUpdateList {
mem::replace(&mut self.pending_updates, TextureUpdateList::new())
}
// Update the data stored by a given texture cache handle.
pub fn update(
&mut self,
handle: &mut TextureCacheHandle,
descriptor: ImageDescriptor,
filter: TextureFilter,
data: Option<CachedImageData>,
user_data: [f32; 4],
mut dirty_rect: ImageDirtyRect,
gpu_cache: &mut GpuCache,
eviction_notice: Option<&EvictionNotice>,
uv_rect_kind: UvRectKind,
eviction: Eviction,
shader: TargetShader,
) {
debug_assert!(self.now.is_valid());
// Determine if we need to allocate texture cache memory
// for this item. We need to reallocate if any of the following
// is true:
// - Never been in the cache
// - Has been in the cache but was evicted.
// - Exists in the cache but dimensions / format have changed.
let realloc = match self.get_entry_opt(handle) {
Some(entry) => {
entry.size != descriptor.size || (entry.input_format != descriptor.format &&
entry.alternative_input_format() != descriptor.format)
}
None => {
// Not allocated, or was previously allocated but has been evicted.
true
}
};
if realloc {
let params = CacheAllocParams { descriptor, filter, user_data, uv_rect_kind, shader };
self.allocate(¶ms, handle, eviction);
// If we reallocated, we need to upload the whole item again.
dirty_rect = DirtyRect::All;
}
let entry = self.get_entry_opt_mut(handle)
.expect("BUG: There must be an entry at this handle now");
// Install the new eviction notice for this update, if applicable.
entry.eviction_notice = eviction_notice.cloned();
entry.uv_rect_kind = uv_rect_kind;
// Invalidate the contents of the resource rect in the GPU cache.
// This ensures that the update_gpu_cache below will add
// the new information to the GPU cache.
//TODO: only invalidate if the parameters change?
gpu_cache.invalidate(&entry.uv_rect_handle);
// Upload the resource rect and texture array layer.
entry.update_gpu_cache(gpu_cache);
// Create an update command, which the render thread processes
// to upload the new image data into the correct location
// in GPU memory.
if let Some(data) = data {
// If the swizzling is supported, we always upload in the internal
// texture format (thus avoiding the conversion by the driver).
// Otherwise, pass the external format to the driver.
let origin = entry.details.describe();
let texture_id = entry.texture_id;
let size = entry.size;
let use_upload_format = self.swizzle.is_none();
let op = TextureCacheUpdate::new_update(
data,
&descriptor,
origin,
size,
use_upload_format,
&dirty_rect,
);
self.pending_updates.push_update(texture_id, op);
}
}
// Check if a given texture handle has a valid allocation
// in the texture cache.
pub fn is_allocated(&self, handle: &TextureCacheHandle) -> bool {
self.get_entry_opt(handle).is_some()
}
// Return the allocated size of the texture handle's associated data,
// or otherwise indicate the handle is invalid.
pub fn get_allocated_size(&self, handle: &TextureCacheHandle) -> Option<usize> {
self.get_entry_opt(handle).map(|entry| {
(entry.input_format.bytes_per_pixel() * entry.size.area()) as usize
})
}
// Retrieve the details of an item in the cache. This is used
// during batch creation to provide the resource rect address
// to the shaders and texture ID to the batching logic.
// This function will assert in debug modes if the caller
// tries to get a handle that was not requested this frame.
pub fn get(&self, handle: &TextureCacheHandle) -> CacheItem {
let (texture_id, uv_rect, swizzle, uv_rect_handle, user_data) = self.get_cache_location(handle);
CacheItem {
uv_rect_handle,
texture_id: TextureSource::TextureCache(
texture_id,
swizzle,
),
uv_rect,
user_data,
}
}
/// A more detailed version of get(). This allows access to the actual
/// device rect of the cache allocation.
///
/// Returns a tuple identifying the texture, the layer, the region,
/// and its GPU handle.
pub fn get_cache_location(
&self,
handle: &TextureCacheHandle,
) -> (CacheTextureId, DeviceIntRect, Swizzle, GpuCacheHandle, [f32; 4]) {
let entry = self
.get_entry_opt(handle)
.expect("BUG: was dropped from cache or not updated!");
debug_assert_eq!(entry.last_access, self.now);
let origin = entry.details.describe();
(
entry.texture_id,
DeviceIntRect::from_origin_and_size(origin, entry.size),
entry.swizzle,
entry.uv_rect_handle,
entry.user_data,
)
}
/// Internal helper function to evict a strong texture cache handle
fn evict_impl(
&mut self,
entry: CacheEntry,
) {
entry.evict();
self.free(&entry);
}
/// Evict a texture cache handle that was previously set to be in manual
/// eviction mode.
pub fn evict_handle(&mut self, handle: &TextureCacheHandle) {
match handle {
TextureCacheHandle::Manual(handle) => {
// Find the strong handle that matches this weak handle. If this
// ever shows up in profiles, we can make it a hash (but the number
// of manual eviction handles is typically small).
// Alternatively, we could make a more forgiving FreeList variant
// which does not differentiate between strong and weak handles.
let index = self.manual_handles.iter().position(|strong_handle| {
strong_handle.matches(handle)
});
if let Some(index) = index {
let handle = self.manual_handles.swap_remove(index);
let entry = self.manual_entries.free(handle);
self.evict_impl(entry);
}
}
TextureCacheHandle::Auto(handle) => {
if let Some(entry) = self.lru_cache.remove(handle) {
self.evict_impl(entry);
}
}
_ => {}
}
}
pub fn dump_color8_linear_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
self.shared_textures.color8_linear.dump_as_svg(output)
}
pub fn dump_color8_glyphs_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
self.shared_textures.color8_glyphs.dump_as_svg(output)
}
pub fn dump_alpha8_glyphs_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
self.shared_textures.alpha8_glyphs.dump_as_svg(output)
}
pub fn dump_alpha8_linear_as_svg(&self, output: &mut dyn std::io::Write) -> std::io::Result<()> {
self.shared_textures.alpha8_linear.dump_as_svg(output)
}
/// Get the eviction threshold, in bytes, for the given budget type.
fn get_eviction_threshold(&self, budget_type: BudgetType) -> usize {
if budget_type == BudgetType::Standalone {
// For standalone textures, the only reason to evict textures is
// to save GPU memory. Batching / draw call concerns do not apply
// to standalone textures, because unused textures don't cause
// extra draw calls.
return 8 * 1024 * 1024;
}
// For shared textures, evicting an entry only frees up GPU memory if it
// causes one of the shared textures to become empty, so we want to avoid
// getting slightly above the capacity of a texture.
// The other concern for shared textures is batching: The entries that
// are needed in the current frame should be distributed across as few
// shared textures as possible, to minimize the number of draw calls.
// Ideally we only want one texture per type under simple workloads.
let bytes_per_texture = self.shared_textures.bytes_per_shared_texture(budget_type);
// Number of allocated bytes under which we don't bother with evicting anything
// from the cache. Above the threshold we consider evicting the coldest items
// depending on how cold they are.
//
// Above all else we want to make sure that even after a heavy workload, the
// shared cache settles back to a single texture atlas per type over some reasonable
// period of time.
// This is achieved by the compaction logic which will try to consolidate items that
// are spread over multiple textures into few ones, and by evicting old items
// so that the compaction logic has room to do its job.
//
// The other goal is to leave enough empty space in the texture atlases
// so that we are not too likely to have to allocate a new texture atlas on
// the next frame if we switch to a new tab or load a new page. That's why
// the following thresholds are rather low. Note that even when above the threshold,
// we only evict cold items and ramp up the eviction pressure depending on the amount
// of allocated memory (See should_continue_evicting).
let ideal_utilization = match budget_type {
BudgetType::SharedAlpha8Glyphs | BudgetType::SharedColor8Glyphs => {
// Glyphs are usually small and tightly packed so they waste very little
// space in the cache.
bytes_per_texture * 2 / 3
}
_ => {
// Other types of images come with a variety of sizes making them more
// prone to wasting pixels and causing fragmentation issues so we put
// more pressure on them.
bytes_per_texture / 3
}
};
ideal_utilization
}
/// Returns whether to continue eviction and how cold an item need to be to be evicted.
///
/// If the None is returned, stop evicting.
/// If the Some(n) is returned, continue evicting if the coldest item hasn't been used
/// for more than n frames.
fn should_continue_evicting(
&self,
budget_type: BudgetType,
eviction_count: usize,
) -> Option<u64> {
let threshold = self.get_eviction_threshold(budget_type);
let bytes_allocated = self.bytes_allocated[budget_type as usize];
let uses_multiple_atlases = self.shared_textures.has_multiple_textures(budget_type);
// If current memory usage is below selected threshold, we can stop evicting items
// except when using shared texture atlases and more than one texture is in use.
// This is not very common but can happen due to fragmentation and the only way
// to get rid of that fragmentation is to continue evicting.
if bytes_allocated < threshold && !uses_multiple_atlases {
return None;
}
// Number of frames since last use that is considered too recent for eviction,
// depending on the cache pressure.
let age_theshold = match bytes_allocated / threshold {
0 => 400,
1 => 200,
2 => 100,
3 => 50,
4 => 25,
5 => 10,
6 => 5,
_ => 1,
};
// If current memory usage is significantly more than the threshold, keep evicting this frame
if bytes_allocated > 4 * threshold {
return Some(age_theshold);
}
// Otherwise, only allow evicting up to a certain number of items per frame. This allows evictions
// to be spread over a number of frames, to avoid frame spikes.
if eviction_count < Self::MAX_EVICTIONS_PER_FRAME {
return Some(age_theshold)
}
None
}
/// Evict old items from the shared and standalone caches, if we're over a
/// threshold memory usage value
fn evict_items_from_cache_if_required(&mut self, profile: &mut TransactionProfile) {
let previous_frame_id = self.now.frame_id() - 1;
let mut eviction_count = 0;
let mut youngest_evicted = FrameId::first();
for budget in BudgetType::iter() {
while let Some(age_threshold) = self.should_continue_evicting(
budget,
eviction_count,
) {
if let Some(entry) = self.lru_cache.peek_oldest(budget as u8) {
// Only evict this item if it wasn't used in the previous frame. The reason being that if it
// was used the previous frame then it will likely be used in this frame too, and we don't
// want to be continually evicting and reuploading the item every frame.
if entry.last_access.frame_id() + age_threshold > previous_frame_id {
// Since the LRU cache is ordered by frame access, we can break out of the loop here because
// we know that all remaining items were also used in the previous frame (or more recently).
break;
}
if entry.last_access.frame_id() > youngest_evicted {
youngest_evicted = entry.last_access.frame_id();
}
let entry = self.lru_cache.pop_oldest(budget as u8).unwrap();
entry.evict();
self.free(&entry);
eviction_count += 1;
} else {
// The LRU cache is empty, all remaining items use manual
// eviction. In this case, there's nothing we can do until
// the calling code manually evicts items to reduce the
// allocated cache size.
break;
}
}
}
if eviction_count > 0 {
profile.set(profiler::TEXTURE_CACHE_EVICTION_COUNT, eviction_count);
profile.set(
profiler::TEXTURE_CACHE_YOUNGEST_EVICTION,
self.now.frame_id().as_u64() - youngest_evicted.as_u64()
);
}
}
// Free a cache entry from the standalone list or shared cache.
fn free(&mut self, entry: &CacheEntry) {
match entry.details {
EntryDetails::Standalone { size_in_bytes, .. } => {
self.bytes_allocated[BudgetType::Standalone as usize] -= size_in_bytes;
// This is a standalone texture allocation. Free it directly.
self.pending_updates.push_free(entry.texture_id);
}
EntryDetails::Cache { origin, alloc_id, allocated_size_in_bytes } => {
let (allocator_list, budget_type) = self.shared_textures.select(
entry.input_format,
entry.filter,
entry.shader,
);
allocator_list.deallocate(entry.texture_id, alloc_id);
self.bytes_allocated[budget_type as usize] -= allocated_size_in_bytes;
if self.debug_flags.contains(
DebugFlags::TEXTURE_CACHE_DBG |
DebugFlags::TEXTURE_CACHE_DBG_CLEAR_EVICTED)
{
self.pending_updates.push_debug_clear(
entry.texture_id,
origin,
entry.size.width,
entry.size.height,
);
}
}
}
}
/// Allocate a block from the shared cache.
fn allocate_from_shared_cache(
&mut self,
params: &CacheAllocParams,
) -> (CacheEntry, BudgetType) {
let (allocator_list, budget_type) = self.shared_textures.select(
params.descriptor.format,
params.filter,
params.shader,
);
// To avoid referring to self in the closure.
let next_id = &mut self.next_id;
let pending_updates = &mut self.pending_updates;
let (texture_id, alloc_id, allocated_rect) = allocator_list.allocate(
params.descriptor.size,
&mut |size, parameters| {
let texture_id = *next_id;
next_id.0 += 1;
pending_updates.push_alloc(
texture_id,
TextureCacheAllocInfo {
target: ImageBufferKind::Texture2D,
width: size.width,
height: size.height,
format: parameters.formats.internal,
filter: parameters.filter,
is_shared_cache: true,
has_depth: false,
category: TextureCacheCategory::Atlas,
},
);
texture_id
},
);
let formats = &allocator_list.texture_parameters().formats;
let swizzle = if formats.external == params.descriptor.format {
Swizzle::default()
} else {
match self.swizzle {
Some(_) => Swizzle::Bgra,
None => Swizzle::default(),
}
};
let bpp = formats.internal.bytes_per_pixel();
let allocated_size_in_bytes = (allocated_rect.area() * bpp) as usize;
self.bytes_allocated[budget_type as usize] += allocated_size_in_bytes;
(CacheEntry {
size: params.descriptor.size,
user_data: params.user_data,
last_access: self.now,
details: EntryDetails::Cache {
origin: allocated_rect.min,
alloc_id,
allocated_size_in_bytes,
},
uv_rect_handle: GpuCacheHandle::new(),
input_format: params.descriptor.format,
filter: params.filter,
swizzle,
texture_id,
eviction_notice: None,
uv_rect_kind: params.uv_rect_kind,
shader: params.shader
}, budget_type)
}
// Returns true if the given image descriptor *may* be
// placed in the shared texture cache.
pub fn is_allowed_in_shared_cache(
&self,
filter: TextureFilter,
descriptor: &ImageDescriptor,
) -> bool {
let mut allowed_in_shared_cache = true;
if matches!(descriptor.format, ImageFormat::RGBA8 | ImageFormat::BGRA8)
&& filter == TextureFilter::Linear
{
// Allow the maximum that can fit in the linear color texture's two column layout.
let max = self.shared_textures.color8_linear.size() / 2;
allowed_in_shared_cache = descriptor.size.width.max(descriptor.size.height) <= max;
} else if descriptor.size.width > TEXTURE_REGION_DIMENSIONS {
allowed_in_shared_cache = false;
}
if descriptor.size.height > TEXTURE_REGION_DIMENSIONS {
allowed_in_shared_cache = false;
}
// TODO(gw): For now, alpha formats of the texture cache can only be linearly sampled.
// Nearest sampling gets a standalone texture.
// This is probably rare enough that it can be fixed up later.
if filter == TextureFilter::Nearest &&
descriptor.format.bytes_per_pixel() <= 2
{
allowed_in_shared_cache = false;
}
allowed_in_shared_cache
}
/// Allocate a render target via the pending updates sent to the renderer
pub fn alloc_render_target(
&mut self,
size: DeviceIntSize,
format: ImageFormat,
) -> CacheTextureId {
let texture_id = self.next_id;
self.next_id.0 += 1;
// Push a command to allocate device storage of the right size / format.
let info = TextureCacheAllocInfo {
target: ImageBufferKind::Texture2D,
width: size.width,
height: size.height,
format,
filter: TextureFilter::Linear,
is_shared_cache: false,
has_depth: false,
category: TextureCacheCategory::RenderTarget,
};
self.pending_updates.push_alloc(texture_id, info);
texture_id
}
/// Free an existing render target
pub fn free_render_target(
&mut self,
id: CacheTextureId,
) {
self.pending_updates.push_free(id);
}
/// Allocates a new standalone cache entry.
fn allocate_standalone_entry(
&mut self,
params: &CacheAllocParams,
) -> (CacheEntry, BudgetType) {
let texture_id = self.next_id;
self.next_id.0 += 1;
// Push a command to allocate device storage of the right size / format.
let info = TextureCacheAllocInfo {
target: ImageBufferKind::Texture2D,
width: params.descriptor.size.width,
height: params.descriptor.size.height,
format: params.descriptor.format,
filter: params.filter,
is_shared_cache: false,
has_depth: false,
category: TextureCacheCategory::Standalone,
};
let size_in_bytes = (info.width * info.height * info.format.bytes_per_pixel()) as usize;
self.bytes_allocated[BudgetType::Standalone as usize] += size_in_bytes;
self.pending_updates.push_alloc(texture_id, info);
// Special handing for BGRA8 textures that may need to be swizzled.
let swizzle = if params.descriptor.format == ImageFormat::BGRA8 {
self.swizzle.map(|s| s.bgra8_sampling_swizzle)
} else {
None
};
(CacheEntry::new_standalone(
texture_id,
self.now,
params,
swizzle.unwrap_or_default(),
size_in_bytes,
), BudgetType::Standalone)
}
/// Allocates a cache entry for the given parameters, and updates the
/// provided handle to point to the new entry.
fn allocate(
&mut self,
params: &CacheAllocParams,
handle: &mut TextureCacheHandle,
eviction: Eviction,
) {
debug_assert!(self.now.is_valid());
assert!(!params.descriptor.size.is_empty());
// If this image doesn't qualify to go in the shared (batching) cache,
// allocate a standalone entry.
let use_shared_cache = self.is_allowed_in_shared_cache(params.filter, ¶ms.descriptor);
let (new_cache_entry, budget_type) = if use_shared_cache {
self.allocate_from_shared_cache(params)
} else {
self.allocate_standalone_entry(params)
};
let details = new_cache_entry.details.clone();
let texture_id = new_cache_entry.texture_id;
// If the handle points to a valid cache entry, we want to replace the
// cache entry with our newly updated location. We also need to ensure
// that the storage (region or standalone) associated with the previous
// entry here gets freed.
//
// If the handle is invalid, we need to insert the data, and append the
// result to the corresponding vector.
let old_entry = match (&mut *handle, eviction) {
(TextureCacheHandle::Auto(handle), Eviction::Auto) => {
self.lru_cache.replace_or_insert(handle, budget_type as u8, new_cache_entry)
},
(TextureCacheHandle::Manual(handle), Eviction::Manual) => {
let entry = self.manual_entries.get_opt_mut(handle)
.expect("Don't call this after evicting");
Some(mem::replace(entry, new_cache_entry))
},
(TextureCacheHandle::Manual(_), Eviction::Auto) |
(TextureCacheHandle::Auto(_), Eviction::Manual) => {
panic!("Can't change eviction policy after initial allocation");
},
(TextureCacheHandle::Empty, Eviction::Auto) => {
let new_handle = self.lru_cache.push_new(budget_type as u8, new_cache_entry);
*handle = TextureCacheHandle::Auto(new_handle);
None
},
(TextureCacheHandle::Empty, Eviction::Manual) => {
let manual_handle = self.manual_entries.insert(new_cache_entry);
let new_handle = manual_handle.weak();
self.manual_handles.push(manual_handle);
*handle = TextureCacheHandle::Manual(new_handle);
None
},
};
if let Some(old_entry) = old_entry {
old_entry.evict();
self.free(&old_entry);
}
if let EntryDetails::Cache { alloc_id, .. } = details {
let allocator_list = self.shared_textures.select(
params.descriptor.format,
params.filter,
params.shader,
).0;
allocator_list.set_handle(texture_id, alloc_id, handle);
}
}
pub fn shared_alpha_expected_format(&self) -> ImageFormat {
self.shared_textures.alpha8_linear.texture_parameters().formats.external
}
pub fn shared_color_expected_format(&self) -> ImageFormat {
self.shared_textures.color8_linear.texture_parameters().formats.external
}
#[cfg(test)]
pub fn total_allocated_bytes_for_testing(&self) -> usize {
BudgetType::iter().map(|b| self.bytes_allocated[b as usize]).sum()
}
pub fn report_memory(&self, ops: &mut MallocSizeOfOps) -> usize {
self.lru_cache.size_of(ops)
}
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextureParameters {
pub formats: TextureFormatPair<ImageFormat>,
pub filter: TextureFilter,
}
impl TextureCacheUpdate {
// Constructs a TextureCacheUpdate operation to be passed to the
// rendering thread in order to do an upload to the right
// location in the texture cache.
fn new_update(
data: CachedImageData,
descriptor: &ImageDescriptor,
origin: DeviceIntPoint,
size: DeviceIntSize,
use_upload_format: bool,
dirty_rect: &ImageDirtyRect,
) -> TextureCacheUpdate {
let source = match data {
CachedImageData::Blob => {
panic!("The vector image should have been rasterized.");
}
CachedImageData::External(ext_image) => match ext_image.image_type {
ExternalImageType::TextureHandle(_) => {
panic!("External texture handle should not go through texture_cache.");
}
ExternalImageType::Buffer => TextureUpdateSource::External {
id: ext_image.id,
channel_index: ext_image.channel_index,
},
},
CachedImageData::Raw(bytes) => {
let finish = descriptor.offset +
descriptor.size.width * descriptor.format.bytes_per_pixel() +
(descriptor.size.height - 1) * descriptor.compute_stride();
assert!(bytes.len() >= finish as usize);
TextureUpdateSource::Bytes { data: bytes }
}
};
let format_override = if use_upload_format {
Some(descriptor.format)
} else {
None
};
match *dirty_rect {
DirtyRect::Partial(dirty) => {
// the dirty rectangle doesn't have to be within the area but has to intersect it, at least
let stride = descriptor.compute_stride();
let offset = descriptor.offset + dirty.min.y * stride + dirty.min.x * descriptor.format.bytes_per_pixel();
TextureCacheUpdate {
rect: DeviceIntRect::from_origin_and_size(
DeviceIntPoint::new(origin.x + dirty.min.x, origin.y + dirty.min.y),
DeviceIntSize::new(
dirty.width().min(size.width - dirty.min.x),
dirty.height().min(size.height - dirty.min.y),
),
),
source,
stride: Some(stride),
offset,
format_override,
}
}
DirtyRect::All => {
TextureCacheUpdate {
rect: DeviceIntRect::from_origin_and_size(origin, size),
source,
stride: descriptor.stride,
offset: descriptor.offset,
format_override,
}
}
}
}
}
#[cfg(test)]
mod test_texture_cache {
#[test]
fn check_allocation_size_balance() {
// Allocate some glyphs, observe the total allocation size, and free
// the glyphs again. Check that the total allocation size is back at the
// original value.
use crate::texture_cache::{TextureCache, TextureCacheHandle, Eviction, TargetShader};
use crate::gpu_cache::GpuCache;
use crate::device::TextureFilter;
use crate::gpu_types::UvRectKind;
use api::{ImageDescriptor, ImageDescriptorFlags, ImageFormat, DirtyRect};
use api::units::*;
use euclid::size2;
let mut texture_cache = TextureCache::new_for_testing(2048, ImageFormat::BGRA8);
let mut gpu_cache = GpuCache::new_for_testing();
let sizes: &[DeviceIntSize] = &[
size2(23, 27),
size2(15, 22),
size2(11, 5),
size2(20, 25),
size2(38, 41),
size2(11, 19),
size2(13, 21),
size2(37, 40),
size2(13, 15),
size2(14, 16),
size2(10, 9),
size2(25, 28),
];
let bytes_at_start = texture_cache.total_allocated_bytes_for_testing();
let handles: Vec<TextureCacheHandle> = sizes.iter().map(|size| {
let mut texture_cache_handle = TextureCacheHandle::invalid();
texture_cache.request(&texture_cache_handle, &mut gpu_cache);
texture_cache.update(
&mut texture_cache_handle,
ImageDescriptor {
size: *size,
stride: None,
format: ImageFormat::BGRA8,
flags: ImageDescriptorFlags::empty(),
offset: 0,
},
TextureFilter::Linear,
None,
[0.0; 4],
DirtyRect::All,
&mut gpu_cache,
None,
UvRectKind::Rect,
Eviction::Manual,
TargetShader::Text,
);
texture_cache_handle
}).collect();
let bytes_after_allocating = texture_cache.total_allocated_bytes_for_testing();
assert!(bytes_after_allocating > bytes_at_start);
for handle in handles {
texture_cache.evict_handle(&handle);
}
let bytes_at_end = texture_cache.total_allocated_bytes_for_testing();
assert_eq!(bytes_at_end, bytes_at_start);
}
}