num_complex/
lib.rs

1// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Complex numbers.
12//!
13//! ## Compatibility
14//!
15//! The `num-complex` crate is tested for rustc 1.15 and greater.
16
17#![doc(html_root_url = "https://docs.rs/num-complex/0.2")]
18#![no_std]
19
20#[cfg(any(test, feature = "std"))]
21#[cfg_attr(test, macro_use)]
22extern crate std;
23
24extern crate num_traits as traits;
25
26#[cfg(feature = "serde")]
27extern crate serde;
28
29#[cfg(feature = "rand")]
30extern crate rand;
31
32use core::fmt;
33#[cfg(test)]
34use core::hash;
35use core::iter::{Product, Sum};
36use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
37use core::str::FromStr;
38#[cfg(feature = "std")]
39use std::error::Error;
40
41use traits::{Inv, MulAdd, Num, One, Pow, Signed, Zero};
42
43#[cfg(feature = "std")]
44use traits::float::Float;
45use traits::float::FloatCore;
46
47mod cast;
48mod pow;
49
50#[cfg(feature = "rand")]
51mod crand;
52#[cfg(feature = "rand")]
53pub use crand::ComplexDistribution;
54
55// FIXME #1284: handle complex NaN & infinity etc. This
56// probably doesn't map to C's _Complex correctly.
57
58/// A complex number in Cartesian form.
59///
60/// ## Representation and Foreign Function Interface Compatibility
61///
62/// `Complex<T>` is memory layout compatible with an array `[T; 2]`.
63///
64/// Note that `Complex<F>` where F is a floating point type is **only** memory
65/// layout compatible with C's complex types, **not** necessarily calling
66/// convention compatible.  This means that for FFI you can only pass
67/// `Complex<F>` behind a pointer, not as a value.
68///
69/// ## Examples
70///
71/// Example of extern function declaration.
72///
73/// ```
74/// use num_complex::Complex;
75/// use std::os::raw::c_int;
76///
77/// extern "C" {
78///     fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
79///               x: *const Complex<f64>, incx: *const c_int,
80///               y: *mut Complex<f64>, incy: *const c_int);
81/// }
82/// ```
83#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)]
84#[repr(C)]
85pub struct Complex<T> {
86    /// Real portion of the complex number
87    pub re: T,
88    /// Imaginary portion of the complex number
89    pub im: T,
90}
91
92pub type Complex32 = Complex<f32>;
93pub type Complex64 = Complex<f64>;
94
95impl<T> Complex<T> {
96    #[cfg(has_const_fn)]
97    /// Create a new Complex
98    #[inline]
99    pub const fn new(re: T, im: T) -> Self {
100        Complex { re: re, im: im }
101    }
102
103    #[cfg(not(has_const_fn))]
104    /// Create a new Complex
105    #[inline]
106    pub fn new(re: T, im: T) -> Self {
107        Complex { re: re, im: im }
108    }
109}
110
111impl<T: Clone + Num> Complex<T> {
112    /// Returns imaginary unit
113    #[inline]
114    pub fn i() -> Self {
115        Self::new(T::zero(), T::one())
116    }
117
118    /// Returns the square of the norm (since `T` doesn't necessarily
119    /// have a sqrt function), i.e. `re^2 + im^2`.
120    #[inline]
121    pub fn norm_sqr(&self) -> T {
122        self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
123    }
124
125    /// Multiplies `self` by the scalar `t`.
126    #[inline]
127    pub fn scale(&self, t: T) -> Self {
128        Self::new(self.re.clone() * t.clone(), self.im.clone() * t)
129    }
130
131    /// Divides `self` by the scalar `t`.
132    #[inline]
133    pub fn unscale(&self, t: T) -> Self {
134        Self::new(self.re.clone() / t.clone(), self.im.clone() / t)
135    }
136
137    /// Raises `self` to an unsigned integer power.
138    #[inline]
139    pub fn powu(&self, exp: u32) -> Self {
140        Pow::pow(self, exp)
141    }
142}
143
144impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
145    /// Returns the complex conjugate. i.e. `re - i im`
146    #[inline]
147    pub fn conj(&self) -> Self {
148        Self::new(self.re.clone(), -self.im.clone())
149    }
150
151    /// Returns `1/self`
152    #[inline]
153    pub fn inv(&self) -> Self {
154        let norm_sqr = self.norm_sqr();
155        Self::new(
156            self.re.clone() / norm_sqr.clone(),
157            -self.im.clone() / norm_sqr,
158        )
159    }
160
161    /// Raises `self` to a signed integer power.
162    #[inline]
163    pub fn powi(&self, exp: i32) -> Self {
164        Pow::pow(self, exp)
165    }
166}
167
168impl<T: Clone + Signed> Complex<T> {
169    /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
170    ///
171    /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
172    #[inline]
173    pub fn l1_norm(&self) -> T {
174        self.re.abs() + self.im.abs()
175    }
176}
177
178#[cfg(feature = "std")]
179impl<T: Clone + Float> Complex<T> {
180    /// Calculate |self|
181    #[inline]
182    pub fn norm(&self) -> T {
183        self.re.hypot(self.im)
184    }
185    /// Calculate the principal Arg of self.
186    #[inline]
187    pub fn arg(&self) -> T {
188        self.im.atan2(self.re)
189    }
190    /// Convert to polar form (r, theta), such that
191    /// `self = r * exp(i * theta)`
192    #[inline]
193    pub fn to_polar(&self) -> (T, T) {
194        (self.norm(), self.arg())
195    }
196    /// Convert a polar representation into a complex number.
197    #[inline]
198    pub fn from_polar(r: &T, theta: &T) -> Self {
199        Self::new(*r * theta.cos(), *r * theta.sin())
200    }
201
202    /// Computes `e^(self)`, where `e` is the base of the natural logarithm.
203    #[inline]
204    pub fn exp(&self) -> Self {
205        // formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
206        // = from_polar(e^a, b)
207        Self::from_polar(&self.re.exp(), &self.im)
208    }
209
210    /// Computes the principal value of natural logarithm of `self`.
211    ///
212    /// This function has one branch cut:
213    ///
214    /// * `(-∞, 0]`, continuous from above.
215    ///
216    /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`.
217    #[inline]
218    pub fn ln(&self) -> Self {
219        // formula: ln(z) = ln|z| + i*arg(z)
220        let (r, theta) = self.to_polar();
221        Self::new(r.ln(), theta)
222    }
223
224    /// Computes the principal value of the square root of `self`.
225    ///
226    /// This function has one branch cut:
227    ///
228    /// * `(-∞, 0)`, continuous from above.
229    ///
230    /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`.
231    #[inline]
232    pub fn sqrt(&self) -> Self {
233        if self.im.is_zero() {
234            if self.re.is_sign_positive() {
235                // simple positive real √r, and copy `im` for its sign
236                Self::new(self.re.sqrt(), self.im)
237            } else {
238                // √(r e^(iπ)) = √r e^(iπ/2) = i√r
239                // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r
240                let re = T::zero();
241                let im = (-self.re).sqrt();
242                if self.im.is_sign_positive() {
243                    Self::new(re, im)
244                } else {
245                    Self::new(re, -im)
246                }
247            }
248        } else if self.re.is_zero() {
249            // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2)
250            // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2)
251            let one = T::one();
252            let two = one + one;
253            let x = (self.im.abs() / two).sqrt();
254            if self.im.is_sign_positive() {
255                Self::new(x, x)
256            } else {
257                Self::new(x, -x)
258            }
259        } else {
260            // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2)
261            let one = T::one();
262            let two = one + one;
263            let (r, theta) = self.to_polar();
264            Self::from_polar(&(r.sqrt()), &(theta / two))
265        }
266    }
267
268    /// Computes the principal value of the cube root of `self`.
269    ///
270    /// This function has one branch cut:
271    ///
272    /// * `(-∞, 0)`, continuous from above.
273    ///
274    /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`.
275    ///
276    /// Note that this does not match the usual result for the cube root of
277    /// negative real numbers. For example, the real cube root of `-8` is `-2`,
278    /// but the principal complex cube root of `-8` is `1 + i√3`.
279    #[inline]
280    pub fn cbrt(&self) -> Self {
281        if self.im.is_zero() {
282            if self.re.is_sign_positive() {
283                // simple positive real ∛r, and copy `im` for its sign
284                Self::new(self.re.cbrt(), self.im)
285            } else {
286                // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2
287                // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2
288                let one = T::one();
289                let two = one + one;
290                let three = two + one;
291                let re = (-self.re).cbrt() / two;
292                let im = three.sqrt() * re;
293                if self.im.is_sign_positive() {
294                    Self::new(re, im)
295                } else {
296                    Self::new(re, -im)
297                }
298            }
299        } else if self.re.is_zero() {
300            // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2
301            // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2
302            let one = T::one();
303            let two = one + one;
304            let three = two + one;
305            let im = self.im.abs().cbrt() / two;
306            let re = three.sqrt() * im;
307            if self.im.is_sign_positive() {
308                Self::new(re, im)
309            } else {
310                Self::new(re, -im)
311            }
312        } else {
313            // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3)
314            let one = T::one();
315            let three = one + one + one;
316            let (r, theta) = self.to_polar();
317            Self::from_polar(&(r.cbrt()), &(theta / three))
318        }
319    }
320
321    /// Raises `self` to a floating point power.
322    #[inline]
323    pub fn powf(&self, exp: T) -> Self {
324        // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
325        // = from_polar(ρ^y, θ y)
326        let (r, theta) = self.to_polar();
327        Self::from_polar(&r.powf(exp), &(theta * exp))
328    }
329
330    /// Returns the logarithm of `self` with respect to an arbitrary base.
331    #[inline]
332    pub fn log(&self, base: T) -> Self {
333        // formula: log_y(x) = log_y(ρ e^(i θ))
334        // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
335        // = log_y(ρ) + i θ / ln(y)
336        let (r, theta) = self.to_polar();
337        Self::new(r.log(base), theta / base.ln())
338    }
339
340    /// Raises `self` to a complex power.
341    #[inline]
342    pub fn powc(&self, exp: Self) -> Self {
343        // formula: x^y = (a + i b)^(c + i d)
344        // = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
345        //    where ρ=|x| and θ=arg(x)
346        // = ρ^c e^(−d θ) e^(i c θ) ρ^(i d)
347        // = p^c e^(−d θ) (cos(c θ)
348        //   + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
349        // = p^c e^(−d θ) (
350        //   cos(c θ) cos(d ln(ρ)) − sin(c θ) sin(d ln(ρ))
351        //   + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ))))
352        // = p^c e^(−d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ)))
353        // = from_polar(p^c e^(−d θ), c θ + d ln(ρ))
354        let (r, theta) = self.to_polar();
355        Self::from_polar(
356            &(r.powf(exp.re) * (-exp.im * theta).exp()),
357            &(exp.re * theta + exp.im * r.ln()),
358        )
359    }
360
361    /// Raises a floating point number to the complex power `self`.
362    #[inline]
363    pub fn expf(&self, base: T) -> Self {
364        // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
365        // = from_polar(x^a, b ln(x))
366        Self::from_polar(&base.powf(self.re), &(self.im * base.ln()))
367    }
368
369    /// Computes the sine of `self`.
370    #[inline]
371    pub fn sin(&self) -> Self {
372        // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b)
373        Self::new(
374            self.re.sin() * self.im.cosh(),
375            self.re.cos() * self.im.sinh(),
376        )
377    }
378
379    /// Computes the cosine of `self`.
380    #[inline]
381    pub fn cos(&self) -> Self {
382        // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b)
383        Self::new(
384            self.re.cos() * self.im.cosh(),
385            -self.re.sin() * self.im.sinh(),
386        )
387    }
388
389    /// Computes the tangent of `self`.
390    #[inline]
391    pub fn tan(&self) -> Self {
392        // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b))
393        let (two_re, two_im) = (self.re + self.re, self.im + self.im);
394        Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh())
395    }
396
397    /// Computes the principal value of the inverse sine of `self`.
398    ///
399    /// This function has two branch cuts:
400    ///
401    /// * `(-∞, -1)`, continuous from above.
402    /// * `(1, ∞)`, continuous from below.
403    ///
404    /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`.
405    #[inline]
406    pub fn asin(&self) -> Self {
407        // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
408        let i = Self::i();
409        -i * ((Self::one() - self * self).sqrt() + i * self).ln()
410    }
411
412    /// Computes the principal value of the inverse cosine of `self`.
413    ///
414    /// This function has two branch cuts:
415    ///
416    /// * `(-∞, -1)`, continuous from above.
417    /// * `(1, ∞)`, continuous from below.
418    ///
419    /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`.
420    #[inline]
421    pub fn acos(&self) -> Self {
422        // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
423        let i = Self::i();
424        -i * (i * (Self::one() - self * self).sqrt() + self).ln()
425    }
426
427    /// Computes the principal value of the inverse tangent of `self`.
428    ///
429    /// This function has two branch cuts:
430    ///
431    /// * `(-∞i, -i]`, continuous from the left.
432    /// * `[i, ∞i)`, continuous from the right.
433    ///
434    /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`.
435    #[inline]
436    pub fn atan(&self) -> Self {
437        // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
438        let i = Self::i();
439        let one = Self::one();
440        let two = one + one;
441        if *self == i {
442            return Self::new(T::zero(), T::infinity());
443        } else if *self == -i {
444            return Self::new(T::zero(), -T::infinity());
445        }
446        ((one + i * self).ln() - (one - i * self).ln()) / (two * i)
447    }
448
449    /// Computes the hyperbolic sine of `self`.
450    #[inline]
451    pub fn sinh(&self) -> Self {
452        // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b)
453        Self::new(
454            self.re.sinh() * self.im.cos(),
455            self.re.cosh() * self.im.sin(),
456        )
457    }
458
459    /// Computes the hyperbolic cosine of `self`.
460    #[inline]
461    pub fn cosh(&self) -> Self {
462        // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b)
463        Self::new(
464            self.re.cosh() * self.im.cos(),
465            self.re.sinh() * self.im.sin(),
466        )
467    }
468
469    /// Computes the hyperbolic tangent of `self`.
470    #[inline]
471    pub fn tanh(&self) -> Self {
472        // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b))
473        let (two_re, two_im) = (self.re + self.re, self.im + self.im);
474        Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos())
475    }
476
477    /// Computes the principal value of inverse hyperbolic sine of `self`.
478    ///
479    /// This function has two branch cuts:
480    ///
481    /// * `(-∞i, -i)`, continuous from the left.
482    /// * `(i, ∞i)`, continuous from the right.
483    ///
484    /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`.
485    #[inline]
486    pub fn asinh(&self) -> Self {
487        // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
488        let one = Self::one();
489        (self + (one + self * self).sqrt()).ln()
490    }
491
492    /// Computes the principal value of inverse hyperbolic cosine of `self`.
493    ///
494    /// This function has one branch cut:
495    ///
496    /// * `(-∞, 1)`, continuous from above.
497    ///
498    /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`.
499    #[inline]
500    pub fn acosh(&self) -> Self {
501        // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2))
502        let one = Self::one();
503        let two = one + one;
504        two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln()
505    }
506
507    /// Computes the principal value of inverse hyperbolic tangent of `self`.
508    ///
509    /// This function has two branch cuts:
510    ///
511    /// * `(-∞, -1]`, continuous from above.
512    /// * `[1, ∞)`, continuous from below.
513    ///
514    /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`.
515    #[inline]
516    pub fn atanh(&self) -> Self {
517        // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2
518        let one = Self::one();
519        let two = one + one;
520        if *self == one {
521            return Self::new(T::infinity(), T::zero());
522        } else if *self == -one {
523            return Self::new(-T::infinity(), T::zero());
524        }
525        ((one + self).ln() - (one - self).ln()) / two
526    }
527
528    /// Returns `1/self` using floating-point operations.
529    ///
530    /// This may be more accurate than the generic `self.inv()` in cases
531    /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0.
532    ///
533    /// # Examples
534    ///
535    /// ```
536    /// use num_complex::Complex64;
537    /// let c = Complex64::new(1e300, 1e300);
538    ///
539    /// // The generic `inv()` will overflow.
540    /// assert!(!c.inv().is_normal());
541    ///
542    /// // But we can do better for `Float` types.
543    /// let inv = c.finv();
544    /// assert!(inv.is_normal());
545    /// println!("{:e}", inv);
546    ///
547    /// let expected = Complex64::new(5e-301, -5e-301);
548    /// assert!((inv - expected).norm() < 1e-315);
549    /// ```
550    #[inline]
551    pub fn finv(&self) -> Complex<T> {
552        let norm = self.norm();
553        self.conj() / norm / norm
554    }
555
556    /// Returns `self/other` using floating-point operations.
557    ///
558    /// This may be more accurate than the generic `Div` implementation in cases
559    /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0.
560    ///
561    /// # Examples
562    ///
563    /// ```
564    /// use num_complex::Complex64;
565    /// let a = Complex64::new(2.0, 3.0);
566    /// let b = Complex64::new(1e300, 1e300);
567    ///
568    /// // Generic division will overflow.
569    /// assert!(!(a / b).is_normal());
570    ///
571    /// // But we can do better for `Float` types.
572    /// let quotient = a.fdiv(b);
573    /// assert!(quotient.is_normal());
574    /// println!("{:e}", quotient);
575    ///
576    /// let expected = Complex64::new(2.5e-300, 5e-301);
577    /// assert!((quotient - expected).norm() < 1e-315);
578    /// ```
579    #[inline]
580    pub fn fdiv(&self, other: Complex<T>) -> Complex<T> {
581        self * other.finv()
582    }
583}
584
585impl<T: Clone + FloatCore> Complex<T> {
586    /// Checks if the given complex number is NaN
587    #[inline]
588    pub fn is_nan(self) -> bool {
589        self.re.is_nan() || self.im.is_nan()
590    }
591
592    /// Checks if the given complex number is infinite
593    #[inline]
594    pub fn is_infinite(self) -> bool {
595        !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
596    }
597
598    /// Checks if the given complex number is finite
599    #[inline]
600    pub fn is_finite(self) -> bool {
601        self.re.is_finite() && self.im.is_finite()
602    }
603
604    /// Checks if the given complex number is normal
605    #[inline]
606    pub fn is_normal(self) -> bool {
607        self.re.is_normal() && self.im.is_normal()
608    }
609}
610
611impl<T: Clone + Num> From<T> for Complex<T> {
612    #[inline]
613    fn from(re: T) -> Self {
614        Self::new(re, T::zero())
615    }
616}
617
618impl<'a, T: Clone + Num> From<&'a T> for Complex<T> {
619    #[inline]
620    fn from(re: &T) -> Self {
621        From::from(re.clone())
622    }
623}
624
625macro_rules! forward_ref_ref_binop {
626    (impl $imp:ident, $method:ident) => {
627        impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> {
628            type Output = Complex<T>;
629
630            #[inline]
631            fn $method(self, other: &Complex<T>) -> Self::Output {
632                self.clone().$method(other.clone())
633            }
634        }
635    };
636}
637
638macro_rules! forward_ref_val_binop {
639    (impl $imp:ident, $method:ident) => {
640        impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
641            type Output = Complex<T>;
642
643            #[inline]
644            fn $method(self, other: Complex<T>) -> Self::Output {
645                self.clone().$method(other)
646            }
647        }
648    };
649}
650
651macro_rules! forward_val_ref_binop {
652    (impl $imp:ident, $method:ident) => {
653        impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
654            type Output = Complex<T>;
655
656            #[inline]
657            fn $method(self, other: &Complex<T>) -> Self::Output {
658                self.$method(other.clone())
659            }
660        }
661    };
662}
663
664macro_rules! forward_all_binop {
665    (impl $imp:ident, $method:ident) => {
666        forward_ref_ref_binop!(impl $imp, $method);
667        forward_ref_val_binop!(impl $imp, $method);
668        forward_val_ref_binop!(impl $imp, $method);
669    };
670}
671
672/* arithmetic */
673forward_all_binop!(impl Add, add);
674
675// (a + i b) + (c + i d) == (a + c) + i (b + d)
676impl<T: Clone + Num> Add<Complex<T>> for Complex<T> {
677    type Output = Self;
678
679    #[inline]
680    fn add(self, other: Self) -> Self::Output {
681        Self::Output::new(self.re + other.re, self.im + other.im)
682    }
683}
684
685forward_all_binop!(impl Sub, sub);
686
687// (a + i b) - (c + i d) == (a - c) + i (b - d)
688impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> {
689    type Output = Self;
690
691    #[inline]
692    fn sub(self, other: Self) -> Self::Output {
693        Self::Output::new(self.re - other.re, self.im - other.im)
694    }
695}
696
697forward_all_binop!(impl Mul, mul);
698
699// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
700impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> {
701    type Output = Self;
702
703    #[inline]
704    fn mul(self, other: Self) -> Self::Output {
705        let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone();
706        let im = self.re * other.im + self.im * other.re;
707        Self::Output::new(re, im)
708    }
709}
710
711// (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f))
712impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> {
713    type Output = Complex<T>;
714
715    #[inline]
716    fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> {
717        let re = self.re.clone().mul_add(other.re.clone(), add.re)
718            - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust
719        let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im));
720        Complex::new(re, im)
721    }
722}
723impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> {
724    type Output = Complex<T>;
725
726    #[inline]
727    fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> {
728        self.clone().mul_add(other.clone(), add.clone())
729    }
730}
731
732forward_all_binop!(impl Div, div);
733
734// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
735//   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
736impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
737    type Output = Self;
738
739    #[inline]
740    fn div(self, other: Self) -> Self::Output {
741        let norm_sqr = other.norm_sqr();
742        let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone();
743        let im = self.im * other.re - self.re * other.im;
744        Self::Output::new(re / norm_sqr.clone(), im / norm_sqr)
745    }
746}
747
748forward_all_binop!(impl Rem, rem);
749
750// Attempts to identify the gaussian integer whose product with `modulus`
751// is closest to `self`.
752impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
753    type Output = Self;
754
755    #[inline]
756    fn rem(self, modulus: Self) -> Self::Output {
757        let Complex { re, im } = self.clone() / modulus.clone();
758        // This is the gaussian integer corresponding to the true ratio
759        // rounded towards zero.
760        let (re0, im0) = (re.clone() - re % T::one(), im.clone() - im % T::one());
761        self - modulus * Self::Output::new(re0, im0)
762    }
763}
764
765// Op Assign
766
767mod opassign {
768    use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
769
770    use traits::{MulAddAssign, NumAssign};
771
772    use Complex;
773
774    impl<T: Clone + NumAssign> AddAssign for Complex<T> {
775        fn add_assign(&mut self, other: Self) {
776            self.re += other.re;
777            self.im += other.im;
778        }
779    }
780
781    impl<T: Clone + NumAssign> SubAssign for Complex<T> {
782        fn sub_assign(&mut self, other: Self) {
783            self.re -= other.re;
784            self.im -= other.im;
785        }
786    }
787
788    impl<T: Clone + NumAssign> MulAssign for Complex<T> {
789        fn mul_assign(&mut self, other: Self) {
790            *self = self.clone() * other;
791        }
792    }
793
794    // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f))
795    impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> {
796        fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) {
797            let a = self.re.clone();
798
799            self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e)
800            self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d)
801
802            let mut adf = a;
803            adf.mul_add_assign(other.im, add.im); // (a*d + f)
804            self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f))
805        }
806    }
807
808    impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>>
809        for Complex<T>
810    {
811        fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) {
812            self.mul_add_assign(other.clone(), add.clone());
813        }
814    }
815
816    impl<T: Clone + NumAssign> DivAssign for Complex<T> {
817        fn div_assign(&mut self, other: Self) {
818            *self = self.clone() / other;
819        }
820    }
821
822    impl<T: Clone + NumAssign> RemAssign for Complex<T> {
823        fn rem_assign(&mut self, other: Self) {
824            *self = self.clone() % other;
825        }
826    }
827
828    impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
829        fn add_assign(&mut self, other: T) {
830            self.re += other;
831        }
832    }
833
834    impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> {
835        fn sub_assign(&mut self, other: T) {
836            self.re -= other;
837        }
838    }
839
840    impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> {
841        fn mul_assign(&mut self, other: T) {
842            self.re *= other.clone();
843            self.im *= other;
844        }
845    }
846
847    impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> {
848        fn div_assign(&mut self, other: T) {
849            self.re /= other.clone();
850            self.im /= other;
851        }
852    }
853
854    impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
855        fn rem_assign(&mut self, other: T) {
856            *self = self.clone() % other;
857        }
858    }
859
860    macro_rules! forward_op_assign {
861        (impl $imp:ident, $method:ident) => {
862            impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
863                #[inline]
864                fn $method(&mut self, other: &Self) {
865                    self.$method(other.clone())
866                }
867            }
868            impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> {
869                #[inline]
870                fn $method(&mut self, other: &T) {
871                    self.$method(other.clone())
872                }
873            }
874        };
875    }
876
877    forward_op_assign!(impl AddAssign, add_assign);
878    forward_op_assign!(impl SubAssign, sub_assign);
879    forward_op_assign!(impl MulAssign, mul_assign);
880    forward_op_assign!(impl DivAssign, div_assign);
881
882    impl<'a, T: Clone + NumAssign> RemAssign<&'a Complex<T>> for Complex<T> {
883        #[inline]
884        fn rem_assign(&mut self, other: &Self) {
885            self.rem_assign(other.clone())
886        }
887    }
888    impl<'a, T: Clone + NumAssign> RemAssign<&'a T> for Complex<T> {
889        #[inline]
890        fn rem_assign(&mut self, other: &T) {
891            self.rem_assign(other.clone())
892        }
893    }
894}
895
896impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
897    type Output = Self;
898
899    #[inline]
900    fn neg(self) -> Self::Output {
901        Self::Output::new(-self.re, -self.im)
902    }
903}
904
905impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
906    type Output = Complex<T>;
907
908    #[inline]
909    fn neg(self) -> Self::Output {
910        -self.clone()
911    }
912}
913
914impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> {
915    type Output = Self;
916
917    #[inline]
918    fn inv(self) -> Self::Output {
919        (&self).inv()
920    }
921}
922
923impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> {
924    type Output = Complex<T>;
925
926    #[inline]
927    fn inv(self) -> Self::Output {
928        self.inv()
929    }
930}
931
932macro_rules! real_arithmetic {
933    (@forward $imp:ident::$method:ident for $($real:ident),*) => (
934        impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> {
935            type Output = Complex<T>;
936
937            #[inline]
938            fn $method(self, other: &T) -> Self::Output {
939                self.$method(other.clone())
940            }
941        }
942        impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> {
943            type Output = Complex<T>;
944
945            #[inline]
946            fn $method(self, other: T) -> Self::Output {
947                self.clone().$method(other)
948            }
949        }
950        impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> {
951            type Output = Complex<T>;
952
953            #[inline]
954            fn $method(self, other: &T) -> Self::Output {
955                self.clone().$method(other.clone())
956            }
957        }
958        $(
959            impl<'a> $imp<&'a Complex<$real>> for $real {
960                type Output = Complex<$real>;
961
962                #[inline]
963                fn $method(self, other: &Complex<$real>) -> Complex<$real> {
964                    self.$method(other.clone())
965                }
966            }
967            impl<'a> $imp<Complex<$real>> for &'a $real {
968                type Output = Complex<$real>;
969
970                #[inline]
971                fn $method(self, other: Complex<$real>) -> Complex<$real> {
972                    self.clone().$method(other)
973                }
974            }
975            impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real {
976                type Output = Complex<$real>;
977
978                #[inline]
979                fn $method(self, other: &Complex<$real>) -> Complex<$real> {
980                    self.clone().$method(other.clone())
981                }
982            }
983        )*
984    );
985    ($($real:ident),*) => (
986        real_arithmetic!(@forward Add::add for $($real),*);
987        real_arithmetic!(@forward Sub::sub for $($real),*);
988        real_arithmetic!(@forward Mul::mul for $($real),*);
989        real_arithmetic!(@forward Div::div for $($real),*);
990        real_arithmetic!(@forward Rem::rem for $($real),*);
991
992        $(
993            impl Add<Complex<$real>> for $real {
994                type Output = Complex<$real>;
995
996                #[inline]
997                fn add(self, other: Complex<$real>) -> Self::Output {
998                    Self::Output::new(self + other.re, other.im)
999                }
1000            }
1001
1002            impl Sub<Complex<$real>> for $real {
1003                type Output = Complex<$real>;
1004
1005                #[inline]
1006                fn sub(self, other: Complex<$real>) -> Self::Output  {
1007                    Self::Output::new(self - other.re, $real::zero() - other.im)
1008                }
1009            }
1010
1011            impl Mul<Complex<$real>> for $real {
1012                type Output = Complex<$real>;
1013
1014                #[inline]
1015                fn mul(self, other: Complex<$real>) -> Self::Output {
1016                    Self::Output::new(self * other.re, self * other.im)
1017                }
1018            }
1019
1020            impl Div<Complex<$real>> for $real {
1021                type Output = Complex<$real>;
1022
1023                #[inline]
1024                fn div(self, other: Complex<$real>) -> Self::Output {
1025                    // a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
1026                    let norm_sqr = other.norm_sqr();
1027                    Self::Output::new(self * other.re / norm_sqr.clone(),
1028                                      $real::zero() - self * other.im / norm_sqr)
1029                }
1030            }
1031
1032            impl Rem<Complex<$real>> for $real {
1033                type Output = Complex<$real>;
1034
1035                #[inline]
1036                fn rem(self, other: Complex<$real>) -> Self::Output {
1037                    Self::Output::new(self, Self::zero()) % other
1038                }
1039            }
1040        )*
1041    );
1042}
1043
1044impl<T: Clone + Num> Add<T> for Complex<T> {
1045    type Output = Complex<T>;
1046
1047    #[inline]
1048    fn add(self, other: T) -> Self::Output {
1049        Self::Output::new(self.re + other, self.im)
1050    }
1051}
1052
1053impl<T: Clone + Num> Sub<T> for Complex<T> {
1054    type Output = Complex<T>;
1055
1056    #[inline]
1057    fn sub(self, other: T) -> Self::Output {
1058        Self::Output::new(self.re - other, self.im)
1059    }
1060}
1061
1062impl<T: Clone + Num> Mul<T> for Complex<T> {
1063    type Output = Complex<T>;
1064
1065    #[inline]
1066    fn mul(self, other: T) -> Self::Output {
1067        Self::Output::new(self.re * other.clone(), self.im * other)
1068    }
1069}
1070
1071impl<T: Clone + Num> Div<T> for Complex<T> {
1072    type Output = Self;
1073
1074    #[inline]
1075    fn div(self, other: T) -> Self::Output {
1076        Self::Output::new(self.re / other.clone(), self.im / other)
1077    }
1078}
1079
1080impl<T: Clone + Num> Rem<T> for Complex<T> {
1081    type Output = Complex<T>;
1082
1083    #[inline]
1084    fn rem(self, other: T) -> Self::Output {
1085        Self::Output::new(self.re % other.clone(), self.im % other)
1086    }
1087}
1088
1089#[cfg(not(has_i128))]
1090real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64);
1091#[cfg(has_i128)]
1092real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64);
1093
1094/* constants */
1095impl<T: Clone + Num> Zero for Complex<T> {
1096    #[inline]
1097    fn zero() -> Self {
1098        Self::new(Zero::zero(), Zero::zero())
1099    }
1100
1101    #[inline]
1102    fn is_zero(&self) -> bool {
1103        self.re.is_zero() && self.im.is_zero()
1104    }
1105
1106    #[inline]
1107    fn set_zero(&mut self) {
1108        self.re.set_zero();
1109        self.im.set_zero();
1110    }
1111}
1112
1113impl<T: Clone + Num> One for Complex<T> {
1114    #[inline]
1115    fn one() -> Self {
1116        Self::new(One::one(), Zero::zero())
1117    }
1118
1119    #[inline]
1120    fn is_one(&self) -> bool {
1121        self.re.is_one() && self.im.is_zero()
1122    }
1123
1124    #[inline]
1125    fn set_one(&mut self) {
1126        self.re.set_one();
1127        self.im.set_zero();
1128    }
1129}
1130
1131macro_rules! write_complex {
1132    ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{
1133        let abs_re = if $re < Zero::zero() {
1134            $T::zero() - $re.clone()
1135        } else {
1136            $re.clone()
1137        };
1138        let abs_im = if $im < Zero::zero() {
1139            $T::zero() - $im.clone()
1140        } else {
1141            $im.clone()
1142        };
1143
1144        return if let Some(prec) = $f.precision() {
1145            fmt_re_im(
1146                $f,
1147                $re < $T::zero(),
1148                $im < $T::zero(),
1149                format_args!(concat!("{:.1$", $t, "}"), abs_re, prec),
1150                format_args!(concat!("{:.1$", $t, "}"), abs_im, prec),
1151            )
1152        } else {
1153            fmt_re_im(
1154                $f,
1155                $re < $T::zero(),
1156                $im < $T::zero(),
1157                format_args!(concat!("{:", $t, "}"), abs_re),
1158                format_args!(concat!("{:", $t, "}"), abs_im),
1159            )
1160        };
1161
1162        fn fmt_re_im(
1163            f: &mut fmt::Formatter,
1164            re_neg: bool,
1165            im_neg: bool,
1166            real: fmt::Arguments,
1167            imag: fmt::Arguments,
1168        ) -> fmt::Result {
1169            let prefix = if f.alternate() { $prefix } else { "" };
1170            let sign = if re_neg {
1171                "-"
1172            } else if f.sign_plus() {
1173                "+"
1174            } else {
1175                ""
1176            };
1177
1178            if im_neg {
1179                fmt_complex(
1180                    f,
1181                    format_args!(
1182                        "{}{pre}{re}-{pre}{im}i",
1183                        sign,
1184                        re = real,
1185                        im = imag,
1186                        pre = prefix
1187                    ),
1188                )
1189            } else {
1190                fmt_complex(
1191                    f,
1192                    format_args!(
1193                        "{}{pre}{re}+{pre}{im}i",
1194                        sign,
1195                        re = real,
1196                        im = imag,
1197                        pre = prefix
1198                    ),
1199                )
1200            }
1201        }
1202
1203        #[cfg(feature = "std")]
1204        // Currently, we can only apply width using an intermediate `String` (and thus `std`)
1205        fn fmt_complex(f: &mut fmt::Formatter, complex: fmt::Arguments) -> fmt::Result {
1206            use std::string::ToString;
1207            if let Some(width) = f.width() {
1208                write!(f, "{0: >1$}", complex.to_string(), width)
1209            } else {
1210                write!(f, "{}", complex)
1211            }
1212        }
1213
1214        #[cfg(not(feature = "std"))]
1215        fn fmt_complex(f: &mut fmt::Formatter, complex: fmt::Arguments) -> fmt::Result {
1216            write!(f, "{}", complex)
1217        }
1218    }};
1219}
1220
1221/* string conversions */
1222impl<T> fmt::Display for Complex<T>
1223where
1224    T: fmt::Display + Num + PartialOrd + Clone,
1225{
1226    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1227        write_complex!(f, "", "", self.re, self.im, T)
1228    }
1229}
1230
1231impl<T> fmt::LowerExp for Complex<T>
1232where
1233    T: fmt::LowerExp + Num + PartialOrd + Clone,
1234{
1235    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1236        write_complex!(f, "e", "", self.re, self.im, T)
1237    }
1238}
1239
1240impl<T> fmt::UpperExp for Complex<T>
1241where
1242    T: fmt::UpperExp + Num + PartialOrd + Clone,
1243{
1244    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1245        write_complex!(f, "E", "", self.re, self.im, T)
1246    }
1247}
1248
1249impl<T> fmt::LowerHex for Complex<T>
1250where
1251    T: fmt::LowerHex + Num + PartialOrd + Clone,
1252{
1253    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1254        write_complex!(f, "x", "0x", self.re, self.im, T)
1255    }
1256}
1257
1258impl<T> fmt::UpperHex for Complex<T>
1259where
1260    T: fmt::UpperHex + Num + PartialOrd + Clone,
1261{
1262    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1263        write_complex!(f, "X", "0x", self.re, self.im, T)
1264    }
1265}
1266
1267impl<T> fmt::Octal for Complex<T>
1268where
1269    T: fmt::Octal + Num + PartialOrd + Clone,
1270{
1271    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1272        write_complex!(f, "o", "0o", self.re, self.im, T)
1273    }
1274}
1275
1276impl<T> fmt::Binary for Complex<T>
1277where
1278    T: fmt::Binary + Num + PartialOrd + Clone,
1279{
1280    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1281        write_complex!(f, "b", "0b", self.re, self.im, T)
1282    }
1283}
1284
1285#[allow(deprecated)] // `trim_left_matches` and `trim_right_matches` since 1.33
1286fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
1287where
1288    F: Fn(&str) -> Result<T, E>,
1289    T: Clone + Num,
1290{
1291    #[cfg(not(feature = "std"))]
1292    #[inline]
1293    fn is_whitespace(c: char) -> bool {
1294        match c {
1295            ' ' | '\x09'...'\x0d' => true,
1296            _ if c > '\x7f' => match c {
1297                '\u{0085}' | '\u{00a0}' | '\u{1680}' => true,
1298                '\u{2000}'...'\u{200a}' => true,
1299                '\u{2028}' | '\u{2029}' | '\u{202f}' | '\u{205f}' => true,
1300                '\u{3000}' => true,
1301                _ => false,
1302            },
1303            _ => false,
1304        }
1305    }
1306
1307    #[cfg(feature = "std")]
1308    let is_whitespace = char::is_whitespace;
1309
1310    let imag = match s.rfind('j') {
1311        None => 'i',
1312        _ => 'j',
1313    };
1314
1315    let mut neg_b = false;
1316    let mut a = s;
1317    let mut b = "";
1318
1319    for (i, w) in s.as_bytes().windows(2).enumerate() {
1320        let p = w[0];
1321        let c = w[1];
1322
1323        // ignore '+'/'-' if part of an exponent
1324        if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') {
1325            // trim whitespace around the separator
1326            a = &s[..i + 1].trim_right_matches(is_whitespace);
1327            b = &s[i + 2..].trim_left_matches(is_whitespace);
1328            neg_b = c == b'-';
1329
1330            if b.is_empty() || (neg_b && b.starts_with('-')) {
1331                return Err(ParseComplexError::new());
1332            }
1333            break;
1334        }
1335    }
1336
1337    // split off real and imaginary parts
1338    if b.is_empty() {
1339        // input was either pure real or pure imaginary
1340        b = match a.ends_with(imag) {
1341            false => "0i",
1342            true => "0",
1343        };
1344    }
1345
1346    let re;
1347    let neg_re;
1348    let im;
1349    let neg_im;
1350    if a.ends_with(imag) {
1351        im = a;
1352        neg_im = false;
1353        re = b;
1354        neg_re = neg_b;
1355    } else if b.ends_with(imag) {
1356        re = a;
1357        neg_re = false;
1358        im = b;
1359        neg_im = neg_b;
1360    } else {
1361        return Err(ParseComplexError::new());
1362    }
1363
1364    // parse re
1365    let re = try!(from(re).map_err(ParseComplexError::from_error));
1366    let re = if neg_re { T::zero() - re } else { re };
1367
1368    // pop imaginary unit off
1369    let mut im = &im[..im.len() - 1];
1370    // handle im == "i" or im == "-i"
1371    if im.is_empty() || im == "+" {
1372        im = "1";
1373    } else if im == "-" {
1374        im = "-1";
1375    }
1376
1377    // parse im
1378    let im = try!(from(im).map_err(ParseComplexError::from_error));
1379    let im = if neg_im { T::zero() - im } else { im };
1380
1381    Ok(Complex::new(re, im))
1382}
1383
1384impl<T> FromStr for Complex<T>
1385where
1386    T: FromStr + Num + Clone,
1387{
1388    type Err = ParseComplexError<T::Err>;
1389
1390    /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1391    fn from_str(s: &str) -> Result<Self, Self::Err> {
1392        from_str_generic(s, T::from_str)
1393    }
1394}
1395
1396impl<T: Num + Clone> Num for Complex<T> {
1397    type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
1398
1399    /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1400    fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
1401        from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
1402            T::from_str_radix(x, radix)
1403        })
1404    }
1405}
1406
1407impl<T: Num + Clone> Sum for Complex<T> {
1408    fn sum<I>(iter: I) -> Self
1409    where
1410        I: Iterator<Item = Self>,
1411    {
1412        iter.fold(Self::zero(), |acc, c| acc + c)
1413    }
1414}
1415
1416impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> {
1417    fn sum<I>(iter: I) -> Self
1418    where
1419        I: Iterator<Item = &'a Complex<T>>,
1420    {
1421        iter.fold(Self::zero(), |acc, c| acc + c)
1422    }
1423}
1424
1425impl<T: Num + Clone> Product for Complex<T> {
1426    fn product<I>(iter: I) -> Self
1427    where
1428        I: Iterator<Item = Self>,
1429    {
1430        iter.fold(Self::one(), |acc, c| acc * c)
1431    }
1432}
1433
1434impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> {
1435    fn product<I>(iter: I) -> Self
1436    where
1437        I: Iterator<Item = &'a Complex<T>>,
1438    {
1439        iter.fold(Self::one(), |acc, c| acc * c)
1440    }
1441}
1442
1443#[cfg(feature = "serde")]
1444impl<T> serde::Serialize for Complex<T>
1445where
1446    T: serde::Serialize,
1447{
1448    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1449    where
1450        S: serde::Serializer,
1451    {
1452        (&self.re, &self.im).serialize(serializer)
1453    }
1454}
1455
1456#[cfg(feature = "serde")]
1457impl<'de, T> serde::Deserialize<'de> for Complex<T>
1458where
1459    T: serde::Deserialize<'de> + Num + Clone,
1460{
1461    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1462    where
1463        D: serde::Deserializer<'de>,
1464    {
1465        let (re, im) = try!(serde::Deserialize::deserialize(deserializer));
1466        Ok(Self::new(re, im))
1467    }
1468}
1469
1470#[derive(Debug, PartialEq)]
1471pub struct ParseComplexError<E> {
1472    kind: ComplexErrorKind<E>,
1473}
1474
1475#[derive(Debug, PartialEq)]
1476enum ComplexErrorKind<E> {
1477    ParseError(E),
1478    ExprError,
1479}
1480
1481impl<E> ParseComplexError<E> {
1482    fn new() -> Self {
1483        ParseComplexError {
1484            kind: ComplexErrorKind::ExprError,
1485        }
1486    }
1487
1488    fn from_error(error: E) -> Self {
1489        ParseComplexError {
1490            kind: ComplexErrorKind::ParseError(error),
1491        }
1492    }
1493}
1494
1495#[cfg(feature = "std")]
1496impl<E: Error> Error for ParseComplexError<E> {
1497    fn description(&self) -> &str {
1498        match self.kind {
1499            ComplexErrorKind::ParseError(ref e) => e.description(),
1500            ComplexErrorKind::ExprError => "invalid or unsupported complex expression",
1501        }
1502    }
1503}
1504
1505impl<E: fmt::Display> fmt::Display for ParseComplexError<E> {
1506    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1507        match self.kind {
1508            ComplexErrorKind::ParseError(ref e) => e.fmt(f),
1509            ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f),
1510        }
1511    }
1512}
1513
1514#[cfg(test)]
1515fn hash<T: hash::Hash>(x: &T) -> u64 {
1516    use std::collections::hash_map::RandomState;
1517    use std::hash::{BuildHasher, Hasher};
1518    let mut hasher = <RandomState as BuildHasher>::Hasher::new();
1519    x.hash(&mut hasher);
1520    hasher.finish()
1521}
1522
1523#[cfg(test)]
1524mod test {
1525    #![allow(non_upper_case_globals)]
1526
1527    use super::{Complex, Complex64};
1528    use core::f64;
1529    use core::str::FromStr;
1530
1531    use std::string::{String, ToString};
1532
1533    use traits::{Num, One, Zero};
1534
1535    pub const _0_0i: Complex64 = Complex { re: 0.0, im: 0.0 };
1536    pub const _1_0i: Complex64 = Complex { re: 1.0, im: 0.0 };
1537    pub const _1_1i: Complex64 = Complex { re: 1.0, im: 1.0 };
1538    pub const _0_1i: Complex64 = Complex { re: 0.0, im: 1.0 };
1539    pub const _neg1_1i: Complex64 = Complex { re: -1.0, im: 1.0 };
1540    pub const _05_05i: Complex64 = Complex { re: 0.5, im: 0.5 };
1541    pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
1542    pub const _4_2i: Complex64 = Complex { re: 4.0, im: 2.0 };
1543
1544    #[test]
1545    fn test_consts() {
1546        // check our constants are what Complex::new creates
1547        fn test(c: Complex64, r: f64, i: f64) {
1548            assert_eq!(c, Complex::new(r, i));
1549        }
1550        test(_0_0i, 0.0, 0.0);
1551        test(_1_0i, 1.0, 0.0);
1552        test(_1_1i, 1.0, 1.0);
1553        test(_neg1_1i, -1.0, 1.0);
1554        test(_05_05i, 0.5, 0.5);
1555
1556        assert_eq!(_0_0i, Zero::zero());
1557        assert_eq!(_1_0i, One::one());
1558    }
1559
1560    #[test]
1561    fn test_scale_unscale() {
1562        assert_eq!(_05_05i.scale(2.0), _1_1i);
1563        assert_eq!(_1_1i.unscale(2.0), _05_05i);
1564        for &c in all_consts.iter() {
1565            assert_eq!(c.scale(2.0).unscale(2.0), c);
1566        }
1567    }
1568
1569    #[test]
1570    fn test_conj() {
1571        for &c in all_consts.iter() {
1572            assert_eq!(c.conj(), Complex::new(c.re, -c.im));
1573            assert_eq!(c.conj().conj(), c);
1574        }
1575    }
1576
1577    #[test]
1578    fn test_inv() {
1579        assert_eq!(_1_1i.inv(), _05_05i.conj());
1580        assert_eq!(_1_0i.inv(), _1_0i.inv());
1581    }
1582
1583    #[test]
1584    #[should_panic]
1585    fn test_divide_by_zero_natural() {
1586        let n = Complex::new(2, 3);
1587        let d = Complex::new(0, 0);
1588        let _x = n / d;
1589    }
1590
1591    #[test]
1592    fn test_inv_zero() {
1593        // FIXME #20: should this really fail, or just NaN?
1594        assert!(_0_0i.inv().is_nan());
1595    }
1596
1597    #[test]
1598    fn test_l1_norm() {
1599        assert_eq!(_0_0i.l1_norm(), 0.0);
1600        assert_eq!(_1_0i.l1_norm(), 1.0);
1601        assert_eq!(_1_1i.l1_norm(), 2.0);
1602        assert_eq!(_0_1i.l1_norm(), 1.0);
1603        assert_eq!(_neg1_1i.l1_norm(), 2.0);
1604        assert_eq!(_05_05i.l1_norm(), 1.0);
1605        assert_eq!(_4_2i.l1_norm(), 6.0);
1606    }
1607
1608    #[test]
1609    fn test_pow() {
1610        for c in all_consts.iter() {
1611            assert_eq!(c.powi(0), _1_0i);
1612            let mut pos = _1_0i;
1613            let mut neg = _1_0i;
1614            for i in 1i32..20 {
1615                pos *= c;
1616                assert_eq!(pos, c.powi(i));
1617                if c.is_zero() {
1618                    assert!(c.powi(-i).is_nan());
1619                } else {
1620                    neg /= c;
1621                    assert_eq!(neg, c.powi(-i));
1622                }
1623            }
1624        }
1625    }
1626
1627    #[cfg(feature = "std")]
1628    mod float {
1629        use super::*;
1630        use traits::{Float, Pow};
1631
1632        #[test]
1633        #[cfg_attr(target_arch = "x86", ignore)]
1634        // FIXME #7158: (maybe?) currently failing on x86.
1635        fn test_norm() {
1636            fn test(c: Complex64, ns: f64) {
1637                assert_eq!(c.norm_sqr(), ns);
1638                assert_eq!(c.norm(), ns.sqrt())
1639            }
1640            test(_0_0i, 0.0);
1641            test(_1_0i, 1.0);
1642            test(_1_1i, 2.0);
1643            test(_neg1_1i, 2.0);
1644            test(_05_05i, 0.5);
1645        }
1646
1647        #[test]
1648        fn test_arg() {
1649            fn test(c: Complex64, arg: f64) {
1650                assert!((c.arg() - arg).abs() < 1.0e-6)
1651            }
1652            test(_1_0i, 0.0);
1653            test(_1_1i, 0.25 * f64::consts::PI);
1654            test(_neg1_1i, 0.75 * f64::consts::PI);
1655            test(_05_05i, 0.25 * f64::consts::PI);
1656        }
1657
1658        #[test]
1659        fn test_polar_conv() {
1660            fn test(c: Complex64) {
1661                let (r, theta) = c.to_polar();
1662                assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
1663            }
1664            for &c in all_consts.iter() {
1665                test(c);
1666            }
1667        }
1668
1669        fn close(a: Complex64, b: Complex64) -> bool {
1670            close_to_tol(a, b, 1e-10)
1671        }
1672
1673        fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1674            // returns true if a and b are reasonably close
1675            let close = (a == b) || (a - b).norm() < tol;
1676            if !close {
1677                println!("{:?} != {:?}", a, b);
1678            }
1679            close
1680        }
1681
1682        #[test]
1683        fn test_exp() {
1684            assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E)));
1685            assert!(close(_0_0i.exp(), _1_0i));
1686            assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin())));
1687            assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp()));
1688            assert!(close(
1689                _0_1i.scale(-f64::consts::PI).exp(),
1690                _1_0i.scale(-1.0)
1691            ));
1692            for &c in all_consts.iter() {
1693                // e^conj(z) = conj(e^z)
1694                assert!(close(c.conj().exp(), c.exp().conj()));
1695                // e^(z + 2 pi i) = e^z
1696                assert!(close(
1697                    c.exp(),
1698                    (c + _0_1i.scale(f64::consts::PI * 2.0)).exp()
1699                ));
1700            }
1701        }
1702
1703        #[test]
1704        fn test_ln() {
1705            assert!(close(_1_0i.ln(), _0_0i));
1706            assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0)));
1707            assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0)));
1708            assert!(close(
1709                (_neg1_1i * _05_05i).ln(),
1710                _neg1_1i.ln() + _05_05i.ln()
1711            ));
1712            for &c in all_consts.iter() {
1713                // ln(conj(z() = conj(ln(z))
1714                assert!(close(c.conj().ln(), c.ln().conj()));
1715                // for this branch, -pi <= arg(ln(z)) <= pi
1716                assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
1717            }
1718        }
1719
1720        #[test]
1721        fn test_powc() {
1722            let a = Complex::new(2.0, -3.0);
1723            let b = Complex::new(3.0, 0.0);
1724            assert!(close(a.powc(b), a.powf(b.re)));
1725            assert!(close(b.powc(a), a.expf(b.re)));
1726            let c = Complex::new(1.0 / 3.0, 0.1);
1727            assert!(close_to_tol(
1728                a.powc(c),
1729                Complex::new(1.65826, -0.33502),
1730                1e-5
1731            ));
1732        }
1733
1734        #[test]
1735        fn test_powf() {
1736            let c = Complex64::new(2.0, -1.0);
1737            let expected = Complex64::new(-0.8684746, -16.695934);
1738            assert!(close_to_tol(c.powf(3.5), expected, 1e-5));
1739            assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5));
1740            assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5));
1741        }
1742
1743        #[test]
1744        fn test_log() {
1745            let c = Complex::new(2.0, -1.0);
1746            let r = c.log(10.0);
1747            assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
1748        }
1749
1750        #[test]
1751        fn test_some_expf_cases() {
1752            let c = Complex::new(2.0, -1.0);
1753            let r = c.expf(10.0);
1754            assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
1755
1756            let c = Complex::new(5.0, -2.0);
1757            let r = c.expf(3.4);
1758            assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
1759
1760            let c = Complex::new(-1.5, 2.0 / 3.0);
1761            let r = c.expf(1.0 / 3.0);
1762            assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
1763        }
1764
1765        #[test]
1766        fn test_sqrt() {
1767            assert!(close(_0_0i.sqrt(), _0_0i));
1768            assert!(close(_1_0i.sqrt(), _1_0i));
1769            assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i));
1770            assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0)));
1771            assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt())));
1772            for &c in all_consts.iter() {
1773                // sqrt(conj(z() = conj(sqrt(z))
1774                assert!(close(c.conj().sqrt(), c.sqrt().conj()));
1775                // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2
1776                assert!(
1777                    -f64::consts::FRAC_PI_2 <= c.sqrt().arg()
1778                        && c.sqrt().arg() <= f64::consts::FRAC_PI_2
1779                );
1780                // sqrt(z) * sqrt(z) = z
1781                assert!(close(c.sqrt() * c.sqrt(), c));
1782            }
1783        }
1784
1785        #[test]
1786        fn test_sqrt_real() {
1787            for n in (0..100).map(f64::from) {
1788                // √(n² + 0i) = n + 0i
1789                let n2 = n * n;
1790                assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0));
1791                // √(-n² + 0i) = 0 + ni
1792                assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n));
1793                // √(-n² - 0i) = 0 - ni
1794                assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n));
1795            }
1796        }
1797
1798        #[test]
1799        fn test_sqrt_imag() {
1800            for n in (0..100).map(f64::from) {
1801                // √(0 + n²i) = n e^(iπ/4)
1802                let n2 = n * n;
1803                assert!(close(
1804                    Complex64::new(0.0, n2).sqrt(),
1805                    Complex64::from_polar(&n, &(f64::consts::FRAC_PI_4))
1806                ));
1807                // √(0 - n²i) = n e^(-iπ/4)
1808                assert!(close(
1809                    Complex64::new(0.0, -n2).sqrt(),
1810                    Complex64::from_polar(&n, &(-f64::consts::FRAC_PI_4))
1811                ));
1812            }
1813        }
1814
1815        #[test]
1816        fn test_cbrt() {
1817            assert!(close(_0_0i.cbrt(), _0_0i));
1818            assert!(close(_1_0i.cbrt(), _1_0i));
1819            assert!(close(
1820                Complex::new(-1.0, 0.0).cbrt(),
1821                Complex::new(0.5, 0.75.sqrt())
1822            ));
1823            assert!(close(
1824                Complex::new(-1.0, -0.0).cbrt(),
1825                Complex::new(0.5, -0.75.sqrt())
1826            ));
1827            assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5)));
1828            assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5)));
1829            for &c in all_consts.iter() {
1830                // cbrt(conj(z() = conj(cbrt(z))
1831                assert!(close(c.conj().cbrt(), c.cbrt().conj()));
1832                // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3
1833                assert!(
1834                    -f64::consts::FRAC_PI_3 <= c.cbrt().arg()
1835                        && c.cbrt().arg() <= f64::consts::FRAC_PI_3
1836                );
1837                // cbrt(z) * cbrt(z) cbrt(z) = z
1838                assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c));
1839            }
1840        }
1841
1842        #[test]
1843        fn test_cbrt_real() {
1844            for n in (0..100).map(f64::from) {
1845                // ∛(n³ + 0i) = n + 0i
1846                let n3 = n * n * n;
1847                assert!(close(
1848                    Complex64::new(n3, 0.0).cbrt(),
1849                    Complex64::new(n, 0.0)
1850                ));
1851                // ∛(-n³ + 0i) = n e^(iπ/3)
1852                assert!(close(
1853                    Complex64::new(-n3, 0.0).cbrt(),
1854                    Complex64::from_polar(&n, &(f64::consts::FRAC_PI_3))
1855                ));
1856                // ∛(-n³ - 0i) = n e^(-iπ/3)
1857                assert!(close(
1858                    Complex64::new(-n3, -0.0).cbrt(),
1859                    Complex64::from_polar(&n, &(-f64::consts::FRAC_PI_3))
1860                ));
1861            }
1862        }
1863
1864        #[test]
1865        fn test_cbrt_imag() {
1866            for n in (0..100).map(f64::from) {
1867                // ∛(0 + n³i) = n e^(iπ/6)
1868                let n3 = n * n * n;
1869                assert!(close(
1870                    Complex64::new(0.0, n3).cbrt(),
1871                    Complex64::from_polar(&n, &(f64::consts::FRAC_PI_6))
1872                ));
1873                // ∛(0 - n³i) = n e^(-iπ/6)
1874                assert!(close(
1875                    Complex64::new(0.0, -n3).cbrt(),
1876                    Complex64::from_polar(&n, &(-f64::consts::FRAC_PI_6))
1877                ));
1878            }
1879        }
1880
1881        #[test]
1882        fn test_sin() {
1883            assert!(close(_0_0i.sin(), _0_0i));
1884            assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i));
1885            assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh())));
1886            for &c in all_consts.iter() {
1887                // sin(conj(z)) = conj(sin(z))
1888                assert!(close(c.conj().sin(), c.sin().conj()));
1889                // sin(-z) = -sin(z)
1890                assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
1891            }
1892        }
1893
1894        #[test]
1895        fn test_cos() {
1896            assert!(close(_0_0i.cos(), _1_0i));
1897            assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i));
1898            assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh())));
1899            for &c in all_consts.iter() {
1900                // cos(conj(z)) = conj(cos(z))
1901                assert!(close(c.conj().cos(), c.cos().conj()));
1902                // cos(-z) = cos(z)
1903                assert!(close(c.scale(-1.0).cos(), c.cos()));
1904            }
1905        }
1906
1907        #[test]
1908        fn test_tan() {
1909            assert!(close(_0_0i.tan(), _0_0i));
1910            assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i));
1911            assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
1912            for &c in all_consts.iter() {
1913                // tan(conj(z)) = conj(tan(z))
1914                assert!(close(c.conj().tan(), c.tan().conj()));
1915                // tan(-z) = -tan(z)
1916                assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
1917            }
1918        }
1919
1920        #[test]
1921        fn test_asin() {
1922            assert!(close(_0_0i.asin(), _0_0i));
1923            assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0)));
1924            assert!(close(
1925                _1_0i.scale(-1.0).asin(),
1926                _1_0i.scale(-f64::consts::PI / 2.0)
1927            ));
1928            assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln())));
1929            for &c in all_consts.iter() {
1930                // asin(conj(z)) = conj(asin(z))
1931                assert!(close(c.conj().asin(), c.asin().conj()));
1932                // asin(-z) = -asin(z)
1933                assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0)));
1934                // for this branch, -pi/2 <= asin(z).re <= pi/2
1935                assert!(
1936                    -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0
1937                );
1938            }
1939        }
1940
1941        #[test]
1942        fn test_acos() {
1943            assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0)));
1944            assert!(close(_1_0i.acos(), _0_0i));
1945            assert!(close(
1946                _1_0i.scale(-1.0).acos(),
1947                _1_0i.scale(f64::consts::PI)
1948            ));
1949            assert!(close(
1950                _0_1i.acos(),
1951                Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln())
1952            ));
1953            for &c in all_consts.iter() {
1954                // acos(conj(z)) = conj(acos(z))
1955                assert!(close(c.conj().acos(), c.acos().conj()));
1956                // for this branch, 0 <= acos(z).re <= pi
1957                assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI);
1958            }
1959        }
1960
1961        #[test]
1962        fn test_atan() {
1963            assert!(close(_0_0i.atan(), _0_0i));
1964            assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0)));
1965            assert!(close(
1966                _1_0i.scale(-1.0).atan(),
1967                _1_0i.scale(-f64::consts::PI / 4.0)
1968            ));
1969            assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity())));
1970            for &c in all_consts.iter() {
1971                // atan(conj(z)) = conj(atan(z))
1972                assert!(close(c.conj().atan(), c.atan().conj()));
1973                // atan(-z) = -atan(z)
1974                assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0)));
1975                // for this branch, -pi/2 <= atan(z).re <= pi/2
1976                assert!(
1977                    -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0
1978                );
1979            }
1980        }
1981
1982        #[test]
1983        fn test_sinh() {
1984            assert!(close(_0_0i.sinh(), _0_0i));
1985            assert!(close(
1986                _1_0i.sinh(),
1987                _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0)
1988            ));
1989            assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin())));
1990            for &c in all_consts.iter() {
1991                // sinh(conj(z)) = conj(sinh(z))
1992                assert!(close(c.conj().sinh(), c.sinh().conj()));
1993                // sinh(-z) = -sinh(z)
1994                assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
1995            }
1996        }
1997
1998        #[test]
1999        fn test_cosh() {
2000            assert!(close(_0_0i.cosh(), _1_0i));
2001            assert!(close(
2002                _1_0i.cosh(),
2003                _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0)
2004            ));
2005            assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos())));
2006            for &c in all_consts.iter() {
2007                // cosh(conj(z)) = conj(cosh(z))
2008                assert!(close(c.conj().cosh(), c.cosh().conj()));
2009                // cosh(-z) = cosh(z)
2010                assert!(close(c.scale(-1.0).cosh(), c.cosh()));
2011            }
2012        }
2013
2014        #[test]
2015        fn test_tanh() {
2016            assert!(close(_0_0i.tanh(), _0_0i));
2017            assert!(close(
2018                _1_0i.tanh(),
2019                _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0))
2020            ));
2021            assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
2022            for &c in all_consts.iter() {
2023                // tanh(conj(z)) = conj(tanh(z))
2024                assert!(close(c.conj().tanh(), c.conj().tanh()));
2025                // tanh(-z) = -tanh(z)
2026                assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
2027            }
2028        }
2029
2030        #[test]
2031        fn test_asinh() {
2032            assert!(close(_0_0i.asinh(), _0_0i));
2033            assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln()));
2034            assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0)));
2035            assert!(close(
2036                _0_1i.asinh().scale(-1.0),
2037                _0_1i.scale(-f64::consts::PI / 2.0)
2038            ));
2039            for &c in all_consts.iter() {
2040                // asinh(conj(z)) = conj(asinh(z))
2041                assert!(close(c.conj().asinh(), c.conj().asinh()));
2042                // asinh(-z) = -asinh(z)
2043                assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0)));
2044                // for this branch, -pi/2 <= asinh(z).im <= pi/2
2045                assert!(
2046                    -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0
2047                );
2048            }
2049        }
2050
2051        #[test]
2052        fn test_acosh() {
2053            assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0)));
2054            assert!(close(_1_0i.acosh(), _0_0i));
2055            assert!(close(
2056                _1_0i.scale(-1.0).acosh(),
2057                _0_1i.scale(f64::consts::PI)
2058            ));
2059            for &c in all_consts.iter() {
2060                // acosh(conj(z)) = conj(acosh(z))
2061                assert!(close(c.conj().acosh(), c.conj().acosh()));
2062                // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re
2063                assert!(
2064                    -f64::consts::PI <= c.acosh().im
2065                        && c.acosh().im <= f64::consts::PI
2066                        && 0.0 <= c.cosh().re
2067                );
2068            }
2069        }
2070
2071        #[test]
2072        fn test_atanh() {
2073            assert!(close(_0_0i.atanh(), _0_0i));
2074            assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0)));
2075            assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0)));
2076            for &c in all_consts.iter() {
2077                // atanh(conj(z)) = conj(atanh(z))
2078                assert!(close(c.conj().atanh(), c.conj().atanh()));
2079                // atanh(-z) = -atanh(z)
2080                assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0)));
2081                // for this branch, -pi/2 <= atanh(z).im <= pi/2
2082                assert!(
2083                    -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0
2084                );
2085            }
2086        }
2087
2088        #[test]
2089        fn test_exp_ln() {
2090            for &c in all_consts.iter() {
2091                // e^ln(z) = z
2092                assert!(close(c.ln().exp(), c));
2093            }
2094        }
2095
2096        #[test]
2097        fn test_trig_to_hyperbolic() {
2098            for &c in all_consts.iter() {
2099                // sin(iz) = i sinh(z)
2100                assert!(close((_0_1i * c).sin(), _0_1i * c.sinh()));
2101                // cos(iz) = cosh(z)
2102                assert!(close((_0_1i * c).cos(), c.cosh()));
2103                // tan(iz) = i tanh(z)
2104                assert!(close((_0_1i * c).tan(), _0_1i * c.tanh()));
2105            }
2106        }
2107
2108        #[test]
2109        fn test_trig_identities() {
2110            for &c in all_consts.iter() {
2111                // tan(z) = sin(z)/cos(z)
2112                assert!(close(c.tan(), c.sin() / c.cos()));
2113                // sin(z)^2 + cos(z)^2 = 1
2114                assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i));
2115
2116                // sin(asin(z)) = z
2117                assert!(close(c.asin().sin(), c));
2118                // cos(acos(z)) = z
2119                assert!(close(c.acos().cos(), c));
2120                // tan(atan(z)) = z
2121                // i and -i are branch points
2122                if c != _0_1i && c != _0_1i.scale(-1.0) {
2123                    assert!(close(c.atan().tan(), c));
2124                }
2125
2126                // sin(z) = (e^(iz) - e^(-iz))/(2i)
2127                assert!(close(
2128                    ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0),
2129                    c.sin()
2130                ));
2131                // cos(z) = (e^(iz) + e^(-iz))/2
2132                assert!(close(
2133                    ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0),
2134                    c.cos()
2135                ));
2136                // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz))
2137                assert!(close(
2138                    _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp())
2139                        / (_1_0i + (_0_1i * c).scale(2.0).exp()),
2140                    c.tan()
2141                ));
2142            }
2143        }
2144
2145        #[test]
2146        fn test_hyperbolic_identites() {
2147            for &c in all_consts.iter() {
2148                // tanh(z) = sinh(z)/cosh(z)
2149                assert!(close(c.tanh(), c.sinh() / c.cosh()));
2150                // cosh(z)^2 - sinh(z)^2 = 1
2151                assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i));
2152
2153                // sinh(asinh(z)) = z
2154                assert!(close(c.asinh().sinh(), c));
2155                // cosh(acosh(z)) = z
2156                assert!(close(c.acosh().cosh(), c));
2157                // tanh(atanh(z)) = z
2158                // 1 and -1 are branch points
2159                if c != _1_0i && c != _1_0i.scale(-1.0) {
2160                    assert!(close(c.atanh().tanh(), c));
2161                }
2162
2163                // sinh(z) = (e^z - e^(-z))/2
2164                assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh()));
2165                // cosh(z) = (e^z + e^(-z))/2
2166                assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh()));
2167                // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1)
2168                assert!(close(
2169                    (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i),
2170                    c.tanh()
2171                ));
2172            }
2173        }
2174    }
2175
2176    // Test both a + b and a += b
2177    macro_rules! test_a_op_b {
2178        ($a:ident + $b:expr, $answer:expr) => {
2179            assert_eq!($a + $b, $answer);
2180            assert_eq!(
2181                {
2182                    let mut x = $a;
2183                    x += $b;
2184                    x
2185                },
2186                $answer
2187            );
2188        };
2189        ($a:ident - $b:expr, $answer:expr) => {
2190            assert_eq!($a - $b, $answer);
2191            assert_eq!(
2192                {
2193                    let mut x = $a;
2194                    x -= $b;
2195                    x
2196                },
2197                $answer
2198            );
2199        };
2200        ($a:ident * $b:expr, $answer:expr) => {
2201            assert_eq!($a * $b, $answer);
2202            assert_eq!(
2203                {
2204                    let mut x = $a;
2205                    x *= $b;
2206                    x
2207                },
2208                $answer
2209            );
2210        };
2211        ($a:ident / $b:expr, $answer:expr) => {
2212            assert_eq!($a / $b, $answer);
2213            assert_eq!(
2214                {
2215                    let mut x = $a;
2216                    x /= $b;
2217                    x
2218                },
2219                $answer
2220            );
2221        };
2222        ($a:ident % $b:expr, $answer:expr) => {
2223            assert_eq!($a % $b, $answer);
2224            assert_eq!(
2225                {
2226                    let mut x = $a;
2227                    x %= $b;
2228                    x
2229                },
2230                $answer
2231            );
2232        };
2233    }
2234
2235    // Test both a + b and a + &b
2236    macro_rules! test_op {
2237        ($a:ident $op:tt $b:expr, $answer:expr) => {
2238            test_a_op_b!($a $op $b, $answer);
2239            test_a_op_b!($a $op &$b, $answer);
2240        };
2241    }
2242
2243    mod complex_arithmetic {
2244        use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts};
2245        use traits::{MulAdd, MulAddAssign, Zero};
2246
2247        #[test]
2248        fn test_add() {
2249            test_op!(_05_05i + _05_05i, _1_1i);
2250            test_op!(_0_1i + _1_0i, _1_1i);
2251            test_op!(_1_0i + _neg1_1i, _0_1i);
2252
2253            for &c in all_consts.iter() {
2254                test_op!(_0_0i + c, c);
2255                test_op!(c + _0_0i, c);
2256            }
2257        }
2258
2259        #[test]
2260        fn test_sub() {
2261            test_op!(_05_05i - _05_05i, _0_0i);
2262            test_op!(_0_1i - _1_0i, _neg1_1i);
2263            test_op!(_0_1i - _neg1_1i, _1_0i);
2264
2265            for &c in all_consts.iter() {
2266                test_op!(c - _0_0i, c);
2267                test_op!(c - c, _0_0i);
2268            }
2269        }
2270
2271        #[test]
2272        fn test_mul() {
2273            test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0));
2274            test_op!(_1_1i * _0_1i, _neg1_1i);
2275
2276            // i^2 & i^4
2277            test_op!(_0_1i * _0_1i, -_1_0i);
2278            assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
2279
2280            for &c in all_consts.iter() {
2281                test_op!(c * _1_0i, c);
2282                test_op!(_1_0i * c, c);
2283            }
2284        }
2285
2286        #[test]
2287        #[cfg(feature = "std")]
2288        fn test_mul_add_float() {
2289            assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i);
2290            assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i));
2291            assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2292            assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2293            assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2294
2295            let mut x = _1_0i;
2296            x.mul_add_assign(_1_0i, _1_0i);
2297            assert_eq!(x, _1_0i * _1_0i + _1_0i);
2298
2299            for &a in &all_consts {
2300                for &b in &all_consts {
2301                    for &c in &all_consts {
2302                        let abc = a * b + c;
2303                        assert_eq!(a.mul_add(b, c), abc);
2304                        let mut x = a;
2305                        x.mul_add_assign(b, c);
2306                        assert_eq!(x, abc);
2307                    }
2308                }
2309            }
2310        }
2311
2312        #[test]
2313        fn test_mul_add() {
2314            use super::Complex;
2315            const _0_0i: Complex<i32> = Complex { re: 0, im: 0 };
2316            const _1_0i: Complex<i32> = Complex { re: 1, im: 0 };
2317            const _1_1i: Complex<i32> = Complex { re: 1, im: 1 };
2318            const _0_1i: Complex<i32> = Complex { re: 0, im: 1 };
2319            const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 };
2320            const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i];
2321
2322            assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i);
2323            assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i));
2324            assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2325            assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2326            assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2327
2328            let mut x = _1_0i;
2329            x.mul_add_assign(_1_0i, _1_0i);
2330            assert_eq!(x, _1_0i * _1_0i + _1_0i);
2331
2332            for &a in &all_consts {
2333                for &b in &all_consts {
2334                    for &c in &all_consts {
2335                        let abc = a * b + c;
2336                        assert_eq!(a.mul_add(b, c), abc);
2337                        let mut x = a;
2338                        x.mul_add_assign(b, c);
2339                        assert_eq!(x, abc);
2340                    }
2341                }
2342            }
2343        }
2344
2345        #[test]
2346        fn test_div() {
2347            test_op!(_neg1_1i / _0_1i, _1_1i);
2348            for &c in all_consts.iter() {
2349                if c != Zero::zero() {
2350                    test_op!(c / c, _1_0i);
2351                }
2352            }
2353        }
2354
2355        #[test]
2356        fn test_rem() {
2357            test_op!(_neg1_1i % _0_1i, _0_0i);
2358            test_op!(_4_2i % _0_1i, _0_0i);
2359            test_op!(_05_05i % _0_1i, _05_05i);
2360            test_op!(_05_05i % _1_1i, _05_05i);
2361            assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
2362            assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
2363        }
2364
2365        #[test]
2366        fn test_neg() {
2367            assert_eq!(-_1_0i + _0_1i, _neg1_1i);
2368            assert_eq!((-_0_1i) * _0_1i, _1_0i);
2369            for &c in all_consts.iter() {
2370                assert_eq!(-(-c), c);
2371            }
2372        }
2373    }
2374
2375    mod real_arithmetic {
2376        use super::super::Complex;
2377        use super::{_4_2i, _neg1_1i};
2378
2379        #[test]
2380        fn test_add() {
2381            test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0));
2382            assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0));
2383        }
2384
2385        #[test]
2386        fn test_sub() {
2387            test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0));
2388            assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0));
2389        }
2390
2391        #[test]
2392        fn test_mul() {
2393            assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0));
2394            assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0));
2395        }
2396
2397        #[test]
2398        fn test_div() {
2399            assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
2400            assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
2401        }
2402
2403        #[test]
2404        fn test_rem() {
2405            assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
2406            assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
2407            assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
2408            assert_eq!(_neg1_1i % 2.0, _neg1_1i);
2409            assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
2410        }
2411
2412        #[test]
2413        fn test_div_rem_gaussian() {
2414            // These would overflow with `norm_sqr` division.
2415            let max = Complex::new(255u8, 255u8);
2416            assert_eq!(max / 200, Complex::new(1, 1));
2417            assert_eq!(max % 200, Complex::new(55, 55));
2418        }
2419    }
2420
2421    #[test]
2422    fn test_to_string() {
2423        fn test(c: Complex64, s: String) {
2424            assert_eq!(c.to_string(), s);
2425        }
2426        test(_0_0i, "0+0i".to_string());
2427        test(_1_0i, "1+0i".to_string());
2428        test(_0_1i, "0+1i".to_string());
2429        test(_1_1i, "1+1i".to_string());
2430        test(_neg1_1i, "-1+1i".to_string());
2431        test(-_neg1_1i, "1-1i".to_string());
2432        test(_05_05i, "0.5+0.5i".to_string());
2433    }
2434
2435    #[test]
2436    fn test_string_formatting() {
2437        let a = Complex::new(1.23456, 123.456);
2438        assert_eq!(format!("{}", a), "1.23456+123.456i");
2439        assert_eq!(format!("{:.2}", a), "1.23+123.46i");
2440        assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i");
2441        assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i");
2442        #[cfg(feature = "std")]
2443        assert_eq!(format!("{:+20.2E}", a), "     +1.23E0+1.23E2i");
2444
2445        let b = Complex::new(0x80, 0xff);
2446        assert_eq!(format!("{:X}", b), "80+FFi");
2447        assert_eq!(format!("{:#x}", b), "0x80+0xffi");
2448        assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i");
2449        assert_eq!(format!("{:+#o}", b), "+0o200+0o377i");
2450        #[cfg(feature = "std")]
2451        assert_eq!(format!("{:+#16o}", b), "   +0o200+0o377i");
2452
2453        let c = Complex::new(-10, -10000);
2454        assert_eq!(format!("{}", c), "-10-10000i");
2455        #[cfg(feature = "std")]
2456        assert_eq!(format!("{:16}", c), "      -10-10000i");
2457    }
2458
2459    #[test]
2460    fn test_hash() {
2461        let a = Complex::new(0i32, 0i32);
2462        let b = Complex::new(1i32, 0i32);
2463        let c = Complex::new(0i32, 1i32);
2464        assert!(::hash(&a) != ::hash(&b));
2465        assert!(::hash(&b) != ::hash(&c));
2466        assert!(::hash(&c) != ::hash(&a));
2467    }
2468
2469    #[test]
2470    fn test_hashset() {
2471        use std::collections::HashSet;
2472        let a = Complex::new(0i32, 0i32);
2473        let b = Complex::new(1i32, 0i32);
2474        let c = Complex::new(0i32, 1i32);
2475
2476        let set: HashSet<_> = [a, b, c].iter().cloned().collect();
2477        assert!(set.contains(&a));
2478        assert!(set.contains(&b));
2479        assert!(set.contains(&c));
2480        assert!(!set.contains(&(a + b + c)));
2481    }
2482
2483    #[test]
2484    fn test_is_nan() {
2485        assert!(!_1_1i.is_nan());
2486        let a = Complex::new(f64::NAN, f64::NAN);
2487        assert!(a.is_nan());
2488    }
2489
2490    #[test]
2491    fn test_is_nan_special_cases() {
2492        let a = Complex::new(0f64, f64::NAN);
2493        let b = Complex::new(f64::NAN, 0f64);
2494        assert!(a.is_nan());
2495        assert!(b.is_nan());
2496    }
2497
2498    #[test]
2499    fn test_is_infinite() {
2500        let a = Complex::new(2f64, f64::INFINITY);
2501        assert!(a.is_infinite());
2502    }
2503
2504    #[test]
2505    fn test_is_finite() {
2506        assert!(_1_1i.is_finite())
2507    }
2508
2509    #[test]
2510    fn test_is_normal() {
2511        let a = Complex::new(0f64, f64::NAN);
2512        let b = Complex::new(2f64, f64::INFINITY);
2513        assert!(!a.is_normal());
2514        assert!(!b.is_normal());
2515        assert!(_1_1i.is_normal());
2516    }
2517
2518    #[test]
2519    fn test_from_str() {
2520        fn test(z: Complex64, s: &str) {
2521            assert_eq!(FromStr::from_str(s), Ok(z));
2522        }
2523        test(_0_0i, "0 + 0i");
2524        test(_0_0i, "0+0j");
2525        test(_0_0i, "0 - 0j");
2526        test(_0_0i, "0-0i");
2527        test(_0_0i, "0i + 0");
2528        test(_0_0i, "0");
2529        test(_0_0i, "-0");
2530        test(_0_0i, "0i");
2531        test(_0_0i, "0j");
2532        test(_0_0i, "+0j");
2533        test(_0_0i, "-0i");
2534
2535        test(_1_0i, "1 + 0i");
2536        test(_1_0i, "1+0j");
2537        test(_1_0i, "1 - 0j");
2538        test(_1_0i, "+1-0i");
2539        test(_1_0i, "-0j+1");
2540        test(_1_0i, "1");
2541
2542        test(_1_1i, "1 + i");
2543        test(_1_1i, "1+j");
2544        test(_1_1i, "1 + 1j");
2545        test(_1_1i, "1+1i");
2546        test(_1_1i, "i + 1");
2547        test(_1_1i, "1i+1");
2548        test(_1_1i, "+j+1");
2549
2550        test(_0_1i, "0 + i");
2551        test(_0_1i, "0+j");
2552        test(_0_1i, "-0 + j");
2553        test(_0_1i, "-0+i");
2554        test(_0_1i, "0 + 1i");
2555        test(_0_1i, "0+1j");
2556        test(_0_1i, "-0 + 1j");
2557        test(_0_1i, "-0+1i");
2558        test(_0_1i, "j + 0");
2559        test(_0_1i, "i");
2560        test(_0_1i, "j");
2561        test(_0_1i, "1j");
2562
2563        test(_neg1_1i, "-1 + i");
2564        test(_neg1_1i, "-1+j");
2565        test(_neg1_1i, "-1 + 1j");
2566        test(_neg1_1i, "-1+1i");
2567        test(_neg1_1i, "1i-1");
2568        test(_neg1_1i, "j + -1");
2569
2570        test(_05_05i, "0.5 + 0.5i");
2571        test(_05_05i, "0.5+0.5j");
2572        test(_05_05i, "5e-1+0.5j");
2573        test(_05_05i, "5E-1 + 0.5j");
2574        test(_05_05i, "5E-1i + 0.5");
2575        test(_05_05i, "0.05e+1j + 50E-2");
2576    }
2577
2578    #[test]
2579    fn test_from_str_radix() {
2580        fn test(z: Complex64, s: &str, radix: u32) {
2581            let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> =
2582                Num::from_str_radix(s, radix);
2583            assert_eq!(res.unwrap(), z)
2584        }
2585        test(_4_2i, "4+2i", 10);
2586        test(Complex::new(15.0, 32.0), "F+20i", 16);
2587        test(Complex::new(15.0, 32.0), "1111+100000i", 2);
2588        test(Complex::new(-15.0, -32.0), "-F-20i", 16);
2589        test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
2590    }
2591
2592    #[test]
2593    fn test_from_str_fail() {
2594        fn test(s: &str) {
2595            let complex: Result<Complex64, _> = FromStr::from_str(s);
2596            assert!(
2597                complex.is_err(),
2598                "complex {:?} -> {:?} should be an error",
2599                s,
2600                complex
2601            );
2602        }
2603        test("foo");
2604        test("6E");
2605        test("0 + 2.718");
2606        test("1 - -2i");
2607        test("314e-2ij");
2608        test("4.3j - i");
2609        test("1i - 2i");
2610        test("+ 1 - 3.0i");
2611    }
2612
2613    #[test]
2614    fn test_sum() {
2615        let v = vec![_0_1i, _1_0i];
2616        assert_eq!(v.iter().sum::<Complex64>(), _1_1i);
2617        assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i);
2618    }
2619
2620    #[test]
2621    fn test_prod() {
2622        let v = vec![_0_1i, _1_0i];
2623        assert_eq!(v.iter().product::<Complex64>(), _0_1i);
2624        assert_eq!(v.into_iter().product::<Complex64>(), _0_1i);
2625    }
2626
2627    #[test]
2628    fn test_zero() {
2629        let zero = Complex64::zero();
2630        assert!(zero.is_zero());
2631
2632        let mut c = Complex::new(1.23, 4.56);
2633        assert!(!c.is_zero());
2634        assert_eq!(&c + &zero, c);
2635
2636        c.set_zero();
2637        assert!(c.is_zero());
2638    }
2639
2640    #[test]
2641    fn test_one() {
2642        let one = Complex64::one();
2643        assert!(one.is_one());
2644
2645        let mut c = Complex::new(1.23, 4.56);
2646        assert!(!c.is_one());
2647        assert_eq!(&c * &one, c);
2648
2649        c.set_one();
2650        assert!(c.is_one());
2651    }
2652
2653    #[cfg(has_const_fn)]
2654    #[test]
2655    fn test_const() {
2656        const R: f64 = 12.3;
2657        const I: f64 = -4.5;
2658        const C: Complex64 = Complex::new(R, I);
2659
2660        assert_eq!(C.re, 12.3);
2661        assert_eq!(C.im, -4.5);
2662    }
2663}