1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
/*!
Types and routines that support the search APIs of most regex engines.

This sub-module isn't exposed directly, but rather, its contents are exported
at the crate root due to the universality of most of the types and routines in
this module.
*/

use core::ops::{Range, RangeBounds};

use crate::util::{escape::DebugByte, primitives::PatternID, utf8};

/// The parameters for a regex search including the haystack to search.
///
/// It turns out that regex searches have a few parameters, and in most cases,
/// those parameters have defaults that work in the vast majority of cases.
/// This `Input` type exists to make that common case seamnless while also
/// providing an avenue for changing the parameters of a search. In particular,
/// this type enables doing so without a combinatorial explosion of different
/// methods and/or superfluous parameters in the common cases.
///
/// An `Input` permits configuring the following things:
///
/// * Search only a substring of a haystack, while taking the broader context
/// into account for resolving look-around assertions.
/// * Indicating whether to search for all patterns in a regex, or to
/// only search for one pattern in particular.
/// * Whether to perform an anchored on unanchored search.
/// * Whether to report a match as early as possible.
///
/// All of these parameters, except for the haystack, have sensible default
/// values. This means that the minimal search configuration is simply a call
/// to [`Input::new`] with your haystack. Setting any other parameter is
/// optional.
///
/// Moreover, for any `H` that implements `AsRef<[u8]>`, there exists a
/// `From<H> for Input` implementation. This is useful because many of the
/// search APIs in this crate accept an `Into<Input>`. This means you can
/// provide string or byte strings to these routines directly, and they'll
/// automatically get converted into an `Input` for you.
///
/// The lifetime parameter `'h` refers to the lifetime of the haystack.
///
/// # Organization
///
/// The API of `Input` is split into a few different parts:
///
/// * A builder-like API that transforms a `Input` by value. Examples:
/// [`Input::span`] and [`Input::anchored`].
/// * A setter API that permits mutating parameters in place. Examples:
/// [`Input::set_span`] and [`Input::set_anchored`].
/// * A getter API that permits retrieving any of the search parameters.
/// Examples: [`Input::get_span`] and [`Input::get_anchored`].
/// * A few convenience getter routines that don't conform to the above naming
/// pattern due to how common they are. Examples: [`Input::haystack`],
/// [`Input::start`] and [`Input::end`].
/// * Miscellaneous predicates and other helper routines that are useful
/// in some contexts. Examples: [`Input::is_char_boundary`].
///
/// A `Input` exposes so much because it is meant to be used by both callers of
/// regex engines _and_ implementors of regex engines. A constraining factor is
/// that regex engines should accept a `&Input` as its lowest level API, which
/// means that implementors should only use the "getter" APIs of a `Input`.
///
/// # Valid bounds and search termination
///
/// An `Input` permits setting the bounds of a search via either
/// [`Input::span`] or [`Input::range`]. The bounds set must be valid, or
/// else a panic will occur. Bounds are valid if and only if:
///
/// * The bounds represent a valid range into the input's haystack.
/// * **or** the end bound is a valid ending bound for the haystack *and*
/// the start bound is exactly one greater than the start bound.
///
/// In the latter case, [`Input::is_done`] will return true and indicates any
/// search receiving such an input should immediately return with no match.
///
/// Note that while `Input` is used for reverse searches in this crate, the
/// `Input::is_done` predicate assumes a forward search. Because unsigned
/// offsets are used internally, there is no way to tell from only the offsets
/// whether a reverse search is done or not.
///
/// # Regex engine support
///
/// Any regex engine accepting an `Input` must support at least the following
/// things:
///
/// * Searching a `&[u8]` for matches.
/// * Searching a substring of `&[u8]` for a match, such that any match
/// reported must appear entirely within that substring.
/// * For a forwards search, a match should never be reported when
/// [`Input::is_done`] returns true. (For reverse searches, termination should
/// be handled outside of `Input`.)
///
/// Supporting other aspects of an `Input` are optional, but regex engines
/// should handle aspects they don't support gracefully. How this is done is
/// generally up to the regex engine. This crate generally treats unsupported
/// anchored modes as an error to report for example, but for simplicity, in
/// the meta regex engine, trying to search with an invalid pattern ID just
/// results in no match being reported.
#[derive(Clone)]
pub struct Input<'h> {
    haystack: &'h [u8],
    span: Span,
    anchored: Anchored,
    earliest: bool,
}

impl<'h> Input<'h> {
    /// Create a new search configuration for the given haystack.
    #[inline]
    pub fn new<H: ?Sized + AsRef<[u8]>>(haystack: &'h H) -> Input<'h> {
        // Perform only one call to `haystack.as_ref()` to protect from incorrect
        // implementations that return different values from multiple calls.
        // This is important because there's code that relies on `span` not being
        // out of bounds with respect to the stored `haystack`.
        let haystack = haystack.as_ref();
        Input {
            haystack,
            span: Span { start: 0, end: haystack.len() },
            anchored: Anchored::No,
            earliest: false,
        }
    }

    /// Set the span for this search.
    ///
    /// This routine does not panic if the span given is not a valid range for
    /// this search's haystack. If this search is run with an invalid range,
    /// then the most likely outcome is that the actual search execution will
    /// panic.
    ///
    /// This routine is generic over how a span is provided. While
    /// a [`Span`] may be given directly, one may also provide a
    /// `std::ops::Range<usize>`. To provide anything supported by range
    /// syntax, use the [`Input::range`] method.
    ///
    /// The default span is the entire haystack.
    ///
    /// Note that [`Input::range`] overrides this method and vice versa.
    ///
    /// # Panics
    ///
    /// This panics if the given span does not correspond to valid bounds in
    /// the haystack or the termination of a search.
    ///
    /// # Example
    ///
    /// This example shows how the span of the search can impact whether a
    /// match is reported or not. This is particularly relevant for look-around
    /// operators, which might take things outside of the span into account
    /// when determining whether they match.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     Match, Input,
    /// };
    ///
    /// // Look for 'at', but as a distinct word.
    /// let re = PikeVM::new(r"\bat\b")?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// // Our haystack contains 'at', but not as a distinct word.
    /// let haystack = "batter";
    ///
    /// // A standard search finds nothing, as expected.
    /// let input = Input::new(haystack);
    /// re.search(&mut cache, &input, &mut caps);
    /// assert_eq!(None, caps.get_match());
    ///
    /// // But if we wanted to search starting at position '1', we might
    /// // slice the haystack. If we do this, it's impossible for the \b
    /// // anchors to take the surrounding context into account! And thus,
    /// // a match is produced.
    /// let input = Input::new(&haystack[1..3]);
    /// re.search(&mut cache, &input, &mut caps);
    /// assert_eq!(Some(Match::must(0, 0..2)), caps.get_match());
    ///
    /// // But if we specify the span of the search instead of slicing the
    /// // haystack, then the regex engine can "see" outside of the span
    /// // and resolve the anchors correctly.
    /// let input = Input::new(haystack).span(1..3);
    /// re.search(&mut cache, &input, &mut caps);
    /// assert_eq!(None, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This may seem a little ham-fisted, but this scenario tends to come up
    /// if some other regex engine found the match span and now you need to
    /// re-process that span to look for capturing groups. (e.g., Run a faster
    /// DFA first, find a match, then run the PikeVM on just the match span to
    /// resolve capturing groups.) In order to implement that sort of logic
    /// correctly, you need to set the span on the search instead of slicing
    /// the haystack directly.
    ///
    /// The other advantage of using this routine to specify the bounds of the
    /// search is that the match offsets are still reported in terms of the
    /// original haystack. For example, the second search in the example above
    /// reported a match at position `0`, even though `at` starts at offset
    /// `1` because we sliced the haystack.
    #[inline]
    pub fn span<S: Into<Span>>(mut self, span: S) -> Input<'h> {
        self.set_span(span);
        self
    }

    /// Like `Input::span`, but accepts any range instead.
    ///
    /// This routine does not panic if the range given is not a valid range for
    /// this search's haystack. If this search is run with an invalid range,
    /// then the most likely outcome is that the actual search execution will
    /// panic.
    ///
    /// The default range is the entire haystack.
    ///
    /// Note that [`Input::span`] overrides this method and vice versa.
    ///
    /// # Panics
    ///
    /// This routine will panic if the given range could not be converted
    /// to a valid [`Range`]. For example, this would panic when given
    /// `0..=usize::MAX` since it cannot be represented using a half-open
    /// interval in terms of `usize`.
    ///
    /// This also panics if the given range does not correspond to valid bounds
    /// in the haystack or the termination of a search.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("foobar");
    /// assert_eq!(0..6, input.get_range());
    ///
    /// let input = Input::new("foobar").range(2..=4);
    /// assert_eq!(2..5, input.get_range());
    /// ```
    #[inline]
    pub fn range<R: RangeBounds<usize>>(mut self, range: R) -> Input<'h> {
        self.set_range(range);
        self
    }

    /// Sets the anchor mode of a search.
    ///
    /// When a search is anchored (so that's [`Anchored::Yes`] or
    /// [`Anchored::Pattern`]), a match must begin at the start of a search.
    /// When a search is not anchored (that's [`Anchored::No`]), regex engines
    /// will behave as if the pattern started with a `(?s-u:.)*?`. This prefix
    /// permits a match to appear anywhere.
    ///
    /// By default, the anchored mode is [`Anchored::No`].
    ///
    /// **WARNING:** this is subtly different than using a `^` at the start of
    /// your regex. A `^` forces a regex to match exclusively at the start of
    /// a haystack, regardless of where you begin your search. In contrast,
    /// anchoring a search will allow your regex to match anywhere in your
    /// haystack, but the match must start at the beginning of a search.
    ///
    /// For example, consider the haystack `aba` and the following searches:
    ///
    /// 1. The regex `^a` is compiled with `Anchored::No` and searches `aba`
    ///    starting at position `2`. Since `^` requires the match to start at
    ///    the beginning of the haystack and `2 > 0`, no match is found.
    /// 2. The regex `a` is compiled with `Anchored::Yes` and searches `aba`
    ///    starting at position `2`. This reports a match at `[2, 3]` since
    ///    the match starts where the search started. Since there is no `^`,
    ///    there is no requirement for the match to start at the beginning of
    ///    the haystack.
    /// 3. The regex `a` is compiled with `Anchored::Yes` and searches `aba`
    ///    starting at position `1`. Since `b` corresponds to position `1` and
    ///    since the search is anchored, it finds no match. While the regex
    ///    matches at other positions, configuring the search to be anchored
    ///    requires that it only report a match that begins at the same offset
    ///    as the beginning of the search.
    /// 4. The regex `a` is compiled with `Anchored::No` and searches `aba`
    ///    starting at position `1`. Since the search is not anchored and
    ///    the regex does not start with `^`, the search executes as if there
    ///    is a `(?s:.)*?` prefix that permits it to match anywhere. Thus, it
    ///    reports a match at `[2, 3]`.
    ///
    /// Note that the [`Anchored::Pattern`] mode is like `Anchored::Yes`,
    /// except it only reports matches for a particular pattern.
    ///
    /// # Example
    ///
    /// This demonstrates the differences between an anchored search and
    /// a pattern that begins with `^` (as described in the above warning
    /// message).
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     Anchored, Match, Input,
    /// };
    ///
    /// let haystack = "aba";
    ///
    /// let re = PikeVM::new(r"^a")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    /// let input = Input::new(haystack).span(2..3).anchored(Anchored::No);
    /// re.search(&mut cache, &input, &mut caps);
    /// // No match is found because 2 is not the beginning of the haystack,
    /// // which is what ^ requires.
    /// assert_eq!(None, caps.get_match());
    ///
    /// let re = PikeVM::new(r"a")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    /// let input = Input::new(haystack).span(2..3).anchored(Anchored::Yes);
    /// re.search(&mut cache, &input, &mut caps);
    /// // An anchored search can still match anywhere in the haystack, it just
    /// // must begin at the start of the search which is '2' in this case.
    /// assert_eq!(Some(Match::must(0, 2..3)), caps.get_match());
    ///
    /// let re = PikeVM::new(r"a")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    /// let input = Input::new(haystack).span(1..3).anchored(Anchored::Yes);
    /// re.search(&mut cache, &input, &mut caps);
    /// // No match is found since we start searching at offset 1 which
    /// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match
    /// // is found.
    /// assert_eq!(None, caps.get_match());
    ///
    /// let re = PikeVM::new(r"a")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    /// let input = Input::new(haystack).span(1..3).anchored(Anchored::No);
    /// re.search(&mut cache, &input, &mut caps);
    /// // Since anchored=no, an implicit '(?s:.)*?' prefix was added to the
    /// // pattern. Even though the search starts at 'b', the 'match anything'
    /// // prefix allows the search to match 'a'.
    /// let expected = Some(Match::must(0, 2..3));
    /// assert_eq!(expected, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn anchored(mut self, mode: Anchored) -> Input<'h> {
        self.set_anchored(mode);
        self
    }

    /// Whether to execute an "earliest" search or not.
    ///
    /// When running a non-overlapping search, an "earliest" search will return
    /// the match location as early as possible. For example, given a pattern
    /// of `foo[0-9]+` and a haystack of `foo12345`, a normal leftmost search
    /// will return `foo12345` as a match. But an "earliest" search for regex
    /// engines that support "earliest" semantics will return `foo1` as a
    /// match, since as soon as the first digit following `foo` is seen, it is
    /// known to have found a match.
    ///
    /// Note that "earliest" semantics generally depend on the regex engine.
    /// Different regex engines may determine there is a match at different
    /// points. So there is no guarantee that "earliest" matches will always
    /// return the same offsets for all regex engines. The "earliest" notion
    /// is really about when the particular regex engine determines there is
    /// a match rather than a consistent semantic unto itself. This is often
    /// useful for implementing "did a match occur or not" predicates, but
    /// sometimes the offset is useful as well.
    ///
    /// This is disabled by default.
    ///
    /// # Example
    ///
    /// This example shows the difference between "earliest" searching and
    /// normal searching.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match, Input};
    ///
    /// let re = PikeVM::new(r"foo[0-9]+")?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// // A normal search implements greediness like you expect.
    /// let input = Input::new("foo12345");
    /// re.search(&mut cache, &input, &mut caps);
    /// assert_eq!(Some(Match::must(0, 0..8)), caps.get_match());
    ///
    /// // When 'earliest' is enabled and the regex engine supports
    /// // it, the search will bail once it knows a match has been
    /// // found.
    /// let input = Input::new("foo12345").earliest(true);
    /// re.search(&mut cache, &input, &mut caps);
    /// assert_eq!(Some(Match::must(0, 0..4)), caps.get_match());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn earliest(mut self, yes: bool) -> Input<'h> {
        self.set_earliest(yes);
        self
    }

    /// Set the span for this search configuration.
    ///
    /// This is like the [`Input::span`] method, except this mutates the
    /// span in place.
    ///
    /// This routine is generic over how a span is provided. While
    /// a [`Span`] may be given directly, one may also provide a
    /// `std::ops::Range<usize>`.
    ///
    /// # Panics
    ///
    /// This panics if the given span does not correspond to valid bounds in
    /// the haystack or the termination of a search.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let mut input = Input::new("foobar");
    /// assert_eq!(0..6, input.get_range());
    /// input.set_span(2..4);
    /// assert_eq!(2..4, input.get_range());
    /// ```
    #[inline]
    pub fn set_span<S: Into<Span>>(&mut self, span: S) {
        let span = span.into();
        assert!(
            span.end <= self.haystack.len()
                && span.start <= span.end.wrapping_add(1),
            "invalid span {:?} for haystack of length {}",
            span,
            self.haystack.len(),
        );
        self.span = span;
    }

    /// Set the span for this search configuration given any range.
    ///
    /// This is like the [`Input::range`] method, except this mutates the
    /// span in place.
    ///
    /// This routine does not panic if the range given is not a valid range for
    /// this search's haystack. If this search is run with an invalid range,
    /// then the most likely outcome is that the actual search execution will
    /// panic.
    ///
    /// # Panics
    ///
    /// This routine will panic if the given range could not be converted
    /// to a valid [`Range`]. For example, this would panic when given
    /// `0..=usize::MAX` since it cannot be represented using a half-open
    /// interval in terms of `usize`.
    ///
    /// This also panics if the given span does not correspond to valid bounds
    /// in the haystack or the termination of a search.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let mut input = Input::new("foobar");
    /// assert_eq!(0..6, input.get_range());
    /// input.set_range(2..=4);
    /// assert_eq!(2..5, input.get_range());
    /// ```
    #[inline]
    pub fn set_range<R: RangeBounds<usize>>(&mut self, range: R) {
        use core::ops::Bound;

        // It's a little weird to convert ranges into spans, and then spans
        // back into ranges when we actually slice the haystack. Because
        // of that process, we always represent everything as a half-open
        // internal. Therefore, handling things like m..=n is a little awkward.
        let start = match range.start_bound() {
            Bound::Included(&i) => i,
            // Can this case ever happen? Range syntax doesn't support it...
            Bound::Excluded(&i) => i.checked_add(1).unwrap(),
            Bound::Unbounded => 0,
        };
        let end = match range.end_bound() {
            Bound::Included(&i) => i.checked_add(1).unwrap(),
            Bound::Excluded(&i) => i,
            Bound::Unbounded => self.haystack().len(),
        };
        self.set_span(Span { start, end });
    }

    /// Set the starting offset for the span for this search configuration.
    ///
    /// This is a convenience routine for only mutating the start of a span
    /// without having to set the entire span.
    ///
    /// # Panics
    ///
    /// This panics if the span resulting from the new start position does not
    /// correspond to valid bounds in the haystack or the termination of a
    /// search.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let mut input = Input::new("foobar");
    /// assert_eq!(0..6, input.get_range());
    /// input.set_start(5);
    /// assert_eq!(5..6, input.get_range());
    /// ```
    #[inline]
    pub fn set_start(&mut self, start: usize) {
        self.set_span(Span { start, ..self.get_span() });
    }

    /// Set the ending offset for the span for this search configuration.
    ///
    /// This is a convenience routine for only mutating the end of a span
    /// without having to set the entire span.
    ///
    /// # Panics
    ///
    /// This panics if the span resulting from the new end position does not
    /// correspond to valid bounds in the haystack or the termination of a
    /// search.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let mut input = Input::new("foobar");
    /// assert_eq!(0..6, input.get_range());
    /// input.set_end(5);
    /// assert_eq!(0..5, input.get_range());
    /// ```
    #[inline]
    pub fn set_end(&mut self, end: usize) {
        self.set_span(Span { end, ..self.get_span() });
    }

    /// Set the anchor mode of a search.
    ///
    /// This is like [`Input::anchored`], except it mutates the search
    /// configuration in place.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Anchored, Input, PatternID};
    ///
    /// let mut input = Input::new("foobar");
    /// assert_eq!(Anchored::No, input.get_anchored());
    ///
    /// let pid = PatternID::must(5);
    /// input.set_anchored(Anchored::Pattern(pid));
    /// assert_eq!(Anchored::Pattern(pid), input.get_anchored());
    /// ```
    #[inline]
    pub fn set_anchored(&mut self, mode: Anchored) {
        self.anchored = mode;
    }

    /// Set whether the search should execute in "earliest" mode or not.
    ///
    /// This is like [`Input::earliest`], except it mutates the search
    /// configuration in place.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let mut input = Input::new("foobar");
    /// assert!(!input.get_earliest());
    /// input.set_earliest(true);
    /// assert!(input.get_earliest());
    /// ```
    #[inline]
    pub fn set_earliest(&mut self, yes: bool) {
        self.earliest = yes;
    }

    /// Return a borrow of the underlying haystack as a slice of bytes.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("foobar");
    /// assert_eq!(b"foobar", input.haystack());
    /// ```
    #[inline]
    pub fn haystack(&self) -> &[u8] {
        self.haystack
    }

    /// Return the start position of this search.
    ///
    /// This is a convenience routine for `search.get_span().start()`.
    ///
    /// When [`Input::is_done`] is `false`, this is guaranteed to return
    /// an offset that is less than or equal to [`Input::end`]. Otherwise,
    /// the offset is one greater than [`Input::end`].
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("foobar");
    /// assert_eq!(0, input.start());
    ///
    /// let input = Input::new("foobar").span(2..4);
    /// assert_eq!(2, input.start());
    /// ```
    #[inline]
    pub fn start(&self) -> usize {
        self.get_span().start
    }

    /// Return the end position of this search.
    ///
    /// This is a convenience routine for `search.get_span().end()`.
    ///
    /// This is guaranteed to return an offset that is a valid exclusive end
    /// bound for this input's haystack.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("foobar");
    /// assert_eq!(6, input.end());
    ///
    /// let input = Input::new("foobar").span(2..4);
    /// assert_eq!(4, input.end());
    /// ```
    #[inline]
    pub fn end(&self) -> usize {
        self.get_span().end
    }

    /// Return the span for this search configuration.
    ///
    /// If one was not explicitly set, then the span corresponds to the entire
    /// range of the haystack.
    ///
    /// When [`Input::is_done`] is `false`, the span returned is guaranteed
    /// to correspond to valid bounds for this input's haystack.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Input, Span};
    ///
    /// let input = Input::new("foobar");
    /// assert_eq!(Span { start: 0, end: 6 }, input.get_span());
    /// ```
    #[inline]
    pub fn get_span(&self) -> Span {
        self.span
    }

    /// Return the span as a range for this search configuration.
    ///
    /// If one was not explicitly set, then the span corresponds to the entire
    /// range of the haystack.
    ///
    /// When [`Input::is_done`] is `false`, the range returned is guaranteed
    /// to correspond to valid bounds for this input's haystack.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("foobar");
    /// assert_eq!(0..6, input.get_range());
    /// ```
    #[inline]
    pub fn get_range(&self) -> Range<usize> {
        self.get_span().range()
    }

    /// Return the anchored mode for this search configuration.
    ///
    /// If no anchored mode was set, then it defaults to [`Anchored::No`].
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Anchored, Input, PatternID};
    ///
    /// let mut input = Input::new("foobar");
    /// assert_eq!(Anchored::No, input.get_anchored());
    ///
    /// let pid = PatternID::must(5);
    /// input.set_anchored(Anchored::Pattern(pid));
    /// assert_eq!(Anchored::Pattern(pid), input.get_anchored());
    /// ```
    #[inline]
    pub fn get_anchored(&self) -> Anchored {
        self.anchored
    }

    /// Return whether this search should execute in "earliest" mode.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("foobar");
    /// assert!(!input.get_earliest());
    /// ```
    #[inline]
    pub fn get_earliest(&self) -> bool {
        self.earliest
    }

    /// Return true if and only if this search can never return any other
    /// matches.
    ///
    /// This occurs when the start position of this search is greater than the
    /// end position of the search.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let mut input = Input::new("foobar");
    /// assert!(!input.is_done());
    /// input.set_start(6);
    /// assert!(!input.is_done());
    /// input.set_start(7);
    /// assert!(input.is_done());
    /// ```
    #[inline]
    pub fn is_done(&self) -> bool {
        self.get_span().start > self.get_span().end
    }

    /// Returns true if and only if the given offset in this search's haystack
    /// falls on a valid UTF-8 encoded codepoint boundary.
    ///
    /// If the haystack is not valid UTF-8, then the behavior of this routine
    /// is unspecified.
    ///
    /// # Example
    ///
    /// This shows where codepoint boundaries do and don't exist in valid
    /// UTF-8.
    ///
    /// ```
    /// use regex_automata::Input;
    ///
    /// let input = Input::new("☃");
    /// assert!(input.is_char_boundary(0));
    /// assert!(!input.is_char_boundary(1));
    /// assert!(!input.is_char_boundary(2));
    /// assert!(input.is_char_boundary(3));
    /// assert!(!input.is_char_boundary(4));
    /// ```
    #[inline]
    pub fn is_char_boundary(&self, offset: usize) -> bool {
        utf8::is_boundary(self.haystack(), offset)
    }
}

impl<'h> core::fmt::Debug for Input<'h> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use crate::util::escape::DebugHaystack;

        f.debug_struct("Input")
            .field("haystack", &DebugHaystack(self.haystack()))
            .field("span", &self.span)
            .field("anchored", &self.anchored)
            .field("earliest", &self.earliest)
            .finish()
    }
}

impl<'h, H: ?Sized + AsRef<[u8]>> From<&'h H> for Input<'h> {
    fn from(haystack: &'h H) -> Input<'h> {
        Input::new(haystack)
    }
}

/// A representation of a span reported by a regex engine.
///
/// A span corresponds to the starting and ending _byte offsets_ of a
/// contiguous region of bytes. The starting offset is inclusive while the
/// ending offset is exclusive. That is, a span is a half-open interval.
///
/// A span is used to report the offsets of a match, but it is also used to
/// convey which region of a haystack should be searched via routines like
/// [`Input::span`].
///
/// This is basically equivalent to a `std::ops::Range<usize>`, except this
/// type implements `Copy` which makes it more ergonomic to use in the context
/// of this crate. Like a range, this implements `Index` for `[u8]` and `str`,
/// and `IndexMut` for `[u8]`. For convenience, this also impls `From<Range>`,
/// which means things like `Span::from(5..10)` work.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct Span {
    /// The start offset of the span, inclusive.
    pub start: usize,
    /// The end offset of the span, exclusive.
    pub end: usize,
}

impl Span {
    /// Returns this span as a range.
    #[inline]
    pub fn range(&self) -> Range<usize> {
        Range::from(*self)
    }

    /// Returns true when this span is empty. That is, when `start >= end`.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.start >= self.end
    }

    /// Returns the length of this span.
    ///
    /// This returns `0` in precisely the cases that `is_empty` returns `true`.
    #[inline]
    pub fn len(&self) -> usize {
        self.end.saturating_sub(self.start)
    }

    /// Returns true when the given offset is contained within this span.
    ///
    /// Note that an empty span contains no offsets and will always return
    /// false.
    #[inline]
    pub fn contains(&self, offset: usize) -> bool {
        !self.is_empty() && self.start <= offset && offset <= self.end
    }

    /// Returns a new span with `offset` added to this span's `start` and `end`
    /// values.
    #[inline]
    pub fn offset(&self, offset: usize) -> Span {
        Span { start: self.start + offset, end: self.end + offset }
    }
}

impl core::fmt::Debug for Span {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "{}..{}", self.start, self.end)
    }
}

impl core::ops::Index<Span> for [u8] {
    type Output = [u8];

    #[inline]
    fn index(&self, index: Span) -> &[u8] {
        &self[index.range()]
    }
}

impl core::ops::IndexMut<Span> for [u8] {
    #[inline]
    fn index_mut(&mut self, index: Span) -> &mut [u8] {
        &mut self[index.range()]
    }
}

impl core::ops::Index<Span> for str {
    type Output = str;

    #[inline]
    fn index(&self, index: Span) -> &str {
        &self[index.range()]
    }
}

impl From<Range<usize>> for Span {
    #[inline]
    fn from(range: Range<usize>) -> Span {
        Span { start: range.start, end: range.end }
    }
}

impl From<Span> for Range<usize> {
    #[inline]
    fn from(span: Span) -> Range<usize> {
        Range { start: span.start, end: span.end }
    }
}

impl PartialEq<Range<usize>> for Span {
    #[inline]
    fn eq(&self, range: &Range<usize>) -> bool {
        self.start == range.start && self.end == range.end
    }
}

impl PartialEq<Span> for Range<usize> {
    #[inline]
    fn eq(&self, span: &Span) -> bool {
        self.start == span.start && self.end == span.end
    }
}

/// A representation of "half" of a match reported by a DFA.
///
/// This is called a "half" match because it only includes the end location (or
/// start location for a reverse search) of a match. This corresponds to the
/// information that a single DFA scan can report. Getting the other half of
/// the match requires a second scan with a reversed DFA.
///
/// A half match also includes the pattern that matched. The pattern is
/// identified by an ID, which corresponds to its position (starting from `0`)
/// relative to other patterns used to construct the corresponding DFA. If only
/// a single pattern is provided to the DFA, then all matches are guaranteed to
/// have a pattern ID of `0`.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct HalfMatch {
    /// The pattern ID.
    pattern: PatternID,
    /// The offset of the match.
    ///
    /// For forward searches, the offset is exclusive. For reverse searches,
    /// the offset is inclusive.
    offset: usize,
}

impl HalfMatch {
    /// Create a new half match from a pattern ID and a byte offset.
    #[inline]
    pub fn new(pattern: PatternID, offset: usize) -> HalfMatch {
        HalfMatch { pattern, offset }
    }

    /// Create a new half match from a pattern ID and a byte offset.
    ///
    /// This is like [`HalfMatch::new`], but accepts a `usize` instead of a
    /// [`PatternID`]. This panics if the given `usize` is not representable
    /// as a `PatternID`.
    #[inline]
    pub fn must(pattern: usize, offset: usize) -> HalfMatch {
        HalfMatch::new(PatternID::new(pattern).unwrap(), offset)
    }

    /// Returns the ID of the pattern that matched.
    ///
    /// The ID of a pattern is derived from the position in which it was
    /// originally inserted into the corresponding DFA. The first pattern has
    /// identifier `0`, and each subsequent pattern is `1`, `2` and so on.
    #[inline]
    pub fn pattern(&self) -> PatternID {
        self.pattern
    }

    /// The position of the match.
    ///
    /// If this match was produced by a forward search, then the offset is
    /// exclusive. If this match was produced by a reverse search, then the
    /// offset is inclusive.
    #[inline]
    pub fn offset(&self) -> usize {
        self.offset
    }
}

/// A representation of a match reported by a regex engine.
///
/// A match has two essential pieces of information: the [`PatternID`] that
/// matches, and the [`Span`] of the match in a haystack.
///
/// The pattern is identified by an ID, which corresponds to its position
/// (starting from `0`) relative to other patterns used to construct the
/// corresponding regex engine. If only a single pattern is provided, then all
/// matches are guaranteed to have a pattern ID of `0`.
///
/// Every match reported by a regex engine guarantees that its span has its
/// start offset as less than or equal to its end offset.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct Match {
    /// The pattern ID.
    pattern: PatternID,
    /// The underlying match span.
    span: Span,
}

impl Match {
    /// Create a new match from a pattern ID and a span.
    ///
    /// This constructor is generic over how a span is provided. While
    /// a [`Span`] may be given directly, one may also provide a
    /// `std::ops::Range<usize>`.
    ///
    /// # Panics
    ///
    /// This panics if `end < start`.
    ///
    /// # Example
    ///
    /// This shows how to create a match for the first pattern in a regex
    /// object using convenient range syntax.
    ///
    /// ```
    /// use regex_automata::{Match, PatternID};
    ///
    /// let m = Match::new(PatternID::ZERO, 5..10);
    /// assert_eq!(0, m.pattern().as_usize());
    /// assert_eq!(5, m.start());
    /// assert_eq!(10, m.end());
    /// ```
    #[inline]
    pub fn new<S: Into<Span>>(pattern: PatternID, span: S) -> Match {
        let span: Span = span.into();
        assert!(span.start <= span.end, "invalid match span");
        Match { pattern, span }
    }

    /// Create a new match from a pattern ID and a byte offset span.
    ///
    /// This constructor is generic over how a span is provided. While
    /// a [`Span`] may be given directly, one may also provide a
    /// `std::ops::Range<usize>`.
    ///
    /// This is like [`Match::new`], but accepts a `usize` instead of a
    /// [`PatternID`]. This panics if the given `usize` is not representable
    /// as a `PatternID`.
    ///
    /// # Panics
    ///
    /// This panics if `end < start` or if `pattern > PatternID::MAX`.
    ///
    /// # Example
    ///
    /// This shows how to create a match for the third pattern in a regex
    /// object using convenient range syntax.
    ///
    /// ```
    /// use regex_automata::Match;
    ///
    /// let m = Match::must(3, 5..10);
    /// assert_eq!(3, m.pattern().as_usize());
    /// assert_eq!(5, m.start());
    /// assert_eq!(10, m.end());
    /// ```
    #[inline]
    pub fn must<S: Into<Span>>(pattern: usize, span: S) -> Match {
        Match::new(PatternID::must(pattern), span)
    }

    /// Returns the ID of the pattern that matched.
    ///
    /// The ID of a pattern is derived from the position in which it was
    /// originally inserted into the corresponding regex engine. The first
    /// pattern has identifier `0`, and each subsequent pattern is `1`, `2` and
    /// so on.
    #[inline]
    pub fn pattern(&self) -> PatternID {
        self.pattern
    }

    /// The starting position of the match.
    ///
    /// This is a convenience routine for `Match::span().start`.
    #[inline]
    pub fn start(&self) -> usize {
        self.span().start
    }

    /// The ending position of the match.
    ///
    /// This is a convenience routine for `Match::span().end`.
    #[inline]
    pub fn end(&self) -> usize {
        self.span().end
    }

    /// Returns the match span as a range.
    ///
    /// This is a convenience routine for `Match::span().range()`.
    #[inline]
    pub fn range(&self) -> core::ops::Range<usize> {
        self.span().range()
    }

    /// Returns the span for this match.
    #[inline]
    pub fn span(&self) -> Span {
        self.span
    }

    /// Returns true when the span in this match is empty.
    ///
    /// An empty match can only be returned when the regex itself can match
    /// the empty string.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.span().is_empty()
    }

    /// Returns the length of this match.
    ///
    /// This returns `0` in precisely the cases that `is_empty` returns `true`.
    #[inline]
    pub fn len(&self) -> usize {
        self.span().len()
    }
}

/// A set of `PatternID`s.
///
/// A set of pattern identifiers is useful for recording which patterns have
/// matched a particular haystack. A pattern set _only_ includes pattern
/// identifiers. It does not include offset information.
///
/// # Example
///
/// This shows basic usage of a set.
///
/// ```
/// use regex_automata::{PatternID, PatternSet};
///
/// let pid1 = PatternID::must(5);
/// let pid2 = PatternID::must(8);
/// // Create a new empty set.
/// let mut set = PatternSet::new(10);
/// // Insert pattern IDs.
/// set.insert(pid1);
/// set.insert(pid2);
/// // Test membership.
/// assert!(set.contains(pid1));
/// assert!(set.contains(pid2));
/// // Get all members.
/// assert_eq!(
///     vec![5, 8],
///     set.iter().map(|p| p.as_usize()).collect::<Vec<usize>>(),
/// );
/// // Clear the set.
/// set.clear();
/// // Test that it is indeed empty.
/// assert!(set.is_empty());
/// ```
#[cfg(feature = "alloc")]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct PatternSet {
    /// The number of patterns set to 'true' in this set.
    len: usize,
    /// A map from PatternID to boolean of whether a pattern matches or not.
    ///
    /// This should probably be a bitset, but it's probably unlikely to matter
    /// much in practice.
    ///
    /// The main downside of this representation (and similarly for a bitset)
    /// is that iteration scales with the capacity of the set instead of
    /// the length of the set. This doesn't seem likely to be a problem in
    /// practice.
    ///
    /// Another alternative is to just use a 'SparseSet' for this. It does use
    /// more memory (quite a bit more), but that seems fine I think compared
    /// to the memory being used by the regex engine. The real hiccup with
    /// it is that it yields pattern IDs in the order they were inserted.
    /// Which is actually kind of nice, but at the time of writing, pattern
    /// IDs are yielded in ascending order in the regex crate RegexSet API.
    /// If we did change to 'SparseSet', we could provide an additional
    /// 'iter_match_order' iterator, but keep the ascending order one for
    /// compatibility.
    which: alloc::boxed::Box<[bool]>,
}

#[cfg(feature = "alloc")]
impl PatternSet {
    /// Create a new set of pattern identifiers with the given capacity.
    ///
    /// The given capacity typically corresponds to (at least) the number of
    /// patterns in a compiled regex object.
    ///
    /// # Panics
    ///
    /// This panics if the given capacity exceeds [`PatternID::LIMIT`]. This is
    /// impossible if you use the `pattern_len()` method as defined on any of
    /// the regex engines in this crate. Namely, a regex will fail to build by
    /// returning an error if the number of patterns given to it exceeds the
    /// limit. Therefore, the number of patterns in a valid regex is always
    /// a correct capacity to provide here.
    pub fn new(capacity: usize) -> PatternSet {
        assert!(
            capacity <= PatternID::LIMIT,
            "pattern set capacity exceeds limit of {}",
            PatternID::LIMIT,
        );
        PatternSet {
            len: 0,
            which: alloc::vec![false; capacity].into_boxed_slice(),
        }
    }

    /// Clear this set such that it contains no pattern IDs.
    pub fn clear(&mut self) {
        self.len = 0;
        for matched in self.which.iter_mut() {
            *matched = false;
        }
    }

    /// Return true if and only if the given pattern identifier is in this set.
    pub fn contains(&self, pid: PatternID) -> bool {
        pid.as_usize() < self.capacity() && self.which[pid]
    }

    /// Insert the given pattern identifier into this set and return `true` if
    /// the given pattern ID was not previously in this set.
    ///
    /// If the pattern identifier is already in this set, then this is a no-op.
    ///
    /// Use [`PatternSet::try_insert`] for a fallible version of this routine.
    ///
    /// # Panics
    ///
    /// This panics if this pattern set has insufficient capacity to
    /// store the given pattern ID.
    pub fn insert(&mut self, pid: PatternID) -> bool {
        self.try_insert(pid)
            .expect("PatternSet should have sufficient capacity")
    }

    /// Insert the given pattern identifier into this set and return `true` if
    /// the given pattern ID was not previously in this set.
    ///
    /// If the pattern identifier is already in this set, then this is a no-op.
    ///
    /// # Errors
    ///
    /// This returns an error if this pattern set has insufficient capacity to
    /// store the given pattern ID.
    pub fn try_insert(
        &mut self,
        pid: PatternID,
    ) -> Result<bool, PatternSetInsertError> {
        if pid.as_usize() >= self.capacity() {
            return Err(PatternSetInsertError {
                attempted: pid,
                capacity: self.capacity(),
            });
        }
        if self.which[pid] {
            return Ok(false);
        }
        self.len += 1;
        self.which[pid] = true;
        Ok(true)
    }

    /*
    // This is currently commented out because it is unused and it is unclear
    // whether it's useful or not. What's the harm in having it? When, if
    // we ever wanted to change our representation to a 'SparseSet', then
    // supporting this method would be a bit tricky. So in order to keep some
    // API evolution flexibility, we leave it out for now.

    /// Remove the given pattern identifier from this set.
    ///
    /// If the pattern identifier was not previously in this set, then this
    /// does not change the set and returns `false`.
    ///
    /// # Panics
    ///
    /// This panics if `pid` exceeds the capacity of this set.
    pub fn remove(&mut self, pid: PatternID) -> bool {
        if !self.which[pid] {
            return false;
        }
        self.len -= 1;
        self.which[pid] = false;
        true
    }
    */

    /// Return true if and only if this set has no pattern identifiers in it.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return true if and only if this set has the maximum number of pattern
    /// identifiers in the set. This occurs precisely when `PatternSet::len()
    /// == PatternSet::capacity()`.
    ///
    /// This particular property is useful to test because it may allow one to
    /// stop a search earlier than you might otherwise. Namely, if a search is
    /// only reporting which patterns match a haystack and if you know all of
    /// the patterns match at a given point, then there's no new information
    /// that can be learned by continuing the search. (Because a pattern set
    /// does not keep track of offset information.)
    pub fn is_full(&self) -> bool {
        self.len() == self.capacity()
    }

    /// Returns the total number of pattern identifiers in this set.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns the total number of pattern identifiers that may be stored
    /// in this set.
    ///
    /// This is guaranteed to be less than or equal to [`PatternID::LIMIT`].
    ///
    /// Typically, the capacity of a pattern set matches the number of patterns
    /// in a regex object with which you are searching.
    pub fn capacity(&self) -> usize {
        self.which.len()
    }

    /// Returns an iterator over all pattern identifiers in this set.
    ///
    /// The iterator yields pattern identifiers in ascending order, starting
    /// at zero.
    pub fn iter(&self) -> PatternSetIter<'_> {
        PatternSetIter { it: self.which.iter().enumerate() }
    }
}

/// An error that occurs when a `PatternID` failed to insert into a
/// `PatternSet`.
///
/// An insert fails when the given `PatternID` exceeds the configured capacity
/// of the `PatternSet`.
///
/// This error is created by the [`PatternSet::try_insert`] routine.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct PatternSetInsertError {
    attempted: PatternID,
    capacity: usize,
}

#[cfg(feature = "std")]
impl std::error::Error for PatternSetInsertError {}

#[cfg(feature = "alloc")]
impl core::fmt::Display for PatternSetInsertError {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(
            f,
            "failed to insert pattern ID {} into pattern set \
             with insufficiet capacity of {}",
            self.attempted.as_usize(),
            self.capacity,
        )
    }
}

/// An iterator over all pattern identifiers in a [`PatternSet`].
///
/// The lifetime parameter `'a` refers to the lifetime of the pattern set being
/// iterated over.
///
/// This iterator is created by the [`PatternSet::iter`] method.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct PatternSetIter<'a> {
    it: core::iter::Enumerate<core::slice::Iter<'a, bool>>,
}

#[cfg(feature = "alloc")]
impl<'a> Iterator for PatternSetIter<'a> {
    type Item = PatternID;

    fn next(&mut self) -> Option<PatternID> {
        while let Some((index, &yes)) = self.it.next() {
            if yes {
                // Only valid 'PatternID' values can be inserted into the set
                // and construction of the set panics if the capacity would
                // permit storing invalid pattern IDs. Thus, 'yes' is only true
                // precisely when 'index' corresponds to a valid 'PatternID'.
                return Some(PatternID::new_unchecked(index));
            }
        }
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

#[cfg(feature = "alloc")]
impl<'a> DoubleEndedIterator for PatternSetIter<'a> {
    fn next_back(&mut self) -> Option<PatternID> {
        while let Some((index, &yes)) = self.it.next_back() {
            if yes {
                // Only valid 'PatternID' values can be inserted into the set
                // and construction of the set panics if the capacity would
                // permit storing invalid pattern IDs. Thus, 'yes' is only true
                // precisely when 'index' corresponds to a valid 'PatternID'.
                return Some(PatternID::new_unchecked(index));
            }
        }
        None
    }
}

/// The type of anchored search to perform.
///
/// This is *almost* a boolean option. That is, you can either do an unanchored
/// search for any pattern in a regex, or you can do an anchored search for any
/// pattern in a regex.
///
/// A third option exists that, assuming the regex engine supports it, permits
/// you to do an anchored search for a specific pattern.
///
/// Note that there is no way to run an unanchored search for a specific
/// pattern. If you need that, you'll need to build separate regexes for each
/// pattern.
///
/// # Errors
///
/// If a regex engine does not support the anchored mode selected, then the
/// regex engine will return an error. While any non-trivial regex engine
/// should support at least one of the available anchored modes, there is no
/// singular mode that is guaranteed to be universally supported. Some regex
/// engines might only support unanchored searches (DFAs compiled without
/// anchored starting states) and some regex engines might only support
/// anchored searches (like the one-pass DFA).
///
/// The specific error returned is a [`MatchError`] with a
/// [`MatchErrorKind::UnsupportedAnchored`] kind. The kind includes the
/// `Anchored` value given that is unsupported.
///
/// Note that regex engines should report "no match" if, for example, an
/// `Anchored::Pattern` is provided with an invalid pattern ID _but_ where
/// anchored searches for a specific pattern are supported. This is smooths out
/// behavior such that it's possible to guarantee that an error never occurs
/// based on how the regex engine is configured. All regex engines in this
/// crate report "no match" when searching for an invalid pattern ID, but where
/// searching for a valid pattern ID is otherwise supported.
///
/// # Example
///
/// This example shows how to use the various `Anchored` modes to run a
/// search. We use the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM)
/// because it supports all modes unconditionally. Some regex engines, like
/// the [`onepass::DFA`](crate::dfa::onepass::DFA) cannot support unanchored
/// searches.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
///     nfa::thompson::pikevm::PikeVM,
///     Anchored, Input, Match, PatternID,
/// };
///
/// let re = PikeVM::new_many(&[
///     r"Mrs. \w+",
///     r"Miss \w+",
///     r"Mr. \w+",
///     r"Ms. \w+",
/// ])?;
/// let mut cache = re.create_cache();
/// let hay = "Hello Mr. Springsteen!";
///
/// // The default is to do an unanchored search.
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, hay));
/// // Explicitly ask for an unanchored search. Same as above.
/// let input = Input::new(hay).anchored(Anchored::No);
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, hay));
///
/// // Now try an anchored search. Since the match doesn't start at the
/// // beginning of the haystack, no match is found!
/// let input = Input::new(hay).anchored(Anchored::Yes);
/// assert_eq!(None, re.find(&mut cache, input));
///
/// // We can try an anchored search again, but move the location of where
/// // we start the search. Note that the offsets reported are still in
/// // terms of the overall haystack and not relative to where we started
/// // the search.
/// let input = Input::new(hay).anchored(Anchored::Yes).range(6..);
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, input));
///
/// // Now try an anchored search for a specific pattern. We specifically
/// // choose a pattern that we know doesn't match to prove that the search
/// // only looks for the pattern we provide.
/// let input = Input::new(hay)
///     .anchored(Anchored::Pattern(PatternID::must(1)))
///     .range(6..);
/// assert_eq!(None, re.find(&mut cache, input));
///
/// // But if we switch it to the pattern that we know matches, then we find
/// // the match.
/// let input = Input::new(hay)
///     .anchored(Anchored::Pattern(PatternID::must(2)))
///     .range(6..);
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Anchored {
    /// Run an unanchored search. This means a match may occur anywhere at or
    /// after the start position of the search.
    ///
    /// This search can return a match for any pattern in the regex.
    No,
    /// Run an anchored search. This means that a match must begin at the
    /// start position of the search.
    ///
    /// This search can return a match for any pattern in the regex.
    Yes,
    /// Run an anchored search for a specific pattern. This means that a match
    /// must be for the given pattern and must begin at the start position of
    /// the search.
    Pattern(PatternID),
}

impl Anchored {
    /// Returns true if and only if this anchor mode corresponds to any kind of
    /// anchored search.
    ///
    /// # Example
    ///
    /// This examples shows that both `Anchored::Yes` and `Anchored::Pattern`
    /// are considered anchored searches.
    ///
    /// ```
    /// use regex_automata::{Anchored, PatternID};
    ///
    /// assert!(!Anchored::No.is_anchored());
    /// assert!(Anchored::Yes.is_anchored());
    /// assert!(Anchored::Pattern(PatternID::ZERO).is_anchored());
    /// ```
    #[inline]
    pub fn is_anchored(&self) -> bool {
        matches!(*self, Anchored::Yes | Anchored::Pattern(_))
    }

    /// Returns the pattern ID associated with this configuration if it is an
    /// anchored search for a specific pattern. Otherwise `None` is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Anchored, PatternID};
    ///
    /// assert_eq!(None, Anchored::No.pattern());
    /// assert_eq!(None, Anchored::Yes.pattern());
    ///
    /// let pid = PatternID::must(5);
    /// assert_eq!(Some(pid), Anchored::Pattern(pid).pattern());
    /// ```
    #[inline]
    pub fn pattern(&self) -> Option<PatternID> {
        match *self {
            Anchored::Pattern(pid) => Some(pid),
            _ => None,
        }
    }
}

/// The kind of match semantics to use for a regex pattern.
///
/// The default match kind is `LeftmostFirst`, and this corresponds to the
/// match semantics used by most backtracking engines, such as Perl.
///
/// # Leftmost first or "preference order" match semantics
///
/// Leftmost-first semantics determine which match to report when there are
/// multiple paths through a regex that match at the same position. The tie is
/// essentially broken by how a backtracker would behave. For example, consider
/// running the regex `foofoofoo|foofoo|foo` on the haystack `foofoo`. In this
/// case, both the `foofoo` and `foo` branches match at position `0`. So should
/// the end of the match be `3` or `6`?
///
/// A backtracker will conceptually work by trying `foofoofoo` and failing.
/// Then it will try `foofoo`, find the match and stop there. Thus, the
/// leftmost-first match position is `6`. This is called "leftmost-first" or
/// "preference order" because the order of the branches as written in the
/// regex pattern is what determines how to break the tie.
///
/// (Note that leftmost-longest match semantics, which break ties by always
/// taking the longest matching string, are not currently supported by this
/// crate. These match semantics tend to be found in POSIX regex engines.)
///
/// This example shows how leftmost-first semantics work, and how it even
/// applies to multi-pattern regexes:
///
/// ```
/// use regex_automata::{
///     nfa::thompson::pikevm::PikeVM,
///     Match,
/// };
///
/// let re = PikeVM::new_many(&[
///     r"foofoofoo",
///     r"foofoo",
///     r"foo",
/// ])?;
/// let mut cache = re.create_cache();
/// let got: Vec<Match> = re.find_iter(&mut cache, "foofoo").collect();
/// let expected = vec![Match::must(1, 0..6)];
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # All matches
///
/// The `All` match semantics report any and all matches, and generally will
/// attempt to match as much as possible. It doesn't respect any sort of match
/// priority at all, so things like non-greedy matching don't work in this
/// mode.
///
/// The fact that non-greedy matching doesn't work generally makes most forms
/// of unanchored non-overlapping searches have unintuitive behavior. Namely,
/// unanchored searches behave as if there is a `(?s-u:.)*?` prefix at the
/// beginning of the pattern, which is specifically non-greedy. Since it will
/// be treated as greedy in `All` match semantics, this generally means that
/// it will first attempt to consume all of the haystack and is likely to wind
/// up skipping matches.
///
/// Generally speaking, `All` should only be used in two circumstances:
///
/// * When running an anchored search and there is a desire to match as much as
/// possible. For example, when building a reverse regex matcher to find the
/// start of a match after finding the end. In this case, the reverse search
/// is anchored to the end of the match found by the forward search.
/// * When running overlapping searches. Since `All` encodes all possible
/// matches, this is generally what you want for an overlapping search. If you
/// try to use leftmost-first in an overlapping search, it is likely to produce
/// counter-intuitive results since leftmost-first specifically excludes some
/// matches from its underlying finite state machine.
///
/// This example demonstrates the counter-intuitive behavior of `All` semantics
/// when using a standard leftmost unanchored search:
///
/// ```
/// use regex_automata::{
///     nfa::thompson::pikevm::PikeVM,
///     Match, MatchKind,
/// };
///
/// let re = PikeVM::builder()
///     .configure(PikeVM::config().match_kind(MatchKind::All))
///     .build("foo")?;
/// let hay = "first foo second foo wat";
/// let mut cache = re.create_cache();
/// let got: Vec<Match> = re.find_iter(&mut cache, hay).collect();
/// // Notice that it completely skips the first 'foo'!
/// let expected = vec![Match::must(0, 17..20)];
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This second example shows how `All` semantics are useful for an overlapping
/// search. Note that we use lower level lazy DFA APIs here since the NFA
/// engines only currently support a very limited form of overlapping search.
///
/// ```
/// use regex_automata::{
///     hybrid::dfa::{DFA, OverlappingState},
///     HalfMatch, Input, MatchKind,
/// };
///
/// let re = DFA::builder()
///     // If we didn't set 'All' semantics here, then the regex would only
///     // match 'foo' at offset 3 and nothing else. Why? Because the state
///     // machine implements preference order and knows that the 'foofoo' and
///     // 'foofoofoo' branches can never match since 'foo' will always match
///     // when they match and take priority.
///     .configure(DFA::config().match_kind(MatchKind::All))
///     .build(r"foo|foofoo|foofoofoo")?;
/// let mut cache = re.create_cache();
/// let mut state = OverlappingState::start();
/// let input = Input::new("foofoofoo");
/// let mut got = vec![];
/// loop {
///     re.try_search_overlapping_fwd(&mut cache, &input, &mut state)?;
///     let m = match state.get_match() {
///         None => break,
///         Some(m) => m,
///     };
///     got.push(m);
/// }
/// let expected = vec![
///     HalfMatch::must(0, 3),
///     HalfMatch::must(0, 6),
///     HalfMatch::must(0, 9),
/// ];
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[non_exhaustive]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum MatchKind {
    /// Report all possible matches.
    All,
    /// Report only the leftmost matches. When multiple leftmost matches exist,
    /// report the match corresponding to the part of the regex that appears
    /// first in the syntax.
    LeftmostFirst,
    // There is prior art in RE2 that shows that we should be able to add
    // LeftmostLongest too. The tricky part of it is supporting ungreedy
    // repetitions. Instead of treating all NFA states as having equivalent
    // priority (as in 'All') or treating all NFA states as having distinct
    // priority based on order (as in 'LeftmostFirst'), we instead group NFA
    // states into sets, and treat members of each set as having equivalent
    // priority, but having greater priority than all following members
    // of different sets.
    //
    // However, it's not clear whether it's really worth adding this. After
    // all, leftmost-longest can be emulated when using literals by using
    // leftmost-first and sorting the literals by length in descending order.
    // However, this won't work for arbitrary regexes. e.g., `\w|\w\w` will
    // always match `a` in `ab` when using leftmost-first, but leftmost-longest
    // would match `ab`.
}

impl MatchKind {
    #[cfg(feature = "alloc")]
    pub(crate) fn continue_past_first_match(&self) -> bool {
        *self == MatchKind::All
    }
}

impl Default for MatchKind {
    fn default() -> MatchKind {
        MatchKind::LeftmostFirst
    }
}

/// An error indicating that a search stopped before reporting whether a
/// match exists or not.
///
/// To be very clear, this error type implies that one cannot assume that no
/// matches occur, since the search stopped before completing. That is, if
/// you're looking for information about where a search determined that no
/// match can occur, then this error type does *not* give you that. (Indeed, at
/// the time of writing, if you need such a thing, you have to write your own
/// search routine.)
///
/// Normally, when one searches for something, the response is either an
/// affirmative "it was found at this location" or a negative "not found at
/// all." However, in some cases, a regex engine can be configured to stop its
/// search before concluding whether a match exists or not. When this happens,
/// it may be important for the caller to know why the regex engine gave up and
/// where in the input it gave up at. This error type exposes the 'why' and the
/// 'where.'
///
/// For example, the DFAs provided by this library generally cannot correctly
/// implement Unicode word boundaries. Instead, they provide an option to
/// eagerly support them on ASCII text (since Unicode word boundaries are
/// equivalent to ASCII word boundaries when searching ASCII text), but will
/// "give up" if a non-ASCII byte is seen. In such cases, one is usually
/// required to either report the failure to the caller (unergonomic) or
/// otherwise fall back to some other regex engine (ergonomic, but potentially
/// costly).
///
/// More generally, some regex engines offer the ability for callers to specify
/// certain bytes that will trigger the regex engine to automatically quit if
/// they are seen.
///
/// Still yet, there may be other reasons for a failed match. For example,
/// the hybrid DFA provided by this crate can be configured to give up if it
/// believes that it is not efficient. This in turn permits callers to choose a
/// different regex engine.
///
/// (Note that DFAs are configured by default to never quit or give up in this
/// fashion. For example, by default, a DFA will fail to build if the regex
/// pattern contains a Unicode word boundary. One needs to opt into the "quit"
/// behavior via options, like
/// [`hybrid::dfa::Config::unicode_word_boundary`](crate::hybrid::dfa::Config::unicode_word_boundary).)
///
/// There are a couple other ways a search
/// can fail. For example, when using the
/// [`BoundedBacktracker`](crate::nfa::thompson::backtrack::BoundedBacktracker)
/// with a haystack that is too long, or trying to run an unanchored search
/// with a [one-pass DFA](crate::dfa::onepass).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct MatchError(
    #[cfg(feature = "alloc")] alloc::boxed::Box<MatchErrorKind>,
    #[cfg(not(feature = "alloc"))] MatchErrorKind,
);

impl MatchError {
    /// Create a new error value with the given kind.
    ///
    /// This is a more verbose version of the kind-specific constructors,
    /// e.g., `MatchError::quit`.
    pub fn new(kind: MatchErrorKind) -> MatchError {
        #[cfg(feature = "alloc")]
        {
            MatchError(alloc::boxed::Box::new(kind))
        }
        #[cfg(not(feature = "alloc"))]
        {
            MatchError(kind)
        }
    }

    /// Returns a reference to the underlying error kind.
    pub fn kind(&self) -> &MatchErrorKind {
        &self.0
    }

    /// Create a new "quit" error. The given `byte` corresponds to the value
    /// that tripped a search's quit condition, and `offset` corresponds to the
    /// location in the haystack at which the search quit.
    ///
    /// This is the same as calling `MatchError::new` with a
    /// [`MatchErrorKind::Quit`] kind.
    pub fn quit(byte: u8, offset: usize) -> MatchError {
        MatchError::new(MatchErrorKind::Quit { byte, offset })
    }

    /// Create a new "gave up" error. The given `offset` corresponds to the
    /// location in the haystack at which the search gave up.
    ///
    /// This is the same as calling `MatchError::new` with a
    /// [`MatchErrorKind::GaveUp`] kind.
    pub fn gave_up(offset: usize) -> MatchError {
        MatchError::new(MatchErrorKind::GaveUp { offset })
    }

    /// Create a new "haystack too long" error. The given `len` corresponds to
    /// the length of the haystack that was problematic.
    ///
    /// This is the same as calling `MatchError::new` with a
    /// [`MatchErrorKind::HaystackTooLong`] kind.
    pub fn haystack_too_long(len: usize) -> MatchError {
        MatchError::new(MatchErrorKind::HaystackTooLong { len })
    }

    /// Create a new "unsupported anchored" error. This occurs when the caller
    /// requests a search with an anchor mode that is not supported by the
    /// regex engine.
    ///
    /// This is the same as calling `MatchError::new` with a
    /// [`MatchErrorKind::UnsupportedAnchored`] kind.
    pub fn unsupported_anchored(mode: Anchored) -> MatchError {
        MatchError::new(MatchErrorKind::UnsupportedAnchored { mode })
    }
}

/// The underlying kind of a [`MatchError`].
///
/// This is a **non-exhaustive** enum. That means new variants may be added in
/// a semver-compatible release.
#[non_exhaustive]
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum MatchErrorKind {
    /// The search saw a "quit" byte at which it was instructed to stop
    /// searching.
    Quit {
        /// The "quit" byte that was observed that caused the search to stop.
        byte: u8,
        /// The offset at which the quit byte was observed.
        offset: usize,
    },
    /// The search, based on heuristics, determined that it would be better
    /// to stop, typically to provide the caller an opportunity to use an
    /// alternative regex engine.
    ///
    /// Currently, the only way for this to occur is via the lazy DFA and
    /// only when it is configured to do so (it will not return this error by
    /// default).
    GaveUp {
        /// The offset at which the search stopped. This corresponds to the
        /// position immediately following the last byte scanned.
        offset: usize,
    },
    /// This error occurs if the haystack given to the regex engine was too
    /// long to be searched. This occurs, for example, with regex engines
    /// like the bounded backtracker that have a configurable fixed amount of
    /// capacity that is tied to the length of the haystack. Anything beyond
    /// that configured limit will result in an error at search time.
    HaystackTooLong {
        /// The length of the haystack that exceeded the limit.
        len: usize,
    },
    /// An error indicating that a particular type of anchored search was
    /// requested, but that the regex engine does not support it.
    ///
    /// Note that this error should not be returned by a regex engine simply
    /// because the pattern ID is invalid (i.e., equal to or exceeds the number
    /// of patterns in the regex). In that case, the regex engine should report
    /// a non-match.
    UnsupportedAnchored {
        /// The anchored mode given that is unsupported.
        mode: Anchored,
    },
}

#[cfg(feature = "std")]
impl std::error::Error for MatchError {}

impl core::fmt::Display for MatchError {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        match *self.kind() {
            MatchErrorKind::Quit { byte, offset } => write!(
                f,
                "quit search after observing byte {:?} at offset {}",
                DebugByte(byte),
                offset,
            ),
            MatchErrorKind::GaveUp { offset } => {
                write!(f, "gave up searching at offset {}", offset)
            }
            MatchErrorKind::HaystackTooLong { len } => {
                write!(f, "haystack of length {} is too long", len)
            }
            MatchErrorKind::UnsupportedAnchored { mode: Anchored::Yes } => {
                write!(f, "anchored searches are not supported or enabled")
            }
            MatchErrorKind::UnsupportedAnchored { mode: Anchored::No } => {
                write!(f, "unanchored searches are not supported or enabled")
            }
            MatchErrorKind::UnsupportedAnchored {
                mode: Anchored::Pattern(pid),
            } => {
                write!(
                    f,
                    "anchored searches for a specific pattern ({}) are \
                     not supported or enabled",
                    pid.as_usize(),
                )
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // We test that our 'MatchError' type is the size we expect. This isn't an
    // API guarantee, but if the size increases, we really want to make sure we
    // decide to do that intentionally. So this should be a speed bump. And in
    // general, we should not increase the size without a very good reason.
    //
    // Why? Because low level search APIs return Result<.., MatchError>. When
    // MatchError gets bigger, so to does the Result type.
    //
    // Now, when 'alloc' is enabled, we do box the error, which de-emphasizes
    // the importance of keeping a small error type. But without 'alloc', we
    // still want things to be small.
    #[test]
    fn match_error_size() {
        let expected_size = if cfg!(feature = "alloc") {
            core::mem::size_of::<usize>()
        } else {
            2 * core::mem::size_of::<usize>()
        };
        assert_eq!(expected_size, core::mem::size_of::<MatchError>());
    }

    // Same as above, but for the underlying match error kind.
    #[cfg(target_pointer_width = "64")]
    #[test]
    fn match_error_kind_size() {
        let expected_size = 2 * core::mem::size_of::<usize>();
        assert_eq!(expected_size, core::mem::size_of::<MatchErrorKind>());
    }

    #[cfg(target_pointer_width = "32")]
    #[test]
    fn match_error_kind_size() {
        let expected_size = 3 * core::mem::size_of::<usize>();
        assert_eq!(expected_size, core::mem::size_of::<MatchErrorKind>());
    }

    #[test]
    fn incorrect_asref_guard() {
        struct Bad(std::cell::Cell<bool>);

        impl AsRef<[u8]> for Bad {
            fn as_ref(&self) -> &[u8] {
                if self.0.replace(false) {
                    &[]
                } else {
                    &[0; 1000]
                }
            }
        }

        let bad = Bad(std::cell::Cell::new(true));
        let input = Input::new(&bad);
        assert!(input.end() <= input.haystack().len());
    }
}