tokio/runtime/time/wheel/mod.rs
1use crate::runtime::time::{TimerHandle, TimerShared};
2use crate::time::error::InsertError;
3
4mod level;
5pub(crate) use self::level::Expiration;
6use self::level::Level;
7
8use std::{array, ptr::NonNull};
9
10use super::entry::STATE_DEREGISTERED;
11use super::EntryList;
12
13/// Timing wheel implementation.
14///
15/// This type provides the hashed timing wheel implementation that backs
16/// [`Driver`].
17///
18/// See [`Driver`] documentation for some implementation notes.
19///
20/// [`Driver`]: crate::runtime::time::Driver
21#[derive(Debug)]
22pub(crate) struct Wheel {
23 /// The number of milliseconds elapsed since the wheel started.
24 elapsed: u64,
25
26 /// Timer wheel.
27 ///
28 /// Levels:
29 ///
30 /// * 1 ms slots / 64 ms range
31 /// * 64 ms slots / ~ 4 sec range
32 /// * ~ 4 sec slots / ~ 4 min range
33 /// * ~ 4 min slots / ~ 4 hr range
34 /// * ~ 4 hr slots / ~ 12 day range
35 /// * ~ 12 day slots / ~ 2 yr range
36 levels: Box<[Level; NUM_LEVELS]>,
37
38 /// Entries queued for firing
39 pending: EntryList,
40}
41
42/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
43/// each, the timer is able to track time up to 2 years into the future with a
44/// precision of 1 millisecond.
45const NUM_LEVELS: usize = 6;
46
47/// The maximum duration of a `Sleep`.
48pub(super) const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
49
50impl Wheel {
51 /// Creates a new timing wheel.
52 pub(crate) fn new() -> Wheel {
53 Wheel {
54 elapsed: 0,
55 levels: Box::new(array::from_fn(Level::new)),
56 pending: EntryList::new(),
57 }
58 }
59
60 /// Returns the number of milliseconds that have elapsed since the timing
61 /// wheel's creation.
62 pub(crate) fn elapsed(&self) -> u64 {
63 self.elapsed
64 }
65
66 /// Inserts an entry into the timing wheel.
67 ///
68 /// # Arguments
69 ///
70 /// * `item`: The item to insert into the wheel.
71 ///
72 /// # Return
73 ///
74 /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
75 ///
76 /// `Err(Elapsed)` indicates that `when` represents an instant that has
77 /// already passed. In this case, the caller should fire the timeout
78 /// immediately.
79 ///
80 /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
81 ///
82 /// # Safety
83 ///
84 /// This function registers item into an intrusive linked list. The caller
85 /// must ensure that `item` is pinned and will not be dropped without first
86 /// being deregistered.
87 pub(crate) unsafe fn insert(
88 &mut self,
89 item: TimerHandle,
90 ) -> Result<u64, (TimerHandle, InsertError)> {
91 let when = unsafe { item.sync_when() };
92
93 if when <= self.elapsed {
94 return Err((item, InsertError::Elapsed));
95 }
96
97 // Get the level at which the entry should be stored
98 let level = self.level_for(when);
99
100 unsafe {
101 self.levels[level].add_entry(item);
102 }
103
104 debug_assert!({
105 self.levels[level]
106 .next_expiration(self.elapsed)
107 .map(|e| e.deadline >= self.elapsed)
108 .unwrap_or(true)
109 });
110
111 Ok(when)
112 }
113
114 /// Removes `item` from the timing wheel.
115 pub(crate) unsafe fn remove(&mut self, item: NonNull<TimerShared>) {
116 unsafe {
117 let when = item.as_ref().registered_when();
118 if when == STATE_DEREGISTERED {
119 self.pending.remove(item);
120 } else {
121 debug_assert!(
122 self.elapsed <= when,
123 "elapsed={}; when={}",
124 self.elapsed,
125 when
126 );
127
128 let level = self.level_for(when);
129 self.levels[level].remove_entry(item);
130 }
131 }
132 }
133
134 /// Instant at which to poll.
135 pub(crate) fn poll_at(&self) -> Option<u64> {
136 self.next_expiration().map(|expiration| expiration.deadline)
137 }
138
139 /// Advances the timer up to the instant represented by `now`.
140 pub(crate) fn poll(&mut self, now: u64) -> Option<TimerHandle> {
141 loop {
142 if let Some(handle) = self.pending.pop_back() {
143 return Some(handle);
144 }
145
146 match self.next_expiration() {
147 Some(ref expiration) if expiration.deadline <= now => {
148 self.process_expiration(expiration);
149
150 self.set_elapsed(expiration.deadline);
151 }
152 _ => {
153 // in this case the poll did not indicate an expiration
154 // _and_ we were not able to find a next expiration in
155 // the current list of timers. advance to the poll's
156 // current time and do nothing else.
157 self.set_elapsed(now);
158 break;
159 }
160 }
161 }
162
163 self.pending.pop_back()
164 }
165
166 /// Returns the instant at which the next timeout expires.
167 fn next_expiration(&self) -> Option<Expiration> {
168 if !self.pending.is_empty() {
169 // Expire immediately as we have things pending firing
170 return Some(Expiration {
171 level: 0,
172 slot: 0,
173 deadline: self.elapsed,
174 });
175 }
176
177 // Check all levels
178 for (level_num, level) in self.levels.iter().enumerate() {
179 if let Some(expiration) = level.next_expiration(self.elapsed) {
180 // There cannot be any expirations at a higher level that happen
181 // before this one.
182 debug_assert!(self.no_expirations_before(level_num + 1, expiration.deadline));
183
184 return Some(expiration);
185 }
186 }
187
188 None
189 }
190
191 /// Returns the tick at which this timer wheel next needs to perform some
192 /// processing, or None if there are no timers registered.
193 pub(super) fn next_expiration_time(&self) -> Option<u64> {
194 self.next_expiration().map(|ex| ex.deadline)
195 }
196
197 /// Used for debug assertions
198 fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
199 let mut res = true;
200
201 for level in &self.levels[start_level..] {
202 if let Some(e2) = level.next_expiration(self.elapsed) {
203 if e2.deadline < before {
204 res = false;
205 }
206 }
207 }
208
209 res
210 }
211
212 /// iteratively find entries that are between the wheel's current
213 /// time and the expiration time. for each in that population either
214 /// queue it for notification (in the case of the last level) or tier
215 /// it down to the next level (in all other cases).
216 pub(crate) fn process_expiration(&mut self, expiration: &Expiration) {
217 // Note that we need to take _all_ of the entries off the list before
218 // processing any of them. This is important because it's possible that
219 // those entries might need to be reinserted into the same slot.
220 //
221 // This happens only on the highest level, when an entry is inserted
222 // more than MAX_DURATION into the future. When this happens, we wrap
223 // around, and process some entries a multiple of MAX_DURATION before
224 // they actually need to be dropped down a level. We then reinsert them
225 // back into the same position; we must make sure we don't then process
226 // those entries again or we'll end up in an infinite loop.
227 let mut entries = self.take_entries(expiration);
228
229 while let Some(item) = entries.pop_back() {
230 if expiration.level == 0 {
231 debug_assert_eq!(unsafe { item.registered_when() }, expiration.deadline);
232 }
233
234 // Try to expire the entry; this is cheap (doesn't synchronize) if
235 // the timer is not expired, and updates registered_when.
236 match unsafe { item.mark_pending(expiration.deadline) } {
237 Ok(()) => {
238 // Item was expired
239 self.pending.push_front(item);
240 }
241 Err(expiration_tick) => {
242 let level = level_for(expiration.deadline, expiration_tick);
243 unsafe {
244 self.levels[level].add_entry(item);
245 }
246 }
247 }
248 }
249 }
250
251 fn set_elapsed(&mut self, when: u64) {
252 assert!(
253 self.elapsed <= when,
254 "elapsed={:?}; when={:?}",
255 self.elapsed,
256 when
257 );
258
259 if when > self.elapsed {
260 self.elapsed = when;
261 }
262 }
263
264 /// Obtains the list of entries that need processing for the given expiration.
265 fn take_entries(&mut self, expiration: &Expiration) -> EntryList {
266 self.levels[expiration.level].take_slot(expiration.slot)
267 }
268
269 fn level_for(&self, when: u64) -> usize {
270 level_for(self.elapsed, when)
271 }
272}
273
274fn level_for(elapsed: u64, when: u64) -> usize {
275 const SLOT_MASK: u64 = (1 << 6) - 1;
276
277 // Mask in the trailing bits ignored by the level calculation in order to cap
278 // the possible leading zeros
279 let mut masked = elapsed ^ when | SLOT_MASK;
280
281 if masked >= MAX_DURATION {
282 // Fudge the timer into the top level
283 masked = MAX_DURATION - 1;
284 }
285
286 let leading_zeros = masked.leading_zeros() as usize;
287 let significant = 63 - leading_zeros;
288
289 significant / NUM_LEVELS
290}
291
292#[cfg(all(test, not(loom)))]
293mod test {
294 use super::*;
295
296 #[test]
297 fn test_level_for() {
298 for pos in 0..64 {
299 assert_eq!(0, level_for(0, pos), "level_for({pos}) -- binary = {pos:b}");
300 }
301
302 for level in 1..5 {
303 for pos in level..64 {
304 let a = pos * 64_usize.pow(level as u32);
305 assert_eq!(
306 level,
307 level_for(0, a as u64),
308 "level_for({a}) -- binary = {a:b}"
309 );
310
311 if pos > level {
312 let a = a - 1;
313 assert_eq!(
314 level,
315 level_for(0, a as u64),
316 "level_for({a}) -- binary = {a:b}"
317 );
318 }
319
320 if pos < 64 {
321 let a = a + 1;
322 assert_eq!(
323 level,
324 level_for(0, a as u64),
325 "level_for({a}) -- binary = {a:b}"
326 );
327 }
328 }
329 }
330 }
331}