servo_media_audio/buffer_source_node.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
use block::{Block, Chunk, Tick, FRAMES_PER_BLOCK};
use node::{AudioNodeEngine, AudioScheduledSourceNodeMessage, BlockInfo, OnEndedCallback};
use node::{AudioNodeType, ChannelInfo, ShouldPlay};
use param::{Param, ParamType};
/// Control messages directed to AudioBufferSourceNodes.
#[derive(Debug, Clone)]
pub enum AudioBufferSourceNodeMessage {
/// Set the data block holding the audio sample data to be played.
SetBuffer(Option<AudioBuffer>),
/// Set loop parameter.
SetLoopEnabled(bool),
/// Set loop parameter.
SetLoopEnd(f64),
/// Set loop parameter.
SetLoopStart(f64),
/// Set start parameters (when, offset, duration).
SetStartParams(f64, Option<f64>, Option<f64>),
}
/// This specifies options for constructing an AudioBufferSourceNode.
#[derive(Debug, Clone)]
pub struct AudioBufferSourceNodeOptions {
/// The audio asset to be played.
pub buffer: Option<AudioBuffer>,
/// The initial value for the detune AudioParam.
pub detune: f32,
/// The initial value for the loop_enabled attribute.
pub loop_enabled: bool,
/// The initial value for the loop_end attribute.
pub loop_end: Option<f64>,
/// The initial value for the loop_start attribute.
pub loop_start: Option<f64>,
/// The initial value for the playback_rate AudioParam.
pub playback_rate: f32,
}
impl Default for AudioBufferSourceNodeOptions {
fn default() -> Self {
AudioBufferSourceNodeOptions {
buffer: None,
detune: 0.,
loop_enabled: false,
loop_end: None,
loop_start: None,
playback_rate: 1.,
}
}
}
/// AudioBufferSourceNode engine.
/// https://webaudio.github.io/web-audio-api/#AudioBufferSourceNode
#[derive(AudioScheduledSourceNode, AudioNodeCommon)]
#[allow(dead_code)]
pub(crate) struct AudioBufferSourceNode {
channel_info: ChannelInfo,
/// A data block holding the audio sample data to be played.
buffer: Option<AudioBuffer>,
/// How many more buffer-frames to output. See buffer_pos for clarification.
buffer_duration: f64,
/// "Index" of the next buffer frame to play. "Index" is in quotes because
/// this variable maps to a playhead position (the offset in seconds can be
/// obtained by dividing by self.buffer.sample_rate), and therefore has
/// subsample accuracy; a fractional "index" means interpolation is needed.
buffer_pos: f64,
/// AudioParam to modulate the speed at which is rendered the audio stream.
detune: Param,
/// Whether we need to compute offsets from scratch.
initialized_pos: bool,
/// Indicates if the region of audio data designated by loopStart and loopEnd
/// should be played continuously in a loop.
loop_enabled: bool,
/// An playhead position where looping should end if the loop_enabled
/// attribute is true.
loop_end: Option<f64>,
/// An playhead position where looping should begin if the loop_enabled
/// attribute is true.
loop_start: Option<f64>,
/// The speed at which to render the audio stream. Can be negative if the
/// audio is to be played backwards. With a negative playback_rate, looping
/// jumps from loop_start to loop_end instead of the other way around.
playback_rate: Param,
/// Time at which the source should start playing.
start_at: Option<Tick>,
/// Offset parameter passed to Start().
start_offset: Option<f64>,
/// Duration parameter passed to Start().
start_duration: Option<f64>,
/// The same as start_at, but with subsample accuracy.
/// FIXME: AudioScheduledSourceNode should use this as well.
start_when: f64,
/// Time at which the source should stop playing.
stop_at: Option<Tick>,
/// The ended event callback.
pub onended_callback: Option<OnEndedCallback>,
}
impl AudioBufferSourceNode {
pub fn new(options: AudioBufferSourceNodeOptions, channel_info: ChannelInfo) -> Self {
Self {
channel_info,
buffer: options.buffer,
buffer_pos: 0.,
detune: Param::new_krate(options.detune),
initialized_pos: false,
loop_enabled: options.loop_enabled,
loop_end: options.loop_end,
loop_start: options.loop_start,
playback_rate: Param::new_krate(options.playback_rate),
buffer_duration: std::f64::INFINITY,
start_at: None,
start_offset: None,
start_duration: None,
start_when: 0.,
stop_at: None,
onended_callback: None,
}
}
pub fn handle_message(&mut self, message: AudioBufferSourceNodeMessage, _: f32) {
match message {
AudioBufferSourceNodeMessage::SetBuffer(buffer) => {
self.buffer = buffer;
}
// XXX(collares): To fully support dynamically updating loop bounds,
// Must truncate self.buffer_pos if it is now outside the loop.
AudioBufferSourceNodeMessage::SetLoopEnabled(loop_enabled) => {
self.loop_enabled = loop_enabled
}
AudioBufferSourceNodeMessage::SetLoopEnd(loop_end) => self.loop_end = Some(loop_end),
AudioBufferSourceNodeMessage::SetLoopStart(loop_start) => {
self.loop_start = Some(loop_start)
}
AudioBufferSourceNodeMessage::SetStartParams(when, offset, duration) => {
self.start_when = when;
self.start_offset = offset;
self.start_duration = duration;
}
}
}
}
impl AudioNodeEngine for AudioBufferSourceNode {
fn node_type(&self) -> AudioNodeType {
AudioNodeType::AudioBufferSourceNode
}
fn input_count(&self) -> u32 {
0
}
fn process(&mut self, mut inputs: Chunk, info: &BlockInfo) -> Chunk {
debug_assert!(inputs.len() == 0);
if self.buffer.is_none() {
inputs.blocks.push(Default::default());
return inputs;
}
let (start_at, stop_at) = match self.should_play_at(info.frame) {
ShouldPlay::No => {
inputs.blocks.push(Default::default());
return inputs;
}
ShouldPlay::Between(start, end) => (start.0 as usize, end.0 as usize),
};
let buffer = self.buffer.as_ref().unwrap();
let (mut actual_loop_start, mut actual_loop_end) = (0., buffer.len() as f64);
if self.loop_enabled {
let loop_start = self.loop_start.unwrap_or(0.);
let loop_end = self.loop_end.unwrap_or(0.);
if loop_start >= 0. && loop_end > loop_start {
actual_loop_start = loop_start * (buffer.sample_rate as f64);
actual_loop_end = loop_end * (buffer.sample_rate as f64);
}
}
// https://webaudio.github.io/web-audio-api/#computedplaybackrate
self.playback_rate.update(info, Tick(0));
self.detune.update(info, Tick(0));
// computed_playback_rate can be negative or zero.
let computed_playback_rate =
self.playback_rate.value() as f64 * (2.0_f64).powf(self.detune.value() as f64 / 1200.);
let forward = computed_playback_rate >= 0.;
if !self.initialized_pos {
self.initialized_pos = true;
// Apply the offset and duration parameters passed to start. We handle
// this here because the buffer may be set after Start() gets called, so
// this might be the first time we know the buffer's sample rate.
if let Some(start_offset) = self.start_offset {
self.buffer_pos = start_offset * (buffer.sample_rate as f64);
if self.buffer_pos < 0. {
self.buffer_pos = 0.
} else if self.buffer_pos > buffer.len() as f64 {
self.buffer_pos = buffer.len() as f64;
}
}
if self.loop_enabled {
if forward && self.buffer_pos >= actual_loop_end {
self.buffer_pos = actual_loop_start;
}
// https://github.com/WebAudio/web-audio-api/issues/2031
if !forward && self.buffer_pos < actual_loop_start {
self.buffer_pos = actual_loop_end;
}
}
if let Some(start_duration) = self.start_duration {
self.buffer_duration = start_duration * (buffer.sample_rate as f64);
}
// start_when can be subsample accurate. Correct buffer_pos.
//
// XXX(collares): What happens to "start_when" if the buffer gets
// set after Start()?
// XXX(collares): Need a better way to distingush between Start()
// being called with "when" in the past (in which case "when" must
// be ignored) and Start() being called with "when" in the future.
// This can now make a difference if "when" shouldn't be ignored
// but falls after the last frame of the previous quantum.
if self.start_when > info.time - 1. / info.sample_rate as f64 {
let first_time = info.time + start_at as f64 / info.sample_rate as f64;
if self.start_when <= first_time {
let subsample_offset = (first_time - self.start_when)
* (buffer.sample_rate as f64)
* computed_playback_rate;
self.buffer_pos += subsample_offset;
self.buffer_duration -= subsample_offset.abs();
}
}
}
let buffer_offset_per_tick =
computed_playback_rate * (buffer.sample_rate as f64 / info.sample_rate as f64);
// We will output at most this many frames (fewer if we run out of data).
let frames_to_output = stop_at - start_at;
if self.loop_enabled && buffer_offset_per_tick.abs() < actual_loop_end - actual_loop_start {
// Refuse to output data in this extreme edge case.
//
// XXX(collares): There are two ways we could handle it:
// 1) Take buffer_offset_per_tick modulo the loop length, and handle
// the pre-loop-entering output separately.
// 2) Add a division by the loop length to the hot path below.
// None of them seem worth the trouble. The spec should forbid this.
self.maybe_trigger_onended_callback();
inputs.blocks.push(Default::default());
return inputs;
}
// Fast path for the case where we can just copy FRAMES_PER_BLOCK
// frames straight from the buffer.
if frames_to_output == FRAMES_PER_BLOCK.0 as usize
&& forward
&& buffer_offset_per_tick == 1.
&& self.buffer_pos.trunc() == self.buffer_pos
&& self.buffer_pos + (FRAMES_PER_BLOCK.0 as f64) <= actual_loop_end
&& FRAMES_PER_BLOCK.0 as f64 <= self.buffer_duration
{
let mut block = Block::empty();
let pos = self.buffer_pos as usize;
for chan in 0..buffer.chans() {
block.push_chan(&buffer.buffers[chan as usize][pos..(pos + frames_to_output)]);
}
inputs.blocks.push(block);
self.buffer_pos += FRAMES_PER_BLOCK.0 as f64;
self.buffer_duration -= FRAMES_PER_BLOCK.0 as f64;
} else {
// Slow path, with interpolation.
let mut block = Block::default();
block.repeat(buffer.chans());
block.explicit_repeat();
debug_assert!(buffer.chans() > 0);
for chan in 0..buffer.chans() {
let data = block.data_chan_mut(chan);
let (_, data) = data.split_at_mut(start_at);
let (data, _) = data.split_at_mut(frames_to_output);
let mut pos = self.buffer_pos;
let mut duration = self.buffer_duration;
for sample in data {
if duration <= 0. {
break;
}
if self.loop_enabled {
if forward && pos >= actual_loop_end {
pos -= actual_loop_end - actual_loop_start;
} else if !forward && pos < actual_loop_start {
pos += actual_loop_end - actual_loop_start;
}
} else if pos < 0. || pos >= buffer.len() as f64 {
break;
}
*sample = buffer.interpolate(chan, pos);
pos += buffer_offset_per_tick;
duration -= buffer_offset_per_tick.abs();
}
// This is the last channel, update parameters.
if chan == buffer.chans() - 1 {
self.buffer_pos = pos;
self.buffer_duration = duration;
}
}
inputs.blocks.push(block);
}
if !self.loop_enabled && (self.buffer_pos < 0. || self.buffer_pos >= buffer.len() as f64)
|| self.buffer_duration <= 0.
{
self.maybe_trigger_onended_callback();
}
inputs
}
fn get_param(&mut self, id: ParamType) -> &mut Param {
match id {
ParamType::PlaybackRate => &mut self.playback_rate,
ParamType::Detune => &mut self.detune,
_ => panic!("Unknown param {:?} for AudioBufferSourceNode", id),
}
}
make_message_handler!(
AudioBufferSourceNode: handle_message,
AudioScheduledSourceNode: handle_source_node_message
);
}
#[derive(Debug, Clone)]
pub struct AudioBuffer {
/// Invariant: all buffers must be of the same length
pub buffers: Vec<Vec<f32>>,
pub sample_rate: f32,
}
impl AudioBuffer {
pub fn new(chan: u8, len: usize, sample_rate: f32) -> Self {
assert!(chan > 0);
let mut buffers = Vec::with_capacity(chan as usize);
let single = vec![0.; len];
buffers.resize(chan as usize, single);
AudioBuffer {
buffers,
sample_rate,
}
}
pub fn from_buffers(buffers: Vec<Vec<f32>>, sample_rate: f32) -> Self {
for buf in &buffers {
assert_eq!(buf.len(), buffers[0].len())
}
Self {
buffers,
sample_rate,
}
}
pub fn from_buffer(buffer: Vec<f32>, sample_rate: f32) -> Self {
AudioBuffer::from_buffers(vec![buffer], sample_rate)
}
pub fn len(&self) -> usize {
self.buffers[0].len()
}
pub fn chans(&self) -> u8 {
self.buffers.len() as u8
}
// XXX(collares): There are better fast interpolation algorithms.
// Firefox uses (via Speex's resampler) the algorithm described in
// https://ccrma.stanford.edu/~jos/resample/resample.pdf
// There are Rust bindings: https://github.com/rust-av/speexdsp-rs
pub fn interpolate(&self, chan: u8, pos: f64) -> f32 {
debug_assert!(pos >= 0. && pos < self.len() as f64);
let prev = pos.floor() as usize;
let offset = pos - pos.floor();
match self.buffers[chan as usize].get(prev + 1) {
Some(next_sample) => {
((1. - offset) * (self.buffers[chan as usize][prev] as f64)
+ offset * (*next_sample as f64)) as f32
}
_ => {
// linear extrapolation of two prev samples if there are two
if prev > 0 {
((1. + offset) * (self.buffers[chan as usize][prev] as f64)
- offset * (self.buffers[chan as usize][prev - 1] as f64))
as f32
} else {
self.buffers[chan as usize][prev]
}
}
}
}
pub fn data_chan_mut(&mut self, chan: u8) -> &mut [f32] {
&mut self.buffers[chan as usize]
}
}