servo_media_audio/
buffer_source_node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
use block::{Block, Chunk, Tick, FRAMES_PER_BLOCK};
use node::{AudioNodeEngine, AudioScheduledSourceNodeMessage, BlockInfo, OnEndedCallback};
use node::{AudioNodeType, ChannelInfo, ShouldPlay};
use param::{Param, ParamType};

/// Control messages directed to AudioBufferSourceNodes.
#[derive(Debug, Clone)]
pub enum AudioBufferSourceNodeMessage {
    /// Set the data block holding the audio sample data to be played.
    SetBuffer(Option<AudioBuffer>),
    /// Set loop parameter.
    SetLoopEnabled(bool),
    /// Set loop parameter.
    SetLoopEnd(f64),
    /// Set loop parameter.
    SetLoopStart(f64),
    /// Set start parameters (when, offset, duration).
    SetStartParams(f64, Option<f64>, Option<f64>),
}

/// This specifies options for constructing an AudioBufferSourceNode.
#[derive(Debug, Clone)]
pub struct AudioBufferSourceNodeOptions {
    /// The audio asset to be played.
    pub buffer: Option<AudioBuffer>,
    /// The initial value for the detune AudioParam.
    pub detune: f32,
    /// The initial value for the loop_enabled attribute.
    pub loop_enabled: bool,
    /// The initial value for the loop_end attribute.
    pub loop_end: Option<f64>,
    /// The initial value for the loop_start attribute.
    pub loop_start: Option<f64>,
    /// The initial value for the playback_rate AudioParam.
    pub playback_rate: f32,
}

impl Default for AudioBufferSourceNodeOptions {
    fn default() -> Self {
        AudioBufferSourceNodeOptions {
            buffer: None,
            detune: 0.,
            loop_enabled: false,
            loop_end: None,
            loop_start: None,
            playback_rate: 1.,
        }
    }
}

/// AudioBufferSourceNode engine.
/// https://webaudio.github.io/web-audio-api/#AudioBufferSourceNode
#[derive(AudioScheduledSourceNode, AudioNodeCommon)]
#[allow(dead_code)]
pub(crate) struct AudioBufferSourceNode {
    channel_info: ChannelInfo,
    /// A data block holding the audio sample data to be played.
    buffer: Option<AudioBuffer>,
    /// How many more buffer-frames to output. See buffer_pos for clarification.
    buffer_duration: f64,
    /// "Index" of the next buffer frame to play. "Index" is in quotes because
    /// this variable maps to a playhead position (the offset in seconds can be
    /// obtained by dividing by self.buffer.sample_rate), and therefore has
    /// subsample accuracy; a fractional "index" means interpolation is needed.
    buffer_pos: f64,
    /// AudioParam to modulate the speed at which is rendered the audio stream.
    detune: Param,
    /// Whether we need to compute offsets from scratch.
    initialized_pos: bool,
    /// Indicates if the region of audio data designated by loopStart and loopEnd
    /// should be played continuously in a loop.
    loop_enabled: bool,
    /// An playhead position where looping should end if the loop_enabled
    /// attribute is true.
    loop_end: Option<f64>,
    /// An playhead position where looping should begin if the loop_enabled
    /// attribute is true.
    loop_start: Option<f64>,
    /// The speed at which to render the audio stream. Can be negative if the
    /// audio is to be played backwards. With a negative playback_rate, looping
    /// jumps from loop_start to loop_end instead of the other way around.
    playback_rate: Param,
    /// Time at which the source should start playing.
    start_at: Option<Tick>,
    /// Offset parameter passed to Start().
    start_offset: Option<f64>,
    /// Duration parameter passed to Start().
    start_duration: Option<f64>,
    /// The same as start_at, but with subsample accuracy.
    /// FIXME: AudioScheduledSourceNode should use this as well.
    start_when: f64,
    /// Time at which the source should stop playing.
    stop_at: Option<Tick>,
    /// The ended event callback.
    pub onended_callback: Option<OnEndedCallback>,
}

impl AudioBufferSourceNode {
    pub fn new(options: AudioBufferSourceNodeOptions, channel_info: ChannelInfo) -> Self {
        Self {
            channel_info,
            buffer: options.buffer,
            buffer_pos: 0.,
            detune: Param::new_krate(options.detune),
            initialized_pos: false,
            loop_enabled: options.loop_enabled,
            loop_end: options.loop_end,
            loop_start: options.loop_start,
            playback_rate: Param::new_krate(options.playback_rate),
            buffer_duration: std::f64::INFINITY,
            start_at: None,
            start_offset: None,
            start_duration: None,
            start_when: 0.,
            stop_at: None,
            onended_callback: None,
        }
    }

    pub fn handle_message(&mut self, message: AudioBufferSourceNodeMessage, _: f32) {
        match message {
            AudioBufferSourceNodeMessage::SetBuffer(buffer) => {
                self.buffer = buffer;
            }
            // XXX(collares): To fully support dynamically updating loop bounds,
            // Must truncate self.buffer_pos if it is now outside the loop.
            AudioBufferSourceNodeMessage::SetLoopEnabled(loop_enabled) => {
                self.loop_enabled = loop_enabled
            }
            AudioBufferSourceNodeMessage::SetLoopEnd(loop_end) => self.loop_end = Some(loop_end),
            AudioBufferSourceNodeMessage::SetLoopStart(loop_start) => {
                self.loop_start = Some(loop_start)
            }
            AudioBufferSourceNodeMessage::SetStartParams(when, offset, duration) => {
                self.start_when = when;
                self.start_offset = offset;
                self.start_duration = duration;
            }
        }
    }
}

impl AudioNodeEngine for AudioBufferSourceNode {
    fn node_type(&self) -> AudioNodeType {
        AudioNodeType::AudioBufferSourceNode
    }

    fn input_count(&self) -> u32 {
        0
    }

    fn process(&mut self, mut inputs: Chunk, info: &BlockInfo) -> Chunk {
        debug_assert!(inputs.len() == 0);

        if self.buffer.is_none() {
            inputs.blocks.push(Default::default());
            return inputs;
        }

        let (start_at, stop_at) = match self.should_play_at(info.frame) {
            ShouldPlay::No => {
                inputs.blocks.push(Default::default());
                return inputs;
            }
            ShouldPlay::Between(start, end) => (start.0 as usize, end.0 as usize),
        };

        let buffer = self.buffer.as_ref().unwrap();

        let (mut actual_loop_start, mut actual_loop_end) = (0., buffer.len() as f64);
        if self.loop_enabled {
            let loop_start = self.loop_start.unwrap_or(0.);
            let loop_end = self.loop_end.unwrap_or(0.);

            if loop_start >= 0. && loop_end > loop_start {
                actual_loop_start = loop_start * (buffer.sample_rate as f64);
                actual_loop_end = loop_end * (buffer.sample_rate as f64);
            }
        }

        // https://webaudio.github.io/web-audio-api/#computedplaybackrate
        self.playback_rate.update(info, Tick(0));
        self.detune.update(info, Tick(0));
        // computed_playback_rate can be negative or zero.
        let computed_playback_rate =
            self.playback_rate.value() as f64 * (2.0_f64).powf(self.detune.value() as f64 / 1200.);
        let forward = computed_playback_rate >= 0.;

        if !self.initialized_pos {
            self.initialized_pos = true;

            // Apply the offset and duration parameters passed to start. We handle
            // this here because the buffer may be set after Start() gets called, so
            // this might be the first time we know the buffer's sample rate.
            if let Some(start_offset) = self.start_offset {
                self.buffer_pos = start_offset * (buffer.sample_rate as f64);
                if self.buffer_pos < 0. {
                    self.buffer_pos = 0.
                } else if self.buffer_pos > buffer.len() as f64 {
                    self.buffer_pos = buffer.len() as f64;
                }
            }

            if self.loop_enabled {
                if forward && self.buffer_pos >= actual_loop_end {
                    self.buffer_pos = actual_loop_start;
                }
                // https://github.com/WebAudio/web-audio-api/issues/2031
                if !forward && self.buffer_pos < actual_loop_start {
                    self.buffer_pos = actual_loop_end;
                }
            }

            if let Some(start_duration) = self.start_duration {
                self.buffer_duration = start_duration * (buffer.sample_rate as f64);
            }

            // start_when can be subsample accurate. Correct buffer_pos.
            //
            // XXX(collares): What happens to "start_when" if the buffer gets
            // set after Start()?
            // XXX(collares): Need a better way to distingush between Start()
            // being called with "when" in the past (in which case "when" must
            // be ignored) and Start() being called with "when" in the future.
            // This can now make a difference if "when" shouldn't be ignored
            // but falls after the last frame of the previous quantum.
            if self.start_when > info.time - 1. / info.sample_rate as f64 {
                let first_time = info.time + start_at as f64 / info.sample_rate as f64;
                if self.start_when <= first_time {
                    let subsample_offset = (first_time - self.start_when)
                        * (buffer.sample_rate as f64)
                        * computed_playback_rate;
                    self.buffer_pos += subsample_offset;
                    self.buffer_duration -= subsample_offset.abs();
                }
            }
        }

        let buffer_offset_per_tick =
            computed_playback_rate * (buffer.sample_rate as f64 / info.sample_rate as f64);

        // We will output at most this many frames (fewer if we run out of data).
        let frames_to_output = stop_at - start_at;

        if self.loop_enabled && buffer_offset_per_tick.abs() < actual_loop_end - actual_loop_start {
            // Refuse to output data in this extreme edge case.
            //
            // XXX(collares): There are two ways we could handle it:
            // 1) Take buffer_offset_per_tick modulo the loop length, and handle
            // the pre-loop-entering output separately.
            // 2) Add a division by the loop length to the hot path below.
            // None of them seem worth the trouble. The spec should forbid this.
            self.maybe_trigger_onended_callback();
            inputs.blocks.push(Default::default());
            return inputs;
        }

        // Fast path for the case where we can just copy FRAMES_PER_BLOCK
        // frames straight from the buffer.
        if frames_to_output == FRAMES_PER_BLOCK.0 as usize
            && forward
            && buffer_offset_per_tick == 1.
            && self.buffer_pos.trunc() == self.buffer_pos
            && self.buffer_pos + (FRAMES_PER_BLOCK.0 as f64) <= actual_loop_end
            && FRAMES_PER_BLOCK.0 as f64 <= self.buffer_duration
        {
            let mut block = Block::empty();
            let pos = self.buffer_pos as usize;

            for chan in 0..buffer.chans() {
                block.push_chan(&buffer.buffers[chan as usize][pos..(pos + frames_to_output)]);
            }

            inputs.blocks.push(block);
            self.buffer_pos += FRAMES_PER_BLOCK.0 as f64;
            self.buffer_duration -= FRAMES_PER_BLOCK.0 as f64;
        } else {
            // Slow path, with interpolation.
            let mut block = Block::default();
            block.repeat(buffer.chans());
            block.explicit_repeat();

            debug_assert!(buffer.chans() > 0);

            for chan in 0..buffer.chans() {
                let data = block.data_chan_mut(chan);
                let (_, data) = data.split_at_mut(start_at);
                let (data, _) = data.split_at_mut(frames_to_output);

                let mut pos = self.buffer_pos;
                let mut duration = self.buffer_duration;

                for sample in data {
                    if duration <= 0. {
                        break;
                    }

                    if self.loop_enabled {
                        if forward && pos >= actual_loop_end {
                            pos -= actual_loop_end - actual_loop_start;
                        } else if !forward && pos < actual_loop_start {
                            pos += actual_loop_end - actual_loop_start;
                        }
                    } else if pos < 0. || pos >= buffer.len() as f64 {
                        break;
                    }

                    *sample = buffer.interpolate(chan, pos);
                    pos += buffer_offset_per_tick;
                    duration -= buffer_offset_per_tick.abs();
                }

                // This is the last channel, update parameters.
                if chan == buffer.chans() - 1 {
                    self.buffer_pos = pos;
                    self.buffer_duration = duration;
                }
            }

            inputs.blocks.push(block);
        }

        if !self.loop_enabled && (self.buffer_pos < 0. || self.buffer_pos >= buffer.len() as f64)
            || self.buffer_duration <= 0.
        {
            self.maybe_trigger_onended_callback();
        }

        inputs
    }

    fn get_param(&mut self, id: ParamType) -> &mut Param {
        match id {
            ParamType::PlaybackRate => &mut self.playback_rate,
            ParamType::Detune => &mut self.detune,
            _ => panic!("Unknown param {:?} for AudioBufferSourceNode", id),
        }
    }

    make_message_handler!(
        AudioBufferSourceNode: handle_message,
        AudioScheduledSourceNode: handle_source_node_message
    );
}

#[derive(Debug, Clone)]
pub struct AudioBuffer {
    /// Invariant: all buffers must be of the same length
    pub buffers: Vec<Vec<f32>>,
    pub sample_rate: f32,
}

impl AudioBuffer {
    pub fn new(chan: u8, len: usize, sample_rate: f32) -> Self {
        assert!(chan > 0);
        let mut buffers = Vec::with_capacity(chan as usize);
        let single = vec![0.; len];
        buffers.resize(chan as usize, single);
        AudioBuffer {
            buffers,
            sample_rate,
        }
    }

    pub fn from_buffers(buffers: Vec<Vec<f32>>, sample_rate: f32) -> Self {
        for buf in &buffers {
            assert_eq!(buf.len(), buffers[0].len())
        }

        Self {
            buffers,
            sample_rate,
        }
    }

    pub fn from_buffer(buffer: Vec<f32>, sample_rate: f32) -> Self {
        AudioBuffer::from_buffers(vec![buffer], sample_rate)
    }

    pub fn len(&self) -> usize {
        self.buffers[0].len()
    }

    pub fn chans(&self) -> u8 {
        self.buffers.len() as u8
    }

    // XXX(collares): There are better fast interpolation algorithms.
    // Firefox uses (via Speex's resampler) the algorithm described in
    // https://ccrma.stanford.edu/~jos/resample/resample.pdf
    // There are Rust bindings: https://github.com/rust-av/speexdsp-rs
    pub fn interpolate(&self, chan: u8, pos: f64) -> f32 {
        debug_assert!(pos >= 0. && pos < self.len() as f64);

        let prev = pos.floor() as usize;
        let offset = pos - pos.floor();
        match self.buffers[chan as usize].get(prev + 1) {
            Some(next_sample) => {
                ((1. - offset) * (self.buffers[chan as usize][prev] as f64)
                    + offset * (*next_sample as f64)) as f32
            }
            _ => {
                // linear extrapolation of two prev samples if there are two
                if prev > 0 {
                    ((1. + offset) * (self.buffers[chan as usize][prev] as f64)
                        - offset * (self.buffers[chan as usize][prev - 1] as f64))
                        as f32
                } else {
                    self.buffers[chan as usize][prev]
                }
            }
        }
    }

    pub fn data_chan_mut(&mut self, chan: u8) -> &mut [f32] {
        &mut self.buffers[chan as usize]
    }
}