1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Specified types for SVG Path.

use crate::parser::{Parse, ParserContext};
use crate::values::animated::{lists, Animate, Procedure};
use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
use crate::values::generics::basic_shape::GenericShapeCommand;
use crate::values::generics::basic_shape::{ArcSize, ArcSweep, ByTo, CoordinatePair};
use crate::values::CSSFloat;
use cssparser::Parser;
#[cfg(feature = "gecko")]
use num_traits::FromPrimitive;
use std::fmt::{self, Write};
use std::iter::{Cloned, Peekable};
use std::slice;
use style_traits::values::SequenceWriter;
use style_traits::{CssWriter, ParseError, StyleParseErrorKind, ToCss};

/// Whether to allow empty string in the parser.
#[derive(Clone, Debug, Eq, PartialEq)]
#[allow(missing_docs)]
pub enum AllowEmpty {
    Yes,
    No,
}

/// The SVG path data.
///
/// https://www.w3.org/TR/SVG11/paths.html#PathData
#[derive(
    Clone,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToAnimatedZero,
    ToComputedValue,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C)]
pub struct SVGPathData(
    // TODO(emilio): Should probably measure this somehow only from the
    // specified values.
    #[ignore_malloc_size_of = "Arc"] pub crate::ArcSlice<PathCommand>,
);

impl SVGPathData {
    /// Get the array of PathCommand.
    #[inline]
    pub fn commands(&self) -> &[PathCommand] {
        &self.0
    }

    /// Create a normalized copy of this path by converting each relative
    /// command to an absolute command.
    pub fn normalize(&self) -> Self {
        let mut state = PathTraversalState {
            subpath_start: CoordPair::new(0.0, 0.0),
            pos: CoordPair::new(0.0, 0.0),
        };
        let iter = self.0.iter().map(|seg| seg.normalize(&mut state));
        SVGPathData(crate::ArcSlice::from_iter(iter))
    }

    // FIXME: Bug 1714238, we may drop this once we use the same data structure for both SVG and
    // CSS.
    /// Decode the svg path raw data from Gecko.
    #[cfg(feature = "gecko")]
    pub fn decode_from_f32_array(path: &[f32]) -> Result<Self, ()> {
        use crate::gecko_bindings::structs::dom::SVGPathSeg_Binding::*;
        use crate::values::generics::basic_shape::GenericShapeCommand::*;

        let mut result: Vec<PathCommand> = Vec::new();
        let mut i: usize = 0;
        while i < path.len() {
            // See EncodeType() and DecodeType() in SVGPathSegUtils.h.
            // We are using reinterpret_cast<> to encode and decode between u32 and f32, so here we
            // use to_bits() to decode the type.
            let seg_type = path[i].to_bits() as u16;
            i = i + 1;
            match seg_type {
                PATHSEG_CLOSEPATH => result.push(Close),
                PATHSEG_MOVETO_ABS | PATHSEG_MOVETO_REL => {
                    debug_assert!(i + 1 < path.len());
                    result.push(Move {
                        point: CoordPair::new(path[i], path[i + 1]),
                        by_to: ByTo::new(seg_type == PATHSEG_MOVETO_ABS),
                    });
                    i = i + 2;
                },
                PATHSEG_LINETO_ABS | PATHSEG_LINETO_REL => {
                    debug_assert!(i + 1 < path.len());
                    result.push(Line {
                        point: CoordPair::new(path[i], path[i + 1]),
                        by_to: ByTo::new(seg_type == PATHSEG_LINETO_ABS),
                    });
                    i = i + 2;
                },
                PATHSEG_CURVETO_CUBIC_ABS | PATHSEG_CURVETO_CUBIC_REL => {
                    debug_assert!(i + 5 < path.len());
                    result.push(CubicCurve {
                        control1: CoordPair::new(path[i], path[i + 1]),
                        control2: CoordPair::new(path[i + 2], path[i + 3]),
                        point: CoordPair::new(path[i + 4], path[i + 5]),
                        by_to: ByTo::new(seg_type == PATHSEG_CURVETO_CUBIC_ABS),
                    });
                    i = i + 6;
                },
                PATHSEG_CURVETO_QUADRATIC_ABS | PATHSEG_CURVETO_QUADRATIC_REL => {
                    debug_assert!(i + 3 < path.len());
                    result.push(QuadCurve {
                        control1: CoordPair::new(path[i], path[i + 1]),
                        point: CoordPair::new(path[i + 2], path[i + 3]),
                        by_to: ByTo::new(seg_type == PATHSEG_CURVETO_QUADRATIC_ABS),
                    });
                    i = i + 4;
                },
                PATHSEG_ARC_ABS | PATHSEG_ARC_REL => {
                    debug_assert!(i + 6 < path.len());
                    result.push(Arc {
                        radii: CoordPair::new(path[i], path[i + 1]),
                        rotate: path[i + 2],
                        arc_size: ArcSize::from_u8((path[i + 3] != 0.0f32) as u8).unwrap(),
                        arc_sweep: ArcSweep::from_u8((path[i + 4] != 0.0f32) as u8).unwrap(),
                        point: CoordPair::new(path[i + 5], path[i + 6]),
                        by_to: ByTo::new(seg_type == PATHSEG_ARC_ABS),
                    });
                    i = i + 7;
                },
                PATHSEG_LINETO_HORIZONTAL_ABS | PATHSEG_LINETO_HORIZONTAL_REL => {
                    debug_assert!(i < path.len());
                    result.push(HLine {
                        x: path[i],
                        by_to: ByTo::new(seg_type == PATHSEG_LINETO_HORIZONTAL_ABS),
                    });
                    i = i + 1;
                },
                PATHSEG_LINETO_VERTICAL_ABS | PATHSEG_LINETO_VERTICAL_REL => {
                    debug_assert!(i < path.len());
                    result.push(VLine {
                        y: path[i],
                        by_to: ByTo::new(seg_type == PATHSEG_LINETO_VERTICAL_ABS),
                    });
                    i = i + 1;
                },
                PATHSEG_CURVETO_CUBIC_SMOOTH_ABS | PATHSEG_CURVETO_CUBIC_SMOOTH_REL => {
                    debug_assert!(i + 3 < path.len());
                    result.push(SmoothCubic {
                        control2: CoordPair::new(path[i], path[i + 1]),
                        point: CoordPair::new(path[i + 2], path[i + 3]),
                        by_to: ByTo::new(seg_type == PATHSEG_CURVETO_CUBIC_SMOOTH_ABS),
                    });
                    i = i + 4;
                },
                PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS | PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL => {
                    debug_assert!(i + 1 < path.len());
                    result.push(SmoothQuad {
                        point: CoordPair::new(path[i], path[i + 1]),
                        by_to: ByTo::new(seg_type == PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS),
                    });
                    i = i + 2;
                },
                PATHSEG_UNKNOWN | _ => return Err(()),
            }
        }

        Ok(SVGPathData(crate::ArcSlice::from_iter(result.into_iter())))
    }

    /// Parse this SVG path string with the argument that indicates whether we should allow the
    /// empty string.
    // We cannot use cssparser::Parser to parse a SVG path string because the spec wants to make
    // the SVG path string as compact as possible. (i.e. The whitespaces may be dropped.)
    // e.g. "M100 200L100 200" is a valid SVG path string. If we use tokenizer, the first ident
    // is "M100", instead of "M", and this is not correct. Therefore, we use a Peekable
    // str::Char iterator to check each character.
    pub fn parse<'i, 't>(
        input: &mut Parser<'i, 't>,
        allow_empty: AllowEmpty,
    ) -> Result<Self, ParseError<'i>> {
        let location = input.current_source_location();
        let path_string = input.expect_string()?.as_ref();

        // Parse the svg path string as multiple sub-paths.
        let mut path_parser = PathParser::new(path_string);
        while skip_wsp(&mut path_parser.chars) {
            if path_parser.parse_subpath().is_err() {
                return Err(location.new_custom_error(StyleParseErrorKind::UnspecifiedError));
            }
        }

        // The css-shapes-1 says a path data string that does conform but defines an empty path is
        // invalid and causes the entire path() to be invalid, so we use the argement to decide
        // whether we should allow the empty string.
        // https://drafts.csswg.org/css-shapes-1/#typedef-basic-shape
        if matches!(allow_empty, AllowEmpty::No) && path_parser.path.is_empty() {
            return Err(input.new_custom_error(StyleParseErrorKind::UnspecifiedError));
        }

        Ok(SVGPathData(crate::ArcSlice::from_iter(
            path_parser.path.into_iter(),
        )))
    }
}

impl ToCss for SVGPathData {
    #[inline]
    fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
    where
        W: fmt::Write,
    {
        dest.write_char('"')?;
        {
            let mut writer = SequenceWriter::new(dest, " ");
            for command in self.commands() {
                writer.write_item(|inner| command.to_css_for_svg(inner))?;
            }
        }
        dest.write_char('"')
    }
}

impl Parse for SVGPathData {
    fn parse<'i, 't>(
        _context: &ParserContext,
        input: &mut Parser<'i, 't>,
    ) -> Result<Self, ParseError<'i>> {
        // Note that the EBNF allows the path data string in the d property to be empty, so we
        // don't reject empty SVG path data.
        // https://svgwg.org/svg2-draft/single-page.html#paths-PathDataBNF
        SVGPathData::parse(input, AllowEmpty::Yes)
    }
}

impl Animate for SVGPathData {
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        if self.0.len() != other.0.len() {
            return Err(());
        }

        // FIXME(emilio): This allocates three copies of the path, that's not
        // great! Specially, once we're normalized once, we don't need to
        // re-normalize again.
        let left = self.normalize();
        let right = other.normalize();

        let items: Vec<_> = lists::by_computed_value::animate(&left.0, &right.0, procedure)?;
        Ok(SVGPathData(crate::ArcSlice::from_iter(items.into_iter())))
    }
}

impl ComputeSquaredDistance for SVGPathData {
    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
        if self.0.len() != other.0.len() {
            return Err(());
        }
        let left = self.normalize();
        let right = other.normalize();
        lists::by_computed_value::squared_distance(&left.0, &right.0)
    }
}

/// The SVG path command.
/// The fields of these commands are self-explanatory, so we skip the documents.
/// Note: the index of the control points, e.g. control1, control2, are mapping to the control
/// points of the Bézier curve in the spec.
///
/// https://www.w3.org/TR/SVG11/paths.html#PathData
pub type PathCommand = GenericShapeCommand<CSSFloat, CSSFloat>;

/// For internal SVGPath normalization.
#[allow(missing_docs)]
struct PathTraversalState {
    subpath_start: CoordPair,
    pos: CoordPair,
}

impl PathCommand {
    /// Create a normalized copy of this PathCommand. Absolute commands will be copied as-is while
    /// for relative commands an equivalent absolute command will be returned.
    ///
    /// See discussion: https://github.com/w3c/svgwg/issues/321
    fn normalize(&self, state: &mut PathTraversalState) -> Self {
        use crate::values::generics::basic_shape::GenericShapeCommand::*;
        match *self {
            Close => {
                state.pos = state.subpath_start;
                Close
            },
            Move { by_to, mut point } => {
                if !by_to.is_abs() {
                    point += state.pos;
                }
                state.pos = point;
                state.subpath_start = point;
                Move {
                    by_to: ByTo::To,
                    point,
                }
            },
            Line { by_to, mut point } => {
                if !by_to.is_abs() {
                    point += state.pos;
                }
                state.pos = point;
                Line {
                    by_to: ByTo::To,
                    point,
                }
            },
            HLine { by_to, mut x } => {
                if !by_to.is_abs() {
                    x += state.pos.x;
                }
                state.pos.x = x;
                HLine { by_to: ByTo::To, x }
            },
            VLine { by_to, mut y } => {
                if !by_to.is_abs() {
                    y += state.pos.y;
                }
                state.pos.y = y;
                VLine { by_to: ByTo::To, y }
            },
            CubicCurve {
                by_to,
                mut point,
                mut control1,
                mut control2,
            } => {
                if !by_to.is_abs() {
                    point += state.pos;
                    control1 += state.pos;
                    control2 += state.pos;
                }
                state.pos = point;
                CubicCurve {
                    by_to: ByTo::To,
                    point,
                    control1,
                    control2,
                }
            },
            QuadCurve {
                by_to,
                mut point,
                mut control1,
            } => {
                if !by_to.is_abs() {
                    point += state.pos;
                    control1 += state.pos;
                }
                state.pos = point;
                QuadCurve {
                    by_to: ByTo::To,
                    point,
                    control1,
                }
            },
            SmoothCubic {
                by_to,
                mut point,
                mut control2,
            } => {
                if !by_to.is_abs() {
                    point += state.pos;
                    control2 += state.pos;
                }
                state.pos = point;
                SmoothCubic {
                    by_to: ByTo::To,
                    point,
                    control2,
                }
            },
            SmoothQuad { by_to, mut point } => {
                if !by_to.is_abs() {
                    point += state.pos;
                }
                state.pos = point;
                SmoothQuad {
                    by_to: ByTo::To,
                    point,
                }
            },
            Arc {
                by_to,
                mut point,
                radii,
                arc_sweep,
                arc_size,
                rotate,
            } => {
                if !by_to.is_abs() {
                    point += state.pos;
                }
                state.pos = point;
                Arc {
                    by_to: ByTo::To,
                    point,
                    radii,
                    arc_sweep,
                    arc_size,
                    rotate,
                }
            },
        }
    }

    /// The serialization of the svg path.
    fn to_css_for_svg<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
    where
        W: fmt::Write,
    {
        use crate::values::generics::basic_shape::GenericShapeCommand::*;
        match *self {
            Close => dest.write_char('Z'),
            Move { by_to, point } => {
                dest.write_char(if by_to.is_abs() { 'M' } else { 'm' })?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
            Line { by_to, point } => {
                dest.write_char(if by_to.is_abs() { 'L' } else { 'l' })?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
            CubicCurve {
                by_to,
                point,
                control1,
                control2,
            } => {
                dest.write_char(if by_to.is_abs() { 'C' } else { 'c' })?;
                dest.write_char(' ')?;
                control1.to_css(dest)?;
                dest.write_char(' ')?;
                control2.to_css(dest)?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
            QuadCurve {
                by_to,
                point,
                control1,
            } => {
                dest.write_char(if by_to.is_abs() { 'Q' } else { 'q' })?;
                dest.write_char(' ')?;
                control1.to_css(dest)?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
            Arc {
                by_to,
                point,
                radii,
                arc_sweep,
                arc_size,
                rotate,
            } => {
                dest.write_char(if by_to.is_abs() { 'A' } else { 'a' })?;
                dest.write_char(' ')?;
                radii.to_css(dest)?;
                dest.write_char(' ')?;
                rotate.to_css(dest)?;
                dest.write_char(' ')?;
                (arc_size as i32).to_css(dest)?;
                dest.write_char(' ')?;
                (arc_sweep as i32).to_css(dest)?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
            HLine { by_to, x } => {
                dest.write_char(if by_to.is_abs() { 'H' } else { 'h' })?;
                dest.write_char(' ')?;
                x.to_css(dest)
            },
            VLine { by_to, y } => {
                dest.write_char(if by_to.is_abs() { 'V' } else { 'v' })?;
                dest.write_char(' ')?;
                y.to_css(dest)
            },
            SmoothCubic {
                by_to,
                point,
                control2,
            } => {
                dest.write_char(if by_to.is_abs() { 'S' } else { 's' })?;
                dest.write_char(' ')?;
                control2.to_css(dest)?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
            SmoothQuad { by_to, point } => {
                dest.write_char(if by_to.is_abs() { 'T' } else { 't' })?;
                dest.write_char(' ')?;
                point.to_css(dest)
            },
        }
    }
}

/// The path coord type.
pub type CoordPair = CoordinatePair<CSSFloat>;

/// SVG Path parser.
struct PathParser<'a> {
    chars: Peekable<Cloned<slice::Iter<'a, u8>>>,
    path: Vec<PathCommand>,
}

macro_rules! parse_arguments {
    (
        $parser:ident,
        $by_to:ident,
        $enum:ident,
        [ $para:ident => $func:ident $(, $other_para:ident => $other_func:ident)* ]
    ) => {
        {
            loop {
                let $para = $func(&mut $parser.chars)?;
                $(
                    skip_comma_wsp(&mut $parser.chars);
                    let $other_para = $other_func(&mut $parser.chars)?;
                )*
                $parser.path.push(
                    PathCommand::$enum { $by_to, $para $(, $other_para)* }
                );

                // End of string or the next character is a possible new command.
                if !skip_wsp(&mut $parser.chars) ||
                   $parser.chars.peek().map_or(true, |c| c.is_ascii_alphabetic()) {
                    break;
                }
                skip_comma_wsp(&mut $parser.chars);
            }
            Ok(())
        }
    }
}

impl<'a> PathParser<'a> {
    /// Return a PathParser.
    #[inline]
    fn new(string: &'a str) -> Self {
        PathParser {
            chars: string.as_bytes().iter().cloned().peekable(),
            path: Vec::new(),
        }
    }

    /// Parse a sub-path.
    fn parse_subpath(&mut self) -> Result<(), ()> {
        // Handle "moveto" Command first. If there is no "moveto", this is not a valid sub-path
        // (i.e. not a valid moveto-drawto-command-group).
        self.parse_moveto()?;

        // Handle other commands.
        loop {
            skip_wsp(&mut self.chars);
            if self.chars.peek().map_or(true, |&m| m == b'M' || m == b'm') {
                break;
            }

            let command = self.chars.next().unwrap();
            let by_to = if command.is_ascii_uppercase() {
                ByTo::To
            } else {
                ByTo::By
            };

            skip_wsp(&mut self.chars);
            match command {
                b'Z' | b'z' => self.parse_closepath(),
                b'L' | b'l' => self.parse_lineto(by_to),
                b'H' | b'h' => self.parse_h_lineto(by_to),
                b'V' | b'v' => self.parse_v_lineto(by_to),
                b'C' | b'c' => self.parse_curveto(by_to),
                b'S' | b's' => self.parse_smooth_curveto(by_to),
                b'Q' | b'q' => self.parse_quadratic_bezier_curveto(by_to),
                b'T' | b't' => self.parse_smooth_quadratic_bezier_curveto(by_to),
                b'A' | b'a' => self.parse_elliptical_arc(by_to),
                _ => return Err(()),
            }?;
        }
        Ok(())
    }

    /// Parse "moveto" command.
    fn parse_moveto(&mut self) -> Result<(), ()> {
        let command = match self.chars.next() {
            Some(c) if c == b'M' || c == b'm' => c,
            _ => return Err(()),
        };

        skip_wsp(&mut self.chars);
        let point = parse_coord(&mut self.chars)?;
        let by_to = if command == b'M' { ByTo::To } else { ByTo::By };
        self.path.push(PathCommand::Move { by_to, point });

        // End of string or the next character is a possible new command.
        if !skip_wsp(&mut self.chars) || self.chars.peek().map_or(true, |c| c.is_ascii_alphabetic())
        {
            return Ok(());
        }
        skip_comma_wsp(&mut self.chars);

        // If a moveto is followed by multiple pairs of coordinates, the subsequent
        // pairs are treated as implicit lineto commands.
        self.parse_lineto(by_to)
    }

    /// Parse "closepath" command.
    fn parse_closepath(&mut self) -> Result<(), ()> {
        self.path.push(PathCommand::Close);
        Ok(())
    }

    /// Parse "lineto" command.
    fn parse_lineto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, Line, [ point => parse_coord ])
    }

    /// Parse horizontal "lineto" command.
    fn parse_h_lineto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, HLine, [ x => parse_number ])
    }

    /// Parse vertical "lineto" command.
    fn parse_v_lineto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, VLine, [ y => parse_number ])
    }

    /// Parse cubic Bézier curve command.
    fn parse_curveto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, CubicCurve, [
            control1 => parse_coord, control2 => parse_coord, point => parse_coord
        ])
    }

    /// Parse smooth "curveto" command.
    fn parse_smooth_curveto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, SmoothCubic, [
            control2 => parse_coord, point => parse_coord
        ])
    }

    /// Parse quadratic Bézier curve command.
    fn parse_quadratic_bezier_curveto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, QuadCurve, [
            control1 => parse_coord, point => parse_coord
        ])
    }

    /// Parse smooth quadratic Bézier curveto command.
    fn parse_smooth_quadratic_bezier_curveto(&mut self, by_to: ByTo) -> Result<(), ()> {
        parse_arguments!(self, by_to, SmoothQuad, [ point => parse_coord ])
    }

    /// Parse elliptical arc curve command.
    fn parse_elliptical_arc(&mut self, by_to: ByTo) -> Result<(), ()> {
        // Parse a flag whose value is '0' or '1'; otherwise, return Err(()).
        let parse_arc_size = |iter: &mut Peekable<Cloned<slice::Iter<u8>>>| match iter.next() {
            Some(c) if c == b'1' => Ok(ArcSize::Large),
            Some(c) if c == b'0' => Ok(ArcSize::Small),
            _ => Err(()),
        };
        let parse_arc_sweep = |iter: &mut Peekable<Cloned<slice::Iter<u8>>>| match iter.next() {
            Some(c) if c == b'1' => Ok(ArcSweep::Cw),
            Some(c) if c == b'0' => Ok(ArcSweep::Ccw),
            _ => Err(()),
        };
        parse_arguments!(self, by_to, Arc, [
            radii => parse_coord,
            rotate => parse_number,
            arc_size => parse_arc_size,
            arc_sweep => parse_arc_sweep,
            point => parse_coord
        ])
    }
}

/// Parse a pair of numbers into CoordPair.
fn parse_coord(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> Result<CoordPair, ()> {
    let x = parse_number(iter)?;
    skip_comma_wsp(iter);
    let y = parse_number(iter)?;
    Ok(CoordPair::new(x, y))
}

/// This is a special version which parses the number for SVG Path. e.g. "M 0.6.5" should be parsed
/// as MoveTo with a coordinate of ("0.6", ".5"), instead of treating 0.6.5 as a non-valid floating
/// point number. In other words, the logic here is similar with that of
/// tokenizer::consume_numeric, which also consumes the number as many as possible, but here the
/// input is a Peekable and we only accept an integer of a floating point number.
///
/// The "number" syntax in https://www.w3.org/TR/SVG/paths.html#PathDataBNF
fn parse_number(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> Result<CSSFloat, ()> {
    // 1. Check optional sign.
    let sign = if iter
        .peek()
        .map_or(false, |&sign| sign == b'+' || sign == b'-')
    {
        if iter.next().unwrap() == b'-' {
            -1.
        } else {
            1.
        }
    } else {
        1.
    };

    // 2. Check integer part.
    let mut integral_part: f64 = 0.;
    let got_dot = if !iter.peek().map_or(false, |&n| n == b'.') {
        // If the first digit in integer part is neither a dot nor a digit, this is not a number.
        if iter.peek().map_or(true, |n| !n.is_ascii_digit()) {
            return Err(());
        }

        while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
            integral_part = integral_part * 10. + (iter.next().unwrap() - b'0') as f64;
        }

        iter.peek().map_or(false, |&n| n == b'.')
    } else {
        true
    };

    // 3. Check fractional part.
    let mut fractional_part: f64 = 0.;
    if got_dot {
        // Consume '.'.
        iter.next();
        // If the first digit in fractional part is not a digit, this is not a number.
        if iter.peek().map_or(true, |n| !n.is_ascii_digit()) {
            return Err(());
        }

        let mut factor = 0.1;
        while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
            fractional_part += (iter.next().unwrap() - b'0') as f64 * factor;
            factor *= 0.1;
        }
    }

    let mut value = sign * (integral_part + fractional_part);

    // 4. Check exp part. The segment name of SVG Path doesn't include 'E' or 'e', so it's ok to
    //    treat the numbers after 'E' or 'e' are in the exponential part.
    if iter.peek().map_or(false, |&exp| exp == b'E' || exp == b'e') {
        // Consume 'E' or 'e'.
        iter.next();
        let exp_sign = if iter
            .peek()
            .map_or(false, |&sign| sign == b'+' || sign == b'-')
        {
            if iter.next().unwrap() == b'-' {
                -1.
            } else {
                1.
            }
        } else {
            1.
        };

        let mut exp: f64 = 0.;
        while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
            exp = exp * 10. + (iter.next().unwrap() - b'0') as f64;
        }

        value *= f64::powf(10., exp * exp_sign);
    }

    if value.is_finite() {
        Ok(value.min(f32::MAX as f64).max(f32::MIN as f64) as CSSFloat)
    } else {
        Err(())
    }
}

/// Skip all svg whitespaces, and return true if |iter| hasn't finished.
#[inline]
fn skip_wsp(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> bool {
    // Note: SVG 1.1 defines the whitespaces as \u{9}, \u{20}, \u{A}, \u{D}.
    //       However, SVG 2 has one extra whitespace: \u{C}.
    //       Therefore, we follow the newest spec for the definition of whitespace,
    //       i.e. \u{9}, \u{20}, \u{A}, \u{C}, \u{D}.
    while iter.peek().map_or(false, |c| c.is_ascii_whitespace()) {
        iter.next();
    }
    iter.peek().is_some()
}

/// Skip all svg whitespaces and one comma, and return true if |iter| hasn't finished.
#[inline]
fn skip_comma_wsp(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> bool {
    if !skip_wsp(iter) {
        return false;
    }

    if *iter.peek().unwrap() != b',' {
        return true;
    }
    iter.next();

    skip_wsp(iter)
}