naga/proc/
type_methods.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
//! Methods on [`TypeInner`], [`Scalar`], and [`ScalarKind`].
//!
//! [`TypeInner`]: crate::TypeInner
//! [`Scalar`]: crate::Scalar
//! [`ScalarKind`]: crate::ScalarKind

use super::TypeResolution;

impl crate::ScalarKind {
    pub const fn is_numeric(self) -> bool {
        match self {
            crate::ScalarKind::Sint
            | crate::ScalarKind::Uint
            | crate::ScalarKind::Float
            | crate::ScalarKind::AbstractInt
            | crate::ScalarKind::AbstractFloat => true,
            crate::ScalarKind::Bool => false,
        }
    }
}

impl crate::Scalar {
    pub const I32: Self = Self {
        kind: crate::ScalarKind::Sint,
        width: 4,
    };
    pub const U32: Self = Self {
        kind: crate::ScalarKind::Uint,
        width: 4,
    };
    pub const F16: Self = Self {
        kind: crate::ScalarKind::Float,
        width: 2,
    };
    pub const F32: Self = Self {
        kind: crate::ScalarKind::Float,
        width: 4,
    };
    pub const F64: Self = Self {
        kind: crate::ScalarKind::Float,
        width: 8,
    };
    pub const I64: Self = Self {
        kind: crate::ScalarKind::Sint,
        width: 8,
    };
    pub const U64: Self = Self {
        kind: crate::ScalarKind::Uint,
        width: 8,
    };
    pub const BOOL: Self = Self {
        kind: crate::ScalarKind::Bool,
        width: crate::BOOL_WIDTH,
    };
    pub const ABSTRACT_INT: Self = Self {
        kind: crate::ScalarKind::AbstractInt,
        width: crate::ABSTRACT_WIDTH,
    };
    pub const ABSTRACT_FLOAT: Self = Self {
        kind: crate::ScalarKind::AbstractFloat,
        width: crate::ABSTRACT_WIDTH,
    };

    pub const fn is_abstract(self) -> bool {
        match self.kind {
            crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => true,
            crate::ScalarKind::Sint
            | crate::ScalarKind::Uint
            | crate::ScalarKind::Float
            | crate::ScalarKind::Bool => false,
        }
    }

    /// Construct a float `Scalar` with the given width.
    ///
    /// This is especially common when dealing with
    /// `TypeInner::Matrix`, where the scalar kind is implicit.
    pub const fn float(width: crate::Bytes) -> Self {
        Self {
            kind: crate::ScalarKind::Float,
            width,
        }
    }

    pub const fn to_inner_scalar(self) -> crate::TypeInner {
        crate::TypeInner::Scalar(self)
    }

    pub const fn to_inner_vector(self, size: crate::VectorSize) -> crate::TypeInner {
        crate::TypeInner::Vector { size, scalar: self }
    }

    pub const fn to_inner_atomic(self) -> crate::TypeInner {
        crate::TypeInner::Atomic(self)
    }
}

const POINTER_SPAN: u32 = 4;

impl crate::TypeInner {
    /// Return the scalar type of `self`.
    ///
    /// If `inner` is a scalar, vector, or matrix type, return
    /// its scalar type. Otherwise, return `None`.
    ///
    /// Note that this doesn't inspect [`Array`] types, as required
    /// for automatic conversions. For that, see [`scalar_for_conversions`].
    ///
    /// [`Array`]: crate::TypeInner::Array
    /// [`scalar_for_conversions`]: crate::TypeInner::scalar_for_conversions
    pub const fn scalar(&self) -> Option<crate::Scalar> {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Scalar(scalar) | Ti::Vector { scalar, .. } => Some(scalar),
            Ti::Matrix { scalar, .. } => Some(scalar),
            _ => None,
        }
    }

    pub fn scalar_kind(&self) -> Option<crate::ScalarKind> {
        self.scalar().map(|scalar| scalar.kind)
    }

    /// Returns the scalar width in bytes
    pub fn scalar_width(&self) -> Option<u8> {
        self.scalar().map(|scalar| scalar.width)
    }

    /// Return the leaf scalar type of `self`, as needed for automatic conversions.
    ///
    /// Unlike the [`scalar`] method, which only retrieves scalars for
    /// [`Scalar`], [`Vector`], and [`Matrix`] this also looks into
    /// [`Array`] types to find the leaf scalar.
    ///
    /// [`scalar`]: crate::TypeInner::scalar
    /// [`Scalar`]: crate::TypeInner::Scalar
    /// [`Vector`]: crate::TypeInner::Vector
    /// [`Matrix`]: crate::TypeInner::Matrix
    /// [`Array`]: crate::TypeInner::Array
    pub fn scalar_for_conversions(
        &self,
        types: &crate::UniqueArena<crate::Type>,
    ) -> Option<crate::Scalar> {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Scalar(scalar) | Ti::Vector { scalar, .. } | Ti::Matrix { scalar, .. } => {
                Some(scalar)
            }
            Ti::Array { base, .. } => types[base].inner.scalar_for_conversions(types),
            _ => None,
        }
    }

    pub const fn pointer_space(&self) -> Option<crate::AddressSpace> {
        match *self {
            Self::Pointer { space, .. } => Some(space),
            Self::ValuePointer { space, .. } => Some(space),
            _ => None,
        }
    }

    /// If `self` is a pointer type, return its base type.
    pub const fn pointer_base_type(&self) -> Option<TypeResolution> {
        match *self {
            crate::TypeInner::Pointer { base, .. } => Some(TypeResolution::Handle(base)),
            crate::TypeInner::ValuePointer {
                size: None, scalar, ..
            } => Some(TypeResolution::Value(crate::TypeInner::Scalar(scalar))),
            crate::TypeInner::ValuePointer {
                size: Some(size),
                scalar,
                ..
            } => Some(TypeResolution::Value(crate::TypeInner::Vector {
                size,
                scalar,
            })),
            _ => None,
        }
    }

    pub fn is_atomic_pointer(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
        match *self {
            crate::TypeInner::Pointer { base, .. } => match types[base].inner {
                crate::TypeInner::Atomic { .. } => true,
                _ => false,
            },
            _ => false,
        }
    }

    /// Get the size of this type.
    pub fn size(&self, gctx: super::GlobalCtx) -> u32 {
        match *self {
            Self::Scalar(scalar) | Self::Atomic(scalar) => scalar.width as u32,
            Self::Vector { size, scalar } => size as u32 * scalar.width as u32,
            // matrices are treated as arrays of aligned columns
            Self::Matrix {
                columns,
                rows,
                scalar,
            } => super::Alignment::from(rows) * scalar.width as u32 * columns as u32,
            Self::Pointer { .. } | Self::ValuePointer { .. } => POINTER_SPAN,
            Self::Array {
                base: _,
                size,
                stride,
            } => {
                let count = match size.resolve(gctx) {
                    Ok(crate::proc::IndexableLength::Known(count)) => count,
                    // any struct member or array element needing a size at pipeline-creation time
                    // must have a creation-fixed footprint
                    Err(_) => 0,
                    // A dynamically-sized array has to have at least one element
                    Ok(crate::proc::IndexableLength::Dynamic) => 1,
                };
                count * stride
            }
            Self::Struct { span, .. } => span,
            Self::Image { .. }
            | Self::Sampler { .. }
            | Self::AccelerationStructure { .. }
            | Self::RayQuery { .. }
            | Self::BindingArray { .. } => 0,
        }
    }

    /// Return the canonical form of `self`, or `None` if it's already in
    /// canonical form.
    ///
    /// Certain types have multiple representations in `TypeInner`. This
    /// function converts all forms of equivalent types to a single
    /// representative of their class, so that simply applying `Eq` to the
    /// result indicates whether the types are equivalent, as far as Naga IR is
    /// concerned.
    pub fn canonical_form(
        &self,
        types: &crate::UniqueArena<crate::Type>,
    ) -> Option<crate::TypeInner> {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Pointer { base, space } => match types[base].inner {
                Ti::Scalar(scalar) => Some(Ti::ValuePointer {
                    size: None,
                    scalar,
                    space,
                }),
                Ti::Vector { size, scalar } => Some(Ti::ValuePointer {
                    size: Some(size),
                    scalar,
                    space,
                }),
                _ => None,
            },
            _ => None,
        }
    }

    /// Compare `self` and `rhs` as types.
    ///
    /// This is mostly the same as `<TypeInner as Eq>::eq`, but it treats
    /// `ValuePointer` and `Pointer` types as equivalent.
    ///
    /// When you know that one side of the comparison is never a pointer, it's
    /// fine to not bother with canonicalization, and just compare `TypeInner`
    /// values with `==`.
    pub fn equivalent(
        &self,
        rhs: &crate::TypeInner,
        types: &crate::UniqueArena<crate::Type>,
    ) -> bool {
        let left = self.canonical_form(types);
        let right = rhs.canonical_form(types);
        left.as_ref().unwrap_or(self) == right.as_ref().unwrap_or(rhs)
    }

    pub fn is_dynamically_sized(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Array { size, .. } => size == crate::ArraySize::Dynamic,
            Ti::Struct { ref members, .. } => members
                .last()
                .map(|last| types[last.ty].inner.is_dynamically_sized(types))
                .unwrap_or(false),
            _ => false,
        }
    }

    pub fn components(&self) -> Option<u32> {
        Some(match *self {
            Self::Vector { size, .. } => size as u32,
            Self::Matrix { columns, .. } => columns as u32,
            Self::Array {
                size: crate::ArraySize::Constant(len),
                ..
            } => len.get(),
            Self::Struct { ref members, .. } => members.len() as u32,
            _ => return None,
        })
    }

    pub fn component_type(&self, index: usize) -> Option<TypeResolution> {
        Some(match *self {
            Self::Vector { scalar, .. } => TypeResolution::Value(crate::TypeInner::Scalar(scalar)),
            Self::Matrix { rows, scalar, .. } => {
                TypeResolution::Value(crate::TypeInner::Vector { size: rows, scalar })
            }
            Self::Array {
                base,
                size: crate::ArraySize::Constant(_),
                ..
            } => TypeResolution::Handle(base),
            Self::Struct { ref members, .. } => TypeResolution::Handle(members[index].ty),
            _ => return None,
        })
    }

    /// If the type is a Vector or a Scalar return a tuple of the vector size (or None
    /// for Scalars), and the scalar kind. Returns (None, None) for other types.
    pub const fn vector_size_and_scalar(
        &self,
    ) -> Option<(Option<crate::VectorSize>, crate::Scalar)> {
        match *self {
            crate::TypeInner::Scalar(scalar) => Some((None, scalar)),
            crate::TypeInner::Vector { size, scalar } => Some((Some(size), scalar)),
            crate::TypeInner::Matrix { .. }
            | crate::TypeInner::Atomic(_)
            | crate::TypeInner::Pointer { .. }
            | crate::TypeInner::ValuePointer { .. }
            | crate::TypeInner::Array { .. }
            | crate::TypeInner::Struct { .. }
            | crate::TypeInner::Image { .. }
            | crate::TypeInner::Sampler { .. }
            | crate::TypeInner::AccelerationStructure { .. }
            | crate::TypeInner::RayQuery { .. }
            | crate::TypeInner::BindingArray { .. } => None,
        }
    }

    /// Return true if `self` is an abstract type.
    ///
    /// Use `types` to look up type handles. This is necessary to
    /// recognize abstract arrays.
    pub fn is_abstract(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
        match *self {
            crate::TypeInner::Scalar(scalar)
            | crate::TypeInner::Vector { scalar, .. }
            | crate::TypeInner::Matrix { scalar, .. }
            | crate::TypeInner::Atomic(scalar) => scalar.is_abstract(),
            crate::TypeInner::Array { base, .. } => types[base].inner.is_abstract(types),
            crate::TypeInner::ValuePointer { .. }
            | crate::TypeInner::Pointer { .. }
            | crate::TypeInner::Struct { .. }
            | crate::TypeInner::Image { .. }
            | crate::TypeInner::Sampler { .. }
            | crate::TypeInner::AccelerationStructure { .. }
            | crate::TypeInner::RayQuery { .. }
            | crate::TypeInner::BindingArray { .. } => false,
        }
    }

    /// Determine whether `self` automatically converts to `goal`.
    ///
    /// If Naga IR's automatic conversions will convert `self` to
    /// `goal`, then return a pair `(from, to)`, where `from` and `to`
    /// are the scalar types of the leaf values of `self` and `goal`.
    ///
    /// If `self` and `goal` are the same type, this will simply return
    /// a pair `(S, S)`.
    ///
    /// If the automatic conversions cannot convert `self` to `goal`,
    /// return `None`.
    ///
    /// Naga IR's automatic conversions will convert:
    ///
    /// - [`AbstractInt`] scalars to [`AbstractFloat`] or any numeric scalar type
    ///
    /// - [`AbstractFloat`] scalars to any floating-point scalar type
    ///
    /// - A [`Vector`] `{ size, scalar: S }` to `{ size, scalar: T }`
    ///   if they would convert `S` to `T`
    ///
    /// - An [`Array`] `{ base: S, size, stride }` to `{ base: T, size, stride }`
    ///   if they would convert `S` to `T`
    ///
    /// [`AbstractInt`]: crate::ScalarKind::AbstractInt
    /// [`AbstractFloat`]: crate::ScalarKind::AbstractFloat
    /// [`Vector`]: crate::TypeInner::Vector
    /// [`Array`]: crate::TypeInner::Array
    pub fn automatically_converts_to(
        &self,
        goal: &Self,
        types: &crate::UniqueArena<crate::Type>,
    ) -> Option<(crate::Scalar, crate::Scalar)> {
        use crate::ScalarKind as Sk;
        use crate::TypeInner as Ti;

        // Automatic conversions only change the scalar type of a value's leaves
        // (e.g., `vec4<AbstractFloat>` to `vec4<f32>`), never the type
        // constructors applied to those scalar types (e.g., never scalar to
        // `vec4`, or `vec2` to `vec3`). So first we check that the type
        // constructors match, extracting the leaf scalar types in the process.
        let expr_scalar;
        let goal_scalar;
        match (self, goal) {
            (&Ti::Scalar(expr), &Ti::Scalar(goal)) => {
                expr_scalar = expr;
                goal_scalar = goal;
            }
            (
                &Ti::Vector {
                    size: expr_size,
                    scalar: expr,
                },
                &Ti::Vector {
                    size: goal_size,
                    scalar: goal,
                },
            ) if expr_size == goal_size => {
                expr_scalar = expr;
                goal_scalar = goal;
            }
            (
                &Ti::Matrix {
                    rows: expr_rows,
                    columns: expr_columns,
                    scalar: expr,
                },
                &Ti::Matrix {
                    rows: goal_rows,
                    columns: goal_columns,
                    scalar: goal,
                },
            ) if expr_rows == goal_rows && expr_columns == goal_columns => {
                expr_scalar = expr;
                goal_scalar = goal;
            }
            (
                &Ti::Array {
                    base: expr_base,
                    size: expr_size,
                    stride: _,
                },
                &Ti::Array {
                    base: goal_base,
                    size: goal_size,
                    stride: _,
                },
            ) if expr_size == goal_size => {
                return types[expr_base]
                    .inner
                    .automatically_converts_to(&types[goal_base].inner, types);
            }
            _ => return None,
        }

        match (expr_scalar.kind, goal_scalar.kind) {
            (Sk::AbstractFloat, Sk::Float) => {}
            (Sk::AbstractInt, Sk::Sint | Sk::Uint | Sk::AbstractFloat | Sk::Float) => {}
            _ => return None,
        }

        log::trace!("      okay: expr {expr_scalar:?}, goal {goal_scalar:?}");
        Some((expr_scalar, goal_scalar))
    }
}

/// Helper trait for providing the min and max values exactly representable by
/// the integer type `Self` and floating point type `F`.
pub trait IntFloatLimits<F>
where
    F: num_traits::Float,
{
    /// Returns the minimum value exactly representable by the integer type
    /// `Self` and floating point type `F`.
    fn min_float() -> F;
    /// Returns the maximum value exactly representable by the integer type
    /// `Self` and floating point type `F`.
    fn max_float() -> F;
}

macro_rules! define_int_float_limits {
    ($int:ty, $float:ty, $min:expr, $max:expr) => {
        impl IntFloatLimits<$float> for $int {
            fn min_float() -> $float {
                $min
            }
            fn max_float() -> $float {
                $max
            }
        }
    };
}

define_int_float_limits!(i32, half::f16, half::f16::MIN, half::f16::MAX);
define_int_float_limits!(u32, half::f16, half::f16::ZERO, half::f16::MAX);
define_int_float_limits!(i64, half::f16, half::f16::MIN, half::f16::MAX);
define_int_float_limits!(u64, half::f16, half::f16::ZERO, half::f16::MAX);
define_int_float_limits!(i32, f32, -2147483648.0f32, 2147483520.0f32);
define_int_float_limits!(u32, f32, 0.0f32, 4294967040.0f32);
define_int_float_limits!(
    i64,
    f32,
    -9223372036854775808.0f32,
    9223371487098961920.0f32
);
define_int_float_limits!(u64, f32, 0.0f32, 18446742974197923840.0f32);
define_int_float_limits!(i32, f64, -2147483648.0f64, 2147483647.0f64);
define_int_float_limits!(u32, f64, 0.0f64, 4294967295.0f64);
define_int_float_limits!(
    i64,
    f64,
    -9223372036854775808.0f64,
    9223372036854774784.0f64
);
define_int_float_limits!(u64, f64, 0.0f64, 18446744073709549568.0f64);

/// Returns a tuple of [`crate::Literal`]s representing the minimum and maximum
/// float values exactly representable by the provided float and integer types.
/// Panics if `float` is not one of `F16`, `F32`, or `F64`, or `int` is
/// not one of `I32`, `U32`, `I64`, or `U64`.
pub fn min_max_float_representable_by(
    float: crate::Scalar,
    int: crate::Scalar,
) -> (crate::Literal, crate::Literal) {
    match (float, int) {
        (crate::Scalar::F16, crate::Scalar::I32) => (
            crate::Literal::F16(i32::min_float()),
            crate::Literal::F16(i32::max_float()),
        ),
        (crate::Scalar::F16, crate::Scalar::U32) => (
            crate::Literal::F16(u32::min_float()),
            crate::Literal::F16(u32::max_float()),
        ),
        (crate::Scalar::F16, crate::Scalar::I64) => (
            crate::Literal::F16(i64::min_float()),
            crate::Literal::F16(i64::max_float()),
        ),
        (crate::Scalar::F16, crate::Scalar::U64) => (
            crate::Literal::F16(u64::min_float()),
            crate::Literal::F16(u64::max_float()),
        ),
        (crate::Scalar::F32, crate::Scalar::I32) => (
            crate::Literal::F32(i32::min_float()),
            crate::Literal::F32(i32::max_float()),
        ),
        (crate::Scalar::F32, crate::Scalar::U32) => (
            crate::Literal::F32(u32::min_float()),
            crate::Literal::F32(u32::max_float()),
        ),
        (crate::Scalar::F32, crate::Scalar::I64) => (
            crate::Literal::F32(i64::min_float()),
            crate::Literal::F32(i64::max_float()),
        ),
        (crate::Scalar::F32, crate::Scalar::U64) => (
            crate::Literal::F32(u64::min_float()),
            crate::Literal::F32(u64::max_float()),
        ),
        (crate::Scalar::F64, crate::Scalar::I32) => (
            crate::Literal::F64(i32::min_float()),
            crate::Literal::F64(i32::max_float()),
        ),
        (crate::Scalar::F64, crate::Scalar::U32) => (
            crate::Literal::F64(u32::min_float()),
            crate::Literal::F64(u32::max_float()),
        ),
        (crate::Scalar::F64, crate::Scalar::I64) => (
            crate::Literal::F64(i64::min_float()),
            crate::Literal::F64(i64::max_float()),
        ),
        (crate::Scalar::F64, crate::Scalar::U64) => (
            crate::Literal::F64(u64::min_float()),
            crate::Literal::F64(u64::max_float()),
        ),
        _ => unreachable!(),
    }
}