naga/proc/type_methods.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
//! Methods on [`TypeInner`], [`Scalar`], and [`ScalarKind`].
//!
//! [`TypeInner`]: crate::TypeInner
//! [`Scalar`]: crate::Scalar
//! [`ScalarKind`]: crate::ScalarKind
use super::TypeResolution;
impl crate::ScalarKind {
pub const fn is_numeric(self) -> bool {
match self {
crate::ScalarKind::Sint
| crate::ScalarKind::Uint
| crate::ScalarKind::Float
| crate::ScalarKind::AbstractInt
| crate::ScalarKind::AbstractFloat => true,
crate::ScalarKind::Bool => false,
}
}
}
impl crate::Scalar {
pub const I32: Self = Self {
kind: crate::ScalarKind::Sint,
width: 4,
};
pub const U32: Self = Self {
kind: crate::ScalarKind::Uint,
width: 4,
};
pub const F16: Self = Self {
kind: crate::ScalarKind::Float,
width: 2,
};
pub const F32: Self = Self {
kind: crate::ScalarKind::Float,
width: 4,
};
pub const F64: Self = Self {
kind: crate::ScalarKind::Float,
width: 8,
};
pub const I64: Self = Self {
kind: crate::ScalarKind::Sint,
width: 8,
};
pub const U64: Self = Self {
kind: crate::ScalarKind::Uint,
width: 8,
};
pub const BOOL: Self = Self {
kind: crate::ScalarKind::Bool,
width: crate::BOOL_WIDTH,
};
pub const ABSTRACT_INT: Self = Self {
kind: crate::ScalarKind::AbstractInt,
width: crate::ABSTRACT_WIDTH,
};
pub const ABSTRACT_FLOAT: Self = Self {
kind: crate::ScalarKind::AbstractFloat,
width: crate::ABSTRACT_WIDTH,
};
pub const fn is_abstract(self) -> bool {
match self.kind {
crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => true,
crate::ScalarKind::Sint
| crate::ScalarKind::Uint
| crate::ScalarKind::Float
| crate::ScalarKind::Bool => false,
}
}
/// Construct a float `Scalar` with the given width.
///
/// This is especially common when dealing with
/// `TypeInner::Matrix`, where the scalar kind is implicit.
pub const fn float(width: crate::Bytes) -> Self {
Self {
kind: crate::ScalarKind::Float,
width,
}
}
pub const fn to_inner_scalar(self) -> crate::TypeInner {
crate::TypeInner::Scalar(self)
}
pub const fn to_inner_vector(self, size: crate::VectorSize) -> crate::TypeInner {
crate::TypeInner::Vector { size, scalar: self }
}
pub const fn to_inner_atomic(self) -> crate::TypeInner {
crate::TypeInner::Atomic(self)
}
}
const POINTER_SPAN: u32 = 4;
impl crate::TypeInner {
/// Return the scalar type of `self`.
///
/// If `inner` is a scalar, vector, or matrix type, return
/// its scalar type. Otherwise, return `None`.
///
/// Note that this doesn't inspect [`Array`] types, as required
/// for automatic conversions. For that, see [`scalar_for_conversions`].
///
/// [`Array`]: crate::TypeInner::Array
/// [`scalar_for_conversions`]: crate::TypeInner::scalar_for_conversions
pub const fn scalar(&self) -> Option<crate::Scalar> {
use crate::TypeInner as Ti;
match *self {
Ti::Scalar(scalar) | Ti::Vector { scalar, .. } => Some(scalar),
Ti::Matrix { scalar, .. } => Some(scalar),
_ => None,
}
}
pub fn scalar_kind(&self) -> Option<crate::ScalarKind> {
self.scalar().map(|scalar| scalar.kind)
}
/// Returns the scalar width in bytes
pub fn scalar_width(&self) -> Option<u8> {
self.scalar().map(|scalar| scalar.width)
}
/// Return the leaf scalar type of `self`, as needed for automatic conversions.
///
/// Unlike the [`scalar`] method, which only retrieves scalars for
/// [`Scalar`], [`Vector`], and [`Matrix`] this also looks into
/// [`Array`] types to find the leaf scalar.
///
/// [`scalar`]: crate::TypeInner::scalar
/// [`Scalar`]: crate::TypeInner::Scalar
/// [`Vector`]: crate::TypeInner::Vector
/// [`Matrix`]: crate::TypeInner::Matrix
/// [`Array`]: crate::TypeInner::Array
pub fn scalar_for_conversions(
&self,
types: &crate::UniqueArena<crate::Type>,
) -> Option<crate::Scalar> {
use crate::TypeInner as Ti;
match *self {
Ti::Scalar(scalar) | Ti::Vector { scalar, .. } | Ti::Matrix { scalar, .. } => {
Some(scalar)
}
Ti::Array { base, .. } => types[base].inner.scalar_for_conversions(types),
_ => None,
}
}
pub const fn pointer_space(&self) -> Option<crate::AddressSpace> {
match *self {
Self::Pointer { space, .. } => Some(space),
Self::ValuePointer { space, .. } => Some(space),
_ => None,
}
}
/// If `self` is a pointer type, return its base type.
pub const fn pointer_base_type(&self) -> Option<TypeResolution> {
match *self {
crate::TypeInner::Pointer { base, .. } => Some(TypeResolution::Handle(base)),
crate::TypeInner::ValuePointer {
size: None, scalar, ..
} => Some(TypeResolution::Value(crate::TypeInner::Scalar(scalar))),
crate::TypeInner::ValuePointer {
size: Some(size),
scalar,
..
} => Some(TypeResolution::Value(crate::TypeInner::Vector {
size,
scalar,
})),
_ => None,
}
}
pub fn is_atomic_pointer(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
match *self {
crate::TypeInner::Pointer { base, .. } => match types[base].inner {
crate::TypeInner::Atomic { .. } => true,
_ => false,
},
_ => false,
}
}
/// Get the size of this type.
pub fn size(&self, gctx: super::GlobalCtx) -> u32 {
match *self {
Self::Scalar(scalar) | Self::Atomic(scalar) => scalar.width as u32,
Self::Vector { size, scalar } => size as u32 * scalar.width as u32,
// matrices are treated as arrays of aligned columns
Self::Matrix {
columns,
rows,
scalar,
} => super::Alignment::from(rows) * scalar.width as u32 * columns as u32,
Self::Pointer { .. } | Self::ValuePointer { .. } => POINTER_SPAN,
Self::Array {
base: _,
size,
stride,
} => {
let count = match size.resolve(gctx) {
Ok(crate::proc::IndexableLength::Known(count)) => count,
// any struct member or array element needing a size at pipeline-creation time
// must have a creation-fixed footprint
Err(_) => 0,
// A dynamically-sized array has to have at least one element
Ok(crate::proc::IndexableLength::Dynamic) => 1,
};
count * stride
}
Self::Struct { span, .. } => span,
Self::Image { .. }
| Self::Sampler { .. }
| Self::AccelerationStructure { .. }
| Self::RayQuery { .. }
| Self::BindingArray { .. } => 0,
}
}
/// Return the canonical form of `self`, or `None` if it's already in
/// canonical form.
///
/// Certain types have multiple representations in `TypeInner`. This
/// function converts all forms of equivalent types to a single
/// representative of their class, so that simply applying `Eq` to the
/// result indicates whether the types are equivalent, as far as Naga IR is
/// concerned.
pub fn canonical_form(
&self,
types: &crate::UniqueArena<crate::Type>,
) -> Option<crate::TypeInner> {
use crate::TypeInner as Ti;
match *self {
Ti::Pointer { base, space } => match types[base].inner {
Ti::Scalar(scalar) => Some(Ti::ValuePointer {
size: None,
scalar,
space,
}),
Ti::Vector { size, scalar } => Some(Ti::ValuePointer {
size: Some(size),
scalar,
space,
}),
_ => None,
},
_ => None,
}
}
/// Compare `self` and `rhs` as types.
///
/// This is mostly the same as `<TypeInner as Eq>::eq`, but it treats
/// `ValuePointer` and `Pointer` types as equivalent.
///
/// When you know that one side of the comparison is never a pointer, it's
/// fine to not bother with canonicalization, and just compare `TypeInner`
/// values with `==`.
pub fn equivalent(
&self,
rhs: &crate::TypeInner,
types: &crate::UniqueArena<crate::Type>,
) -> bool {
let left = self.canonical_form(types);
let right = rhs.canonical_form(types);
left.as_ref().unwrap_or(self) == right.as_ref().unwrap_or(rhs)
}
pub fn is_dynamically_sized(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
use crate::TypeInner as Ti;
match *self {
Ti::Array { size, .. } => size == crate::ArraySize::Dynamic,
Ti::Struct { ref members, .. } => members
.last()
.map(|last| types[last.ty].inner.is_dynamically_sized(types))
.unwrap_or(false),
_ => false,
}
}
pub fn components(&self) -> Option<u32> {
Some(match *self {
Self::Vector { size, .. } => size as u32,
Self::Matrix { columns, .. } => columns as u32,
Self::Array {
size: crate::ArraySize::Constant(len),
..
} => len.get(),
Self::Struct { ref members, .. } => members.len() as u32,
_ => return None,
})
}
pub fn component_type(&self, index: usize) -> Option<TypeResolution> {
Some(match *self {
Self::Vector { scalar, .. } => TypeResolution::Value(crate::TypeInner::Scalar(scalar)),
Self::Matrix { rows, scalar, .. } => {
TypeResolution::Value(crate::TypeInner::Vector { size: rows, scalar })
}
Self::Array {
base,
size: crate::ArraySize::Constant(_),
..
} => TypeResolution::Handle(base),
Self::Struct { ref members, .. } => TypeResolution::Handle(members[index].ty),
_ => return None,
})
}
/// If the type is a Vector or a Scalar return a tuple of the vector size (or None
/// for Scalars), and the scalar kind. Returns (None, None) for other types.
pub const fn vector_size_and_scalar(
&self,
) -> Option<(Option<crate::VectorSize>, crate::Scalar)> {
match *self {
crate::TypeInner::Scalar(scalar) => Some((None, scalar)),
crate::TypeInner::Vector { size, scalar } => Some((Some(size), scalar)),
crate::TypeInner::Matrix { .. }
| crate::TypeInner::Atomic(_)
| crate::TypeInner::Pointer { .. }
| crate::TypeInner::ValuePointer { .. }
| crate::TypeInner::Array { .. }
| crate::TypeInner::Struct { .. }
| crate::TypeInner::Image { .. }
| crate::TypeInner::Sampler { .. }
| crate::TypeInner::AccelerationStructure { .. }
| crate::TypeInner::RayQuery { .. }
| crate::TypeInner::BindingArray { .. } => None,
}
}
/// Return true if `self` is an abstract type.
///
/// Use `types` to look up type handles. This is necessary to
/// recognize abstract arrays.
pub fn is_abstract(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
match *self {
crate::TypeInner::Scalar(scalar)
| crate::TypeInner::Vector { scalar, .. }
| crate::TypeInner::Matrix { scalar, .. }
| crate::TypeInner::Atomic(scalar) => scalar.is_abstract(),
crate::TypeInner::Array { base, .. } => types[base].inner.is_abstract(types),
crate::TypeInner::ValuePointer { .. }
| crate::TypeInner::Pointer { .. }
| crate::TypeInner::Struct { .. }
| crate::TypeInner::Image { .. }
| crate::TypeInner::Sampler { .. }
| crate::TypeInner::AccelerationStructure { .. }
| crate::TypeInner::RayQuery { .. }
| crate::TypeInner::BindingArray { .. } => false,
}
}
/// Determine whether `self` automatically converts to `goal`.
///
/// If Naga IR's automatic conversions will convert `self` to
/// `goal`, then return a pair `(from, to)`, where `from` and `to`
/// are the scalar types of the leaf values of `self` and `goal`.
///
/// If `self` and `goal` are the same type, this will simply return
/// a pair `(S, S)`.
///
/// If the automatic conversions cannot convert `self` to `goal`,
/// return `None`.
///
/// Naga IR's automatic conversions will convert:
///
/// - [`AbstractInt`] scalars to [`AbstractFloat`] or any numeric scalar type
///
/// - [`AbstractFloat`] scalars to any floating-point scalar type
///
/// - A [`Vector`] `{ size, scalar: S }` to `{ size, scalar: T }`
/// if they would convert `S` to `T`
///
/// - An [`Array`] `{ base: S, size, stride }` to `{ base: T, size, stride }`
/// if they would convert `S` to `T`
///
/// [`AbstractInt`]: crate::ScalarKind::AbstractInt
/// [`AbstractFloat`]: crate::ScalarKind::AbstractFloat
/// [`Vector`]: crate::TypeInner::Vector
/// [`Array`]: crate::TypeInner::Array
pub fn automatically_converts_to(
&self,
goal: &Self,
types: &crate::UniqueArena<crate::Type>,
) -> Option<(crate::Scalar, crate::Scalar)> {
use crate::ScalarKind as Sk;
use crate::TypeInner as Ti;
// Automatic conversions only change the scalar type of a value's leaves
// (e.g., `vec4<AbstractFloat>` to `vec4<f32>`), never the type
// constructors applied to those scalar types (e.g., never scalar to
// `vec4`, or `vec2` to `vec3`). So first we check that the type
// constructors match, extracting the leaf scalar types in the process.
let expr_scalar;
let goal_scalar;
match (self, goal) {
(&Ti::Scalar(expr), &Ti::Scalar(goal)) => {
expr_scalar = expr;
goal_scalar = goal;
}
(
&Ti::Vector {
size: expr_size,
scalar: expr,
},
&Ti::Vector {
size: goal_size,
scalar: goal,
},
) if expr_size == goal_size => {
expr_scalar = expr;
goal_scalar = goal;
}
(
&Ti::Matrix {
rows: expr_rows,
columns: expr_columns,
scalar: expr,
},
&Ti::Matrix {
rows: goal_rows,
columns: goal_columns,
scalar: goal,
},
) if expr_rows == goal_rows && expr_columns == goal_columns => {
expr_scalar = expr;
goal_scalar = goal;
}
(
&Ti::Array {
base: expr_base,
size: expr_size,
stride: _,
},
&Ti::Array {
base: goal_base,
size: goal_size,
stride: _,
},
) if expr_size == goal_size => {
return types[expr_base]
.inner
.automatically_converts_to(&types[goal_base].inner, types);
}
_ => return None,
}
match (expr_scalar.kind, goal_scalar.kind) {
(Sk::AbstractFloat, Sk::Float) => {}
(Sk::AbstractInt, Sk::Sint | Sk::Uint | Sk::AbstractFloat | Sk::Float) => {}
_ => return None,
}
log::trace!(" okay: expr {expr_scalar:?}, goal {goal_scalar:?}");
Some((expr_scalar, goal_scalar))
}
}
/// Helper trait for providing the min and max values exactly representable by
/// the integer type `Self` and floating point type `F`.
pub trait IntFloatLimits<F>
where
F: num_traits::Float,
{
/// Returns the minimum value exactly representable by the integer type
/// `Self` and floating point type `F`.
fn min_float() -> F;
/// Returns the maximum value exactly representable by the integer type
/// `Self` and floating point type `F`.
fn max_float() -> F;
}
macro_rules! define_int_float_limits {
($int:ty, $float:ty, $min:expr, $max:expr) => {
impl IntFloatLimits<$float> for $int {
fn min_float() -> $float {
$min
}
fn max_float() -> $float {
$max
}
}
};
}
define_int_float_limits!(i32, half::f16, half::f16::MIN, half::f16::MAX);
define_int_float_limits!(u32, half::f16, half::f16::ZERO, half::f16::MAX);
define_int_float_limits!(i64, half::f16, half::f16::MIN, half::f16::MAX);
define_int_float_limits!(u64, half::f16, half::f16::ZERO, half::f16::MAX);
define_int_float_limits!(i32, f32, -2147483648.0f32, 2147483520.0f32);
define_int_float_limits!(u32, f32, 0.0f32, 4294967040.0f32);
define_int_float_limits!(
i64,
f32,
-9223372036854775808.0f32,
9223371487098961920.0f32
);
define_int_float_limits!(u64, f32, 0.0f32, 18446742974197923840.0f32);
define_int_float_limits!(i32, f64, -2147483648.0f64, 2147483647.0f64);
define_int_float_limits!(u32, f64, 0.0f64, 4294967295.0f64);
define_int_float_limits!(
i64,
f64,
-9223372036854775808.0f64,
9223372036854774784.0f64
);
define_int_float_limits!(u64, f64, 0.0f64, 18446744073709549568.0f64);
/// Returns a tuple of [`crate::Literal`]s representing the minimum and maximum
/// float values exactly representable by the provided float and integer types.
/// Panics if `float` is not one of `F16`, `F32`, or `F64`, or `int` is
/// not one of `I32`, `U32`, `I64`, or `U64`.
pub fn min_max_float_representable_by(
float: crate::Scalar,
int: crate::Scalar,
) -> (crate::Literal, crate::Literal) {
match (float, int) {
(crate::Scalar::F16, crate::Scalar::I32) => (
crate::Literal::F16(i32::min_float()),
crate::Literal::F16(i32::max_float()),
),
(crate::Scalar::F16, crate::Scalar::U32) => (
crate::Literal::F16(u32::min_float()),
crate::Literal::F16(u32::max_float()),
),
(crate::Scalar::F16, crate::Scalar::I64) => (
crate::Literal::F16(i64::min_float()),
crate::Literal::F16(i64::max_float()),
),
(crate::Scalar::F16, crate::Scalar::U64) => (
crate::Literal::F16(u64::min_float()),
crate::Literal::F16(u64::max_float()),
),
(crate::Scalar::F32, crate::Scalar::I32) => (
crate::Literal::F32(i32::min_float()),
crate::Literal::F32(i32::max_float()),
),
(crate::Scalar::F32, crate::Scalar::U32) => (
crate::Literal::F32(u32::min_float()),
crate::Literal::F32(u32::max_float()),
),
(crate::Scalar::F32, crate::Scalar::I64) => (
crate::Literal::F32(i64::min_float()),
crate::Literal::F32(i64::max_float()),
),
(crate::Scalar::F32, crate::Scalar::U64) => (
crate::Literal::F32(u64::min_float()),
crate::Literal::F32(u64::max_float()),
),
(crate::Scalar::F64, crate::Scalar::I32) => (
crate::Literal::F64(i32::min_float()),
crate::Literal::F64(i32::max_float()),
),
(crate::Scalar::F64, crate::Scalar::U32) => (
crate::Literal::F64(u32::min_float()),
crate::Literal::F64(u32::max_float()),
),
(crate::Scalar::F64, crate::Scalar::I64) => (
crate::Literal::F64(i64::min_float()),
crate::Literal::F64(i64::max_float()),
),
(crate::Scalar::F64, crate::Scalar::U64) => (
crate::Literal::F64(u64::min_float()),
crate::Literal::F64(u64::max_float()),
),
_ => unreachable!(),
}
}