1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
use crate::{
    binding_model,
    hal_api::HalApi,
    hub::Hub,
    id,
    identity::{GlobalIdentityHandlerFactory, Input},
    resource::{Buffer, BufferAccessResult},
    resource::{BufferAccessError, BufferMapOperation},
    Label, DOWNLEVEL_ERROR_MESSAGE,
};

use arrayvec::ArrayVec;
use hal::Device as _;
use smallvec::SmallVec;
use thiserror::Error;
use wgt::{BufferAddress, TextureFormat};

use std::{iter, num::NonZeroU32, ptr};

pub mod global;
mod life;
pub mod queue;
pub mod resource;
#[cfg(any(feature = "trace", feature = "replay"))]
pub mod trace;
pub use {life::WaitIdleError, resource::Device};

pub const SHADER_STAGE_COUNT: usize = 3;
// Should be large enough for the largest possible texture row. This
// value is enough for a 16k texture with float4 format.
pub(crate) const ZERO_BUFFER_SIZE: BufferAddress = 512 << 10;

const CLEANUP_WAIT_MS: u32 = 5000;

const IMPLICIT_FAILURE: &str = "failed implicit";
const EP_FAILURE: &str = "EP is invalid";

pub type DeviceDescriptor<'a> = wgt::DeviceDescriptor<Label<'a>>;

#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub enum HostMap {
    Read,
    Write,
}

#[derive(Clone, Debug, Hash, PartialEq)]
#[cfg_attr(feature = "serial-pass", derive(serde::Deserialize, serde::Serialize))]
pub(crate) struct AttachmentData<T> {
    pub colors: ArrayVec<Option<T>, { hal::MAX_COLOR_ATTACHMENTS }>,
    pub resolves: ArrayVec<T, { hal::MAX_COLOR_ATTACHMENTS }>,
    pub depth_stencil: Option<T>,
}
impl<T: PartialEq> Eq for AttachmentData<T> {}
impl<T> AttachmentData<T> {
    pub(crate) fn map<U, F: Fn(&T) -> U>(&self, fun: F) -> AttachmentData<U> {
        AttachmentData {
            colors: self.colors.iter().map(|c| c.as_ref().map(&fun)).collect(),
            resolves: self.resolves.iter().map(&fun).collect(),
            depth_stencil: self.depth_stencil.as_ref().map(&fun),
        }
    }
}

#[derive(Debug, Copy, Clone)]
pub enum RenderPassCompatibilityCheckType {
    RenderPipeline,
    RenderBundle,
}

#[derive(Clone, Debug, Hash, PartialEq)]
#[cfg_attr(feature = "serial-pass", derive(serde::Deserialize, serde::Serialize))]
pub(crate) struct RenderPassContext {
    pub attachments: AttachmentData<TextureFormat>,
    pub sample_count: u32,
    pub multiview: Option<NonZeroU32>,
}
#[derive(Clone, Debug, Error)]
#[non_exhaustive]
pub enum RenderPassCompatibilityError {
    #[error(
        "Incompatible color attachments at indices {indices:?}: the RenderPass uses textures with formats {expected:?} but the {ty:?} uses attachments with formats {actual:?}",
    )]
    IncompatibleColorAttachment {
        indices: Vec<usize>,
        expected: Vec<Option<TextureFormat>>,
        actual: Vec<Option<TextureFormat>>,
        ty: RenderPassCompatibilityCheckType,
    },
    #[error(
        "Incompatible depth-stencil attachment format: the RenderPass uses a texture with format {expected:?} but the {ty:?} uses an attachment with format {actual:?}",
    )]
    IncompatibleDepthStencilAttachment {
        expected: Option<TextureFormat>,
        actual: Option<TextureFormat>,
        ty: RenderPassCompatibilityCheckType,
    },
    #[error(
        "Incompatible sample count: the RenderPass uses textures with sample count {expected:?} but the {ty:?} uses attachments with format {actual:?}",
    )]
    IncompatibleSampleCount {
        expected: u32,
        actual: u32,
        ty: RenderPassCompatibilityCheckType,
    },
    #[error("Incompatible multiview setting: the RenderPass uses setting {expected:?} but the {ty:?} uses setting {actual:?}")]
    IncompatibleMultiview {
        expected: Option<NonZeroU32>,
        actual: Option<NonZeroU32>,
        ty: RenderPassCompatibilityCheckType,
    },
}

impl RenderPassContext {
    // Assumes the renderpass only contains one subpass
    pub(crate) fn check_compatible(
        &self,
        other: &Self,
        ty: RenderPassCompatibilityCheckType,
    ) -> Result<(), RenderPassCompatibilityError> {
        if self.attachments.colors != other.attachments.colors {
            let indices = self
                .attachments
                .colors
                .iter()
                .zip(&other.attachments.colors)
                .enumerate()
                .filter_map(|(idx, (left, right))| (left != right).then_some(idx))
                .collect();
            return Err(RenderPassCompatibilityError::IncompatibleColorAttachment {
                indices,
                expected: self.attachments.colors.iter().cloned().collect(),
                actual: other.attachments.colors.iter().cloned().collect(),
                ty,
            });
        }
        if self.attachments.depth_stencil != other.attachments.depth_stencil {
            return Err(
                RenderPassCompatibilityError::IncompatibleDepthStencilAttachment {
                    expected: self.attachments.depth_stencil,
                    actual: other.attachments.depth_stencil,
                    ty,
                },
            );
        }
        if self.sample_count != other.sample_count {
            return Err(RenderPassCompatibilityError::IncompatibleSampleCount {
                expected: self.sample_count,
                actual: other.sample_count,
                ty,
            });
        }
        if self.multiview != other.multiview {
            return Err(RenderPassCompatibilityError::IncompatibleMultiview {
                expected: self.multiview,
                actual: other.multiview,
                ty,
            });
        }
        Ok(())
    }
}

pub type BufferMapPendingClosure = (BufferMapOperation, BufferAccessResult);

#[derive(Default)]
pub struct UserClosures {
    pub mappings: Vec<BufferMapPendingClosure>,
    pub submissions: SmallVec<[queue::SubmittedWorkDoneClosure; 1]>,
}

impl UserClosures {
    fn extend(&mut self, other: Self) {
        self.mappings.extend(other.mappings);
        self.submissions.extend(other.submissions);
    }

    fn fire(self) {
        // Note: this logic is specifically moved out of `handle_mapping()` in order to
        // have nothing locked by the time we execute users callback code.

        // Mappings _must_ be fired before submissions, as the spec requires all mapping callbacks that are registered before
        // a on_submitted_work_done callback to be fired before the on_submitted_work_done callback.
        for (operation, status) in self.mappings {
            operation.callback.call(status);
        }
        for closure in self.submissions {
            closure.call();
        }
    }
}

fn map_buffer<A: hal::Api>(
    raw: &A::Device,
    buffer: &mut Buffer<A>,
    offset: BufferAddress,
    size: BufferAddress,
    kind: HostMap,
) -> Result<ptr::NonNull<u8>, BufferAccessError> {
    let mapping = unsafe {
        raw.map_buffer(buffer.raw.as_ref().unwrap(), offset..offset + size)
            .map_err(DeviceError::from)?
    };

    buffer.sync_mapped_writes = match kind {
        HostMap::Read if !mapping.is_coherent => unsafe {
            raw.invalidate_mapped_ranges(
                buffer.raw.as_ref().unwrap(),
                iter::once(offset..offset + size),
            );
            None
        },
        HostMap::Write if !mapping.is_coherent => Some(offset..offset + size),
        _ => None,
    };

    assert_eq!(offset % wgt::COPY_BUFFER_ALIGNMENT, 0);
    assert_eq!(size % wgt::COPY_BUFFER_ALIGNMENT, 0);
    // Zero out uninitialized parts of the mapping. (Spec dictates all resources
    // behave as if they were initialized with zero)
    //
    // If this is a read mapping, ideally we would use a `clear_buffer` command
    // before reading the data from GPU (i.e. `invalidate_range`). However, this
    // would require us to kick off and wait for a command buffer or piggy back
    // on an existing one (the later is likely the only worthwhile option). As
    // reading uninitialized memory isn't a particular important path to
    // support, we instead just initialize the memory here and make sure it is
    // GPU visible, so this happens at max only once for every buffer region.
    //
    // If this is a write mapping zeroing out the memory here is the only
    // reasonable way as all data is pushed to GPU anyways.

    // No need to flush if it is flushed later anyways.
    let zero_init_needs_flush_now = mapping.is_coherent && buffer.sync_mapped_writes.is_none();
    let mapped = unsafe { std::slice::from_raw_parts_mut(mapping.ptr.as_ptr(), size as usize) };

    for uninitialized in buffer.initialization_status.drain(offset..(size + offset)) {
        // The mapping's pointer is already offset, however we track the
        // uninitialized range relative to the buffer's start.
        let fill_range =
            (uninitialized.start - offset) as usize..(uninitialized.end - offset) as usize;
        mapped[fill_range].fill(0);

        if zero_init_needs_flush_now {
            unsafe {
                raw.flush_mapped_ranges(buffer.raw.as_ref().unwrap(), iter::once(uninitialized))
            };
        }
    }

    Ok(mapping.ptr)
}

struct CommandAllocator<A: hal::Api> {
    free_encoders: Vec<A::CommandEncoder>,
}

impl<A: hal::Api> CommandAllocator<A> {
    fn acquire_encoder(
        &mut self,
        device: &A::Device,
        queue: &A::Queue,
    ) -> Result<A::CommandEncoder, hal::DeviceError> {
        match self.free_encoders.pop() {
            Some(encoder) => Ok(encoder),
            None => unsafe {
                let hal_desc = hal::CommandEncoderDescriptor { label: None, queue };
                device.create_command_encoder(&hal_desc)
            },
        }
    }

    fn release_encoder(&mut self, encoder: A::CommandEncoder) {
        self.free_encoders.push(encoder);
    }

    fn dispose(self, device: &A::Device) {
        log::info!("Destroying {} command encoders", self.free_encoders.len());
        for cmd_encoder in self.free_encoders {
            unsafe {
                device.destroy_command_encoder(cmd_encoder);
            }
        }
    }
}

#[derive(Clone, Debug, Error)]
#[error("Device is invalid")]
pub struct InvalidDevice;

#[derive(Clone, Debug, Error)]
pub enum DeviceError {
    #[error("Parent device is invalid.")]
    Invalid,
    #[error("Parent device is lost")]
    Lost,
    #[error("Not enough memory left.")]
    OutOfMemory,
    #[error("Creation of a resource failed for a reason other than running out of memory.")]
    ResourceCreationFailed,
    #[error("Attempt to use a resource with a different device from the one that created it")]
    WrongDevice,
}

impl From<hal::DeviceError> for DeviceError {
    fn from(error: hal::DeviceError) -> Self {
        match error {
            hal::DeviceError::Lost => DeviceError::Lost,
            hal::DeviceError::OutOfMemory => DeviceError::OutOfMemory,
            hal::DeviceError::ResourceCreationFailed => DeviceError::ResourceCreationFailed,
        }
    }
}

#[derive(Clone, Debug, Error)]
#[error("Features {0:?} are required but not enabled on the device")]
pub struct MissingFeatures(pub wgt::Features);

#[derive(Clone, Debug, Error)]
#[error(
    "Downlevel flags {0:?} are required but not supported on the device.\n{}",
    DOWNLEVEL_ERROR_MESSAGE
)]
pub struct MissingDownlevelFlags(pub wgt::DownlevelFlags);

#[derive(Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ImplicitPipelineContext {
    pub root_id: id::PipelineLayoutId,
    pub group_ids: ArrayVec<id::BindGroupLayoutId, { hal::MAX_BIND_GROUPS }>,
}

pub struct ImplicitPipelineIds<'a, G: GlobalIdentityHandlerFactory> {
    pub root_id: Input<G, id::PipelineLayoutId>,
    pub group_ids: &'a [Input<G, id::BindGroupLayoutId>],
}

impl<G: GlobalIdentityHandlerFactory> ImplicitPipelineIds<'_, G> {
    fn prepare<A: HalApi>(self, hub: &Hub<A, G>) -> ImplicitPipelineContext {
        ImplicitPipelineContext {
            root_id: hub.pipeline_layouts.prepare(self.root_id).into_id(),
            group_ids: self
                .group_ids
                .iter()
                .map(|id_in| hub.bind_group_layouts.prepare(id_in.clone()).into_id())
                .collect(),
        }
    }
}