1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright 2011 Google Inc.
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::{Point, Rect};

use tiny_skia_path::Scalar;

pub const MAX_POINTS: usize = 4;

/// Clip the line pts[0]...pts[1] against clip, ignoring segments that
/// lie completely above or below the clip. For portions to the left or
/// right, turn those into vertical line segments that are aligned to the
/// edge of the clip.
///
/// Return the number of line segments that result, and store the end-points
/// of those segments sequentially in lines as follows:
///
/// 1st segment: lines[0]..lines[1]
/// 2nd segment: lines[1]..lines[2]
/// 3rd segment: lines[2]..lines[3]
pub fn clip<'a>(
    src: &[Point; 2],
    clip: &Rect,
    can_cull_to_the_right: bool,
    points: &'a mut [Point; MAX_POINTS],
) -> &'a [Point] {
    let (mut index0, mut index1) = if src[0].y < src[1].y { (0, 1) } else { (1, 0) };

    // Check if we're completely clipped out in Y (above or below)

    if src[index1].y <= clip.top() {
        // we're above the clip
        return &[];
    }

    if src[index0].y >= clip.bottom() {
        // we're below the clip
        return &[];
    }

    // Chop in Y to produce a single segment, stored in tmp[0..1]

    let mut tmp = *src;

    // now compute intersections
    if src[index0].y < clip.top() {
        tmp[index0] = Point::from_xy(sect_with_horizontal(src, clip.top()), clip.top());
        debug_assert!(is_between_unsorted(tmp[index0].x, src[0].x, src[1].x));
    }

    if tmp[index1].y > clip.bottom() {
        tmp[index1] = Point::from_xy(sect_with_horizontal(src, clip.bottom()), clip.bottom());
        debug_assert!(is_between_unsorted(tmp[index1].x, src[0].x, src[1].x));
    }

    // Chop it into 1..3 segments that are wholly within the clip in X.

    // temp storage for up to 3 segments
    let mut result_storage = [Point::zero(); MAX_POINTS];
    let mut line_count = 1;
    let mut reverse;

    if src[0].x < src[1].x {
        index0 = 0;
        index1 = 1;
        reverse = false;
    } else {
        index0 = 1;
        index1 = 0;
        reverse = true;
    }

    let result: &[Point] = if tmp[index1].x <= clip.left() {
        // wholly to the left
        tmp[0].x = clip.left();
        tmp[1].x = clip.left();
        reverse = false;
        &tmp
    } else if tmp[index0].x >= clip.right() {
        // wholly to the right
        if can_cull_to_the_right {
            return &[];
        }

        tmp[0].x = clip.right();
        tmp[1].x = clip.right();
        reverse = false;
        &tmp
    } else {
        let mut offset = 0;

        if tmp[index0].x < clip.left() {
            result_storage[offset] = Point::from_xy(clip.left(), tmp[index0].y);
            offset += 1;
            result_storage[offset] =
                Point::from_xy(clip.left(), sect_clamp_with_vertical(&tmp, clip.left()));
            debug_assert!(is_between_unsorted(
                result_storage[offset].y,
                tmp[0].y,
                tmp[1].y
            ));
        } else {
            result_storage[offset] = tmp[index0];
        }
        offset += 1;

        if tmp[index1].x > clip.right() {
            result_storage[offset] =
                Point::from_xy(clip.right(), sect_clamp_with_vertical(&tmp, clip.right()));
            debug_assert!(is_between_unsorted(
                result_storage[offset].y,
                tmp[0].y,
                tmp[1].y
            ));
            offset += 1;
            result_storage[offset] = Point::from_xy(clip.right(), tmp[index1].y);
        } else {
            result_storage[offset] = tmp[index1];
        }

        line_count = offset;
        &result_storage
    };

    // Now copy the results into the caller's lines[] parameter
    if reverse {
        // copy the pts in reverse order to maintain winding order
        for i in 0..=line_count {
            points[line_count - i] = result[i];
        }
    } else {
        let len = line_count + 1;
        points[0..len].copy_from_slice(&result[0..len]);
    }

    &points[0..line_count + 1]
}

/// Returns X coordinate of intersection with horizontal line at Y.
fn sect_with_horizontal(src: &[Point; 2], y: f32) -> f32 {
    let dy = src[1].y - src[0].y;
    if dy.is_nearly_zero() {
        src[0].x.ave(src[1].x)
    } else {
        // need the extra precision so we don't compute a value that exceeds
        // our original limits
        let x0 = f64::from(src[0].x);
        let y0 = f64::from(src[0].y);
        let x1 = f64::from(src[1].x);
        let y1 = f64::from(src[1].y);
        let result = x0 + (f64::from(y) - y0) * (x1 - x0) / (y1 - y0);

        // The computed X value might still exceed [X0..X1] due to quantum flux
        // when the doubles were added and subtracted, so we have to pin the
        // answer :(
        pin_unsorted_f64(result, x0, x1) as f32
    }
}

/// Returns value between the two limits, where the limits are either ascending or descending.
fn is_between_unsorted(value: f32, limit0: f32, limit1: f32) -> bool {
    if limit0 < limit1 {
        limit0 <= value && value <= limit1
    } else {
        limit1 <= value && value <= limit0
    }
}

fn sect_clamp_with_vertical(src: &[Point; 2], x: f32) -> f32 {
    let y = sect_with_vertical(src, x);
    // Our caller expects y to be between src[0].y and src[1].y (unsorted), but due to the
    // numerics of floats/doubles, we might have computed a value slightly outside of that,
    // so we have to manually clamp afterwards.
    // See skbug.com/7491
    pin_unsorted_f32(y, src[0].y, src[1].y)
}

/// Returns Y coordinate of intersection with vertical line at X.
fn sect_with_vertical(src: &[Point; 2], x: f32) -> f32 {
    let dx = src[1].x - src[0].x;
    if dx.is_nearly_zero() {
        src[0].y.ave(src[1].y)
    } else {
        // need the extra precision so we don't compute a value that exceeds
        // our original limits
        let x0 = f64::from(src[0].x);
        let y0 = f64::from(src[0].y);
        let x1 = f64::from(src[1].x);
        let y1 = f64::from(src[1].y);
        let result = y0 + (f64::from(x) - x0) * (y1 - y0) / (x1 - x0);
        result as f32
    }
}

fn pin_unsorted_f32(value: f32, mut limit0: f32, mut limit1: f32) -> f32 {
    if limit1 < limit0 {
        core::mem::swap(&mut limit0, &mut limit1);
    }
    // now the limits are sorted
    debug_assert!(limit0 <= limit1);

    if value < limit0 {
        limit0
    } else if value > limit1 {
        limit1
    } else {
        value
    }
}

fn pin_unsorted_f64(value: f64, mut limit0: f64, mut limit1: f64) -> f64 {
    if limit1 < limit0 {
        core::mem::swap(&mut limit0, &mut limit1);
    }
    // now the limits are sorted
    debug_assert!(limit0 <= limit1);

    if value < limit0 {
        limit0
    } else if value > limit1 {
        limit1
    } else {
        value
    }
}

/// Intersect the line segment against the rect. If there is a non-empty
/// resulting segment, return true and set dst[] to that segment. If not,
/// return false and ignore dst[].
///
/// `clip` is specialized for scan-conversion, as it adds vertical
/// segments on the sides to show where the line extended beyond the
/// left or right sides. `intersect` does not.
pub fn intersect(src: &[Point; 2], clip: &Rect, dst: &mut [Point; 2]) -> bool {
    let bounds = Rect::from_ltrb(
        src[0].x.min(src[1].x),
        src[0].y.min(src[1].y),
        src[0].x.max(src[1].x),
        src[0].y.max(src[1].y),
    );

    if let Some(bounds) = bounds {
        if contains_no_empty_check(clip, &bounds) {
            dst.copy_from_slice(src);
            return true;
        }

        // check for no overlap, and only permit coincident edges if the line
        // and the edge are colinear
        if nested_lt(bounds.right(), clip.left(), bounds.width())
            || nested_lt(clip.right(), bounds.left(), bounds.width())
            || nested_lt(bounds.bottom(), clip.top(), bounds.height())
            || nested_lt(clip.bottom(), bounds.top(), bounds.height())
        {
            return false;
        }
    }

    let (index0, index1) = if src[0].y < src[1].y { (0, 1) } else { (1, 0) };

    let mut tmp = src.clone();

    // now compute Y intersections
    if tmp[index0].y < clip.top() {
        tmp[index0] = Point::from_xy(sect_with_horizontal(src, clip.top()), clip.top());
    }

    if tmp[index1].y > clip.bottom() {
        tmp[index1] = Point::from_xy(sect_with_horizontal(src, clip.bottom()), clip.bottom());
    }

    let (index0, index1) = if tmp[0].x < tmp[1].x { (0, 1) } else { (1, 0) };

    // check for quick-reject in X again, now that we may have been chopped
    if tmp[index1].x <= clip.left() || tmp[index0].x >= clip.right() {
        // usually we will return false, but we don't if the line is vertical and coincident
        // with the clip.
        if tmp[0].x != tmp[1].x || tmp[0].x < clip.left() || tmp[0].x > clip.right() {
            return false;
        }
    }

    if tmp[index0].x < clip.left() {
        tmp[index0] = Point::from_xy(clip.left(), sect_with_vertical(src, clip.left()));
    }

    if tmp[index1].x > clip.right() {
        tmp[index1] = Point::from_xy(clip.right(), sect_with_vertical(src, clip.right()));
    }

    dst.copy_from_slice(&tmp);
    true
}

fn nested_lt(a: f32, b: f32, dim: f32) -> bool {
    a <= b && (a < b || dim > 0.0)
}

// returns true if outer contains inner, even if inner is empty.
fn contains_no_empty_check(outer: &Rect, inner: &Rect) -> bool {
    outer.left() <= inner.left()
        && outer.top() <= inner.top()
        && outer.right() >= inner.right()
        && outer.bottom() >= inner.bottom()
}