pathfinder_geometry/
transform3d.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// pathfinder/geometry/src/basic/transform3d.rs
//
// Copyright © 2019 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! 3D transforms that can be applied to paths.

use crate::rect::RectF;
use crate::transform2d::Matrix2x2F;
use crate::vector::{Vector2F, Vector2I, Vector3F, Vector4F};
use pathfinder_simd::default::F32x4;
use std::ops::{Add, Mul, MulAssign, Neg};

/// An transform, optimized with SIMD.
///
/// In column-major order.
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(C)]
pub struct Transform4F {
    pub c0: F32x4,
    pub c1: F32x4,
    pub c2: F32x4,
    pub c3: F32x4,
}

impl Default for Transform4F {
    #[inline]
    fn default() -> Transform4F {
        Transform4F {
            c0: F32x4::new(1.0, 0.0, 0.0, 0.0),
            c1: F32x4::new(0.0, 1.0, 0.0, 0.0),
            c2: F32x4::new(0.0, 0.0, 1.0, 0.0),
            c3: F32x4::new(0.0, 0.0, 0.0, 1.0),
        }
    }
}

impl Transform4F {
    #[inline]
    pub fn row_major(
        m00: f32,
        m01: f32,
        m02: f32,
        m03: f32,
        m10: f32,
        m11: f32,
        m12: f32,
        m13: f32,
        m20: f32,
        m21: f32,
        m22: f32,
        m23: f32,
        m30: f32,
        m31: f32,
        m32: f32,
        m33: f32,
    ) -> Transform4F {
        Transform4F {
            c0: F32x4::new(m00, m10, m20, m30),
            c1: F32x4::new(m01, m11, m21, m31),
            c2: F32x4::new(m02, m12, m22, m32),
            c3: F32x4::new(m03, m13, m23, m33),
        }
    }

    #[inline]
    pub fn from_scale(scale: Vector4F) -> Transform4F {
        Transform4F {
            c0: F32x4::new(scale.x(), 0.0, 0.0, 0.0),
            c1: F32x4::new(0.0, scale.y(), 0.0, 0.0),
            c2: F32x4::new(0.0, 0.0, scale.z(), 0.0),
            c3: F32x4::new(0.0, 0.0, 0.0,       1.0),
        }
    }

    #[inline]
    pub fn from_uniform_scale(factor: f32) -> Transform4F {
        Transform4F::from_scale(Vector4F::splat(factor))
    }

    #[inline]
    pub fn from_translation(mut translation: Vector4F) -> Transform4F {
        translation.set_w(1.0);
        Transform4F { c3: translation.0, ..Transform4F::default() }
    }

    // TODO(pcwalton): Optimize.
    pub fn from_rotation(yaw: f32, pitch: f32, roll: f32) -> Transform4F {
        let (cos_b, sin_b) = (yaw.cos(), yaw.sin());
        let (cos_c, sin_c) = (pitch.cos(), pitch.sin());
        let (cos_a, sin_a) = (roll.cos(), roll.sin());
        let m00 = cos_a * cos_b;
        let m01 = cos_a * sin_b * sin_c - sin_a * cos_c;
        let m02 = cos_a * sin_b * cos_c + sin_a * sin_c;
        let m10 = sin_a * cos_b;
        let m11 = sin_a * sin_b * sin_c + cos_a * cos_c;
        let m12 = sin_a * sin_b * cos_c - cos_a * sin_c;
        let m20 = -sin_b;
        let m21 = cos_b * sin_c;
        let m22 = cos_b * cos_c;
        Transform4F::row_major(
            m00, m01, m02, 0.0, m10, m11, m12, 0.0, m20, m21, m22, 0.0, 0.0, 0.0, 0.0, 1.0,
        )
    }

    /// Creates a rotation matrix from the given quaternion.
    ///
    /// The quaternion is expected to be packed into a SIMD type (x, y, z, w) corresponding to
    /// x + yi + zj + wk.
    pub fn from_rotation_quaternion(q: F32x4) -> Transform4F {
        // TODO(pcwalton): Optimize better with more shuffles.
        let (mut sq, mut w, mut xy_xz_yz) = (q * q, q.wwww() * q, q.xxyy() * q.yzzy());
        sq += sq;
        w += w;
        xy_xz_yz += xy_xz_yz;
        let diag = F32x4::splat(1.0) - (sq.yxxy() + sq.zzyy());
        let (wx2, wy2, wz2) = (w.x(), w.y(), w.z());
        let (xy2, xz2, yz2) = (xy_xz_yz.x(), xy_xz_yz.y(), xy_xz_yz.z());
        Transform4F::row_major(
            diag.x(),
            xy2 - wz2,
            xz2 + wy2,
            0.0,
            xy2 + wz2,
            diag.y(),
            yz2 - wx2,
            0.0,
            xz2 - wy2,
            yz2 + wx2,
            diag.z(),
            0.0,
            0.0,
            0.0,
            0.0,
            1.0,
        )
    }

    /// Just like `glOrtho()`.
    #[inline]
    pub fn from_ortho(
        left: f32,
        right: f32,
        bottom: f32,
        top: f32,
        near_val: f32,
        far_val: f32,
    ) -> Transform4F {
        let x_inv = 1.0 / (right - left);
        let y_inv = 1.0 / (top - bottom);
        let z_inv = 1.0 / (far_val - near_val);
        let tx = -(right + left) * x_inv;
        let ty = -(top + bottom) * y_inv;
        let tz = -(far_val + near_val) * z_inv;
        Transform4F::row_major(
            2.0 * x_inv,
            0.0,
            0.0,
            tx,
            0.0,
            2.0 * y_inv,
            0.0,
            ty,
            0.0,
            0.0,
            -2.0 * z_inv,
            tz,
            0.0,
            0.0,
            0.0,
            1.0,
        )
    }

    /// Linearly interpolate between transforms
    pub fn lerp(&self, weight: f32, other: &Transform4F) -> Transform4F {
        let c0 = self.c0 * F32x4::splat(weight) + other.c0 * F32x4::splat(1.0 - weight);
        let c1 = self.c1 * F32x4::splat(weight) + other.c1 * F32x4::splat(1.0 - weight);
        let c2 = self.c2 * F32x4::splat(weight) + other.c2 * F32x4::splat(1.0 - weight);
        let c3 = self.c3 * F32x4::splat(weight) + other.c3 * F32x4::splat(1.0 - weight);
        Transform4F { c0, c1, c2, c3 }
    }

    /// Just like `gluPerspective()`.
    #[inline]
    pub fn from_perspective(fov_y: f32, aspect: f32, z_near: f32, z_far: f32) -> Transform4F {
        let f = 1.0 / (fov_y * 0.5).tan();
        let z_denom = 1.0 / (z_near - z_far);
        let m00 = f / aspect;
        let m11 = f;
        let m22 = (z_far + z_near) * z_denom;
        let m23 = 2.0 * z_far * z_near * z_denom;
        let m32 = -1.0;
        Transform4F::row_major(
            m00, 0.0, 0.0, 0.0, 0.0, m11, 0.0, 0.0, 0.0, 0.0, m22, m23, 0.0, 0.0, m32, 0.0,
        )
    }

    /// Just like `gluLookAt()`.
    #[inline]
    pub fn looking_at(eye: Vector3F, center: Vector3F, mut up: Vector3F) -> Transform4F {
        let f = (center - eye).normalize();
        up = up.normalize();
        let s = f.cross(up);
        let u = s.normalize().cross(f);
        let minus_f = -f;

        // TODO(pcwalton): Use SIMD. This needs a matrix transpose:
        // https://fgiesen.wordpress.com/2013/07/09/simd-transposes-1/
        let transform = Transform4F::row_major(s.x(),       s.y(),       s.z(),       0.0,
                                               u.x(),       u.y(),       u.z(),       0.0,
                                               minus_f.x(), minus_f.y(), minus_f.z(), 0.0,
                                               0.0,         0.0,         0.0,         1.0) *
                        Transform4F::from_translation((-eye).to_4d());
        transform
    }

    //     +-     -+
    //     |  A B  |
    //     |  C D  |
    //     +-     -+
    #[inline]
    pub fn from_submatrices(
        a: Matrix2x2F,
        b: Matrix2x2F,
        c: Matrix2x2F,
        d: Matrix2x2F,
    ) -> Transform4F {
        Transform4F {
            c0: a.0.concat_xy_xy(c.0),
            c1: a.0.concat_zw_zw(c.0),
            c2: b.0.concat_xy_xy(d.0),
            c3: b.0.concat_zw_zw(d.0),
        }
    }

    #[inline]
    pub fn rotate(&self, yaw: f32, pitch: f32, roll: f32) -> Transform4F {
        Transform4F::from_rotation(yaw, pitch, roll) * *self
    }

    #[inline]
    pub fn scale(&self, scale: Vector4F) -> Transform4F {
        Transform4F::from_scale(scale) * *self
    }

    #[inline]
    pub fn uniform_scale(&self, scale: f32) -> Transform4F {
        Transform4F::from_uniform_scale(scale) * *self
    }

    #[inline]
    pub fn translate(&self, translation: Vector4F) -> Transform4F {
        Transform4F::from_translation(translation) * *self
    }

    #[inline]
    pub fn upper_left(&self) -> Matrix2x2F {
        Matrix2x2F(self.c0.concat_xy_xy(self.c1))
    }

    #[inline]
    pub fn upper_right(&self) -> Matrix2x2F {
        Matrix2x2F(self.c2.concat_xy_xy(self.c3))
    }

    #[inline]
    pub fn lower_left(&self) -> Matrix2x2F {
        Matrix2x2F(self.c0.concat_zw_zw(self.c1))
    }

    #[inline]
    pub fn lower_right(&self) -> Matrix2x2F {
        Matrix2x2F(self.c2.concat_zw_zw(self.c3))
    }

    // https://en.wikipedia.org/wiki/Invertible_matrix#Blockwise_inversion
    //
    // If A is the upper left submatrix of this matrix, this method assumes that A and the Schur
    // complement of A are invertible.
    pub fn inverse(&self) -> Transform4F {
        // Extract submatrices.
        let (a, b) = (self.upper_left(), self.upper_right());
        let (c, d) = (self.lower_left(), self.lower_right());

        // Compute temporary matrices.
        let a_inv = a.inverse();
        let x = c * a_inv;
        let y = (d - x * b).inverse();
        let z = a_inv * b;

        // Compute new submatrices.
        let (a_new, b_new) = (a_inv + z * y * x, -z * y);
        let (c_new, d_new) = (-y * x, y);

        // Construct inverse.
        Transform4F::from_submatrices(a_new, b_new, c_new, d_new)
    }

    pub fn approx_eq(&self, other: &Transform4F, epsilon: f32) -> bool {
        self.c0.approx_eq(other.c0, epsilon)
            && self.c1.approx_eq(other.c1, epsilon)
            && self.c2.approx_eq(other.c2, epsilon)
            && self.c3.approx_eq(other.c3, epsilon)
    }

    #[inline]
    pub fn as_ptr(&self) -> *const f32 {
        (&self.c0) as *const F32x4 as *const f32
    }

    #[inline]
    pub fn to_columns(&self) -> [F32x4; 4] {
        [self.c0, self.c1, self.c2, self.c3]
    }
}

impl Mul<Transform4F> for Transform4F {
    type Output = Transform4F;

    // https://stackoverflow.com/a/18508113
    #[inline]
    fn mul(self, other: Transform4F) -> Transform4F {
        return Transform4F {
            c0: mul_col(&self, other.c0),
            c1: mul_col(&self, other.c1),
            c2: mul_col(&self, other.c2),
            c3: mul_col(&self, other.c3),
        };

        #[inline]
        fn mul_col(a: &Transform4F, b_col: F32x4) -> F32x4 {
            a.c0 * b_col.xxxx() + a.c1 * b_col.yyyy() + a.c2 * b_col.zzzz() + a.c3 * b_col.wwww()
        }
    }
}

impl Mul<Vector4F> for Transform4F {
    type Output = Vector4F;

    #[inline]
    fn mul(self, vector: Vector4F) -> Vector4F {
        let term0 = self.c0 * F32x4::splat(vector.x());
        let term1 = self.c1 * F32x4::splat(vector.y());
        let term2 = self.c2 * F32x4::splat(vector.z());
        let term3 = self.c3 * F32x4::splat(vector.w());
        Vector4F(term0 + term1 + term2 + term3)
    }
}

impl MulAssign<Transform4F> for Transform4F {
    fn mul_assign(&mut self, other: Transform4F) {
        *self = *self * other
    }
}

impl Add<Matrix2x2F> for Matrix2x2F {
    type Output = Matrix2x2F;
    #[inline]
    fn add(self, other: Matrix2x2F) -> Matrix2x2F {
        Matrix2x2F(self.0 + other.0)
    }
}

impl Neg for Matrix2x2F {
    type Output = Matrix2x2F;
    #[inline]
    fn neg(self) -> Matrix2x2F {
        Matrix2x2F(-self.0)
    }
}

#[derive(Clone, Copy, Debug)]
pub struct Perspective {
    pub transform: Transform4F,
    pub window_size: Vector2I,
}

impl Perspective {
    #[inline]
    pub fn new(transform: &Transform4F, window_size: Vector2I) -> Perspective {
        Perspective {
            transform: *transform,
            window_size,
        }
    }
}

impl Mul<Transform4F> for Perspective {
    type Output = Perspective;
    #[inline]
    fn mul(self, other: Transform4F) -> Perspective {
        Perspective {
            transform: self.transform * other,
            window_size: self.window_size,
        }
    }
}

impl Mul<Vector2F> for Perspective {
    type Output = Vector2F;
    #[inline]
    fn mul(self, vector: Vector2F) -> Vector2F {
        let point = (self.transform * vector.to_4d()).to_2d() * Vector2F::new(1.0, -1.0);
        (point + 1.0) * self.window_size.to_f32() * 0.5
    }
}

impl Mul<RectF> for Perspective {
    type Output = RectF;
    #[inline]
    fn mul(self, rect: RectF) -> RectF {
        let (upper_left, upper_right) = (self * rect.origin(),     self * rect.upper_right());
        let (lower_left, lower_right) = (self * rect.lower_left(), self * rect.lower_right());
        let min_point = upper_left.min(upper_right).min(lower_left).min(lower_right);
        let max_point = upper_left.max(upper_right).max(lower_left).max(lower_right);
        RectF::from_points(min_point, max_point)
    }
}

#[cfg(test)]
mod test {
    use crate::vector::Vector4F;
    use crate::transform3d::Transform4F;

    #[test]
    fn test_post_mul() {
        let a = Transform4F::row_major(
            3.0, 1.0, 4.0, 5.0, 9.0, 2.0, 6.0, 5.0, 3.0, 5.0, 8.0, 9.0, 7.0, 9.0, 3.0, 2.0,
        );
        let b = Transform4F::row_major(
            3.0, 8.0, 4.0, 6.0, 2.0, 6.0, 4.0, 3.0, 3.0, 8.0, 3.0, 2.0, 7.0, 9.0, 5.0, 0.0,
        );
        let c = Transform4F::row_major(
            58.0, 107.0, 53.0, 29.0, 84.0, 177.0, 87.0, 72.0, 106.0, 199.0, 101.0, 49.0, 62.0,
            152.0, 83.0, 75.0,
        );
        assert_eq!(a * b, c);
    }

    #[test]
    fn test_pre_mul() {
        let a = Transform4F::row_major(
            3.0, 1.0, 4.0, 5.0, 9.0, 2.0, 6.0, 5.0, 3.0, 5.0, 8.0, 9.0, 7.0, 9.0, 3.0, 2.0,
        );
        let b = Transform4F::row_major(
            3.0, 8.0, 4.0, 6.0, 2.0, 6.0, 4.0, 3.0, 3.0, 8.0, 3.0, 2.0, 7.0, 9.0, 5.0, 0.0,
        );
        let c = Transform4F::row_major(
            135.0, 93.0, 110.0, 103.0, 93.0, 61.0, 85.0, 82.0, 104.0, 52.0, 90.0, 86.0, 117.0,
            50.0, 122.0, 125.0,
        );
        assert_eq!(b * a, c);
    }

    #[test]
    fn test_transform_point() {
        let a = Transform4F::row_major(
            3.0, 1.0, 4.0, 5.0, 9.0, 2.0, 6.0, 5.0, 3.0, 5.0, 8.0, 9.0, 7.0, 9.0, 3.0, 2.0,
        );
        let p = Vector4F::new(3.0, 8.0, 4.0, 6.0);
        let q = Vector4F::new(63.0, 97.0, 135.0, 117.0);
        assert_eq!(a * p, q);
    }

    #[test]
    fn test_inverse() {
        // Random matrix.
        let m = Transform4F::row_major(
            0.86277982, 0.15986552, 0.90739898, 0.60066808, 0.17386167, 0.016353, 0.8535783,
            0.12969608, 0.0946466, 0.43248631, 0.63480505, 0.08154603, 0.50305436, 0.48359687,
            0.51057162, 0.24812012,
        );
        let p0 = Vector4F::new(0.95536648, 0.80633691, 0.16357357, 0.5477598);
        let p1 = m * p0;
        let m_inv = m.inverse();
        let m_inv_exp = Transform4F::row_major(
            -2.47290136,
            3.48865688,
            -6.12298336,
            6.17536696,
            0.00124033357,
            -1.72561993,
            2.16876606,
            0.186227748,
            -0.375021729,
            1.53883017,
            -0.0558194403,
            0.121857058,
            5.78300323,
            -6.87635769,
            8.30196620,
            -9.10374060,
        );
        assert!(m_inv.approx_eq(&m_inv_exp, 0.0001));
        let p2 = m_inv * p1;
        assert!(p0.approx_eq(p2, 0.0001));
    }
}