petgraph/graphmap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
//! `GraphMap<N, E, Ty>` is a graph datastructure where node values are mapping
//! keys.
use std::cmp::Ordering;
use std::hash::{self, Hash};
use std::iter::{
Cloned,
DoubleEndedIterator,
};
use std::slice::{
Iter,
};
use std::fmt;
use std::ops::{Index, IndexMut, Deref};
use std::iter::FromIterator;
use std::marker::PhantomData;
use ordermap::OrderMap;
use ordermap::{
Iter as OrderMapIter, IterMut as OrderMapIterMut
};
use ordermap::Keys;
use {
EdgeType,
Directed,
Undirected,
Direction,
Incoming,
Outgoing,
};
use IntoWeightedEdge;
use visit::{IntoNodeIdentifiers, NodeCount, IntoNodeReferences, NodeIndexable};
use visit::{NodeCompactIndexable, IntoEdgeReferences, IntoEdges};
use graph::Graph;
use graph::node_index;
/// A `GraphMap` with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
pub type UnGraphMap<N, E> = GraphMap<N, E, Undirected>;
/// A `GraphMap` with directed edges.
///
/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
/// *1*.
pub type DiGraphMap<N, E> = GraphMap<N, E, Directed>;
/// `GraphMap<N, E, Ty>` is a graph datastructure using an associative array
/// of its node weights `N`.
///
/// It uses an combined adjacency list and sparse adjacency matrix
/// representation, using **O(|V| + |E|)** space, and allows testing for edge
/// existance in constant time.
///
/// `GraphMap` is parameterized over:
///
/// - Associated data `N` for nodes and `E` for edges, called *weights*.
/// - The node weight `N` must implement `Copy` and will be used as node
/// identifier, duplicated into several places in the data structure.
/// It must be suitable as a hash table key (implementing `Eq + Hash`).
/// The node type must also implement `Ord` so that the implementation can
/// order the pair (`a`, `b`) for an edge connecting any two nodes `a` and `b`.
/// - `E` can be of arbitrary type.
/// - Edge type `Ty` that determines whether the graph edges are directed or
/// undirected.
///
/// You can use the type aliases `UnGraphMap` and `DiGraphMap` for convenience.
///
/// `GraphMap` does not allow parallel edges, but self loops are allowed.
///
/// Depends on crate feature `graphmap` (default).
#[derive(Clone)]
pub struct GraphMap<N, E, Ty> {
nodes: OrderMap<N, Vec<(N, CompactDirection)>>,
edges: OrderMap<(N, N), E>,
ty: PhantomData<Ty>,
}
impl<N: Eq + Hash + fmt::Debug, E: fmt::Debug, Ty: EdgeType> fmt::Debug for GraphMap<N, E, Ty> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.nodes.fmt(f)
}
}
/// A trait group for `GraphMap`'s node identifier.
pub trait NodeTrait : Copy + Ord + Hash {}
impl<N> NodeTrait for N where N: Copy + Ord + Hash {}
// non-repr(usize) version of Direction
#[derive(Copy, Clone, Debug, PartialEq)]
enum CompactDirection {
Outgoing,
Incoming,
}
impl From<Direction> for CompactDirection {
fn from(d: Direction) -> Self {
match d {
Outgoing => CompactDirection::Outgoing,
Incoming => CompactDirection::Incoming,
}
}
}
impl PartialEq<Direction> for CompactDirection {
fn eq(&self, rhs: &Direction) -> bool {
(*self as usize) == (*rhs as usize)
}
}
impl<N, E, Ty> GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
/// Create a new `GraphMap`
pub fn new() -> Self {
Self::default()
}
/// Create a new `GraphMap` with estimated capacity.
pub fn with_capacity(nodes: usize, edges: usize) -> Self {
GraphMap {
nodes: OrderMap::with_capacity(nodes),
edges: OrderMap::with_capacity(edges),
ty: PhantomData,
}
}
/// Return the current node and edge capacity of the graph.
pub fn capacity(&self) -> (usize, usize) {
(self.nodes.capacity(), self.edges.capacity())
}
/// Use their natual order to map the node pair (a, b) to a canonical edge id.
#[inline]
fn edge_key(a: N, b: N) -> (N, N) {
if Ty::is_directed() {
(a, b)
} else {
if a <= b { (a, b) } else { (b, a) }
}
}
/// Whether the graph has directed edges.
pub fn is_directed(&self) -> bool {
Ty::is_directed()
}
/// Create a new `GraphMap` from an iterable of edges.
///
/// Node values are taken directly from the list.
/// Edge weights `E` may either be specified in the list,
/// or they are filled with default values.
///
/// Nodes are inserted automatically to match the edges.
///
/// ```
/// use petgraph::graphmap::UnGraphMap;
///
/// // Create a new undirected GraphMap.
/// // Use a type hint to have `()` be the edge weight type.
/// let gr = UnGraphMap::<_, ()>::from_edges(&[
/// (0, 1), (0, 2), (0, 3),
/// (1, 2), (1, 3),
/// (2, 3),
/// ]);
/// ```
pub fn from_edges<I>(iterable: I) -> Self
where I: IntoIterator,
I::Item: IntoWeightedEdge<E, NodeId=N>
{
Self::from_iter(iterable)
}
/// Return the number of nodes in the graph.
pub fn node_count(&self) -> usize {
self.nodes.len()
}
/// Return the number of edges in the graph.
pub fn edge_count(&self) -> usize {
self.edges.len()
}
/// Remove all nodes and edges
pub fn clear(&mut self) {
self.nodes.clear();
self.edges.clear();
}
/// Add node `n` to the graph.
pub fn add_node(&mut self, n: N) -> N {
self.nodes.entry(n).or_insert(Vec::new());
n
}
/// Return `true` if node `n` was removed.
pub fn remove_node(&mut self, n: N) -> bool {
let links = match self.nodes.swap_remove(&n) {
None => return false,
Some(sus) => sus,
};
for (succ, _) in links {
// remove all successor links
self.remove_single_edge(&succ, &n, Incoming);
// Remove all edge values
self.edges.swap_remove(&Self::edge_key(n, succ));
}
true
}
/// Return `true` if the node is contained in the graph.
pub fn contains_node(&self, n: N) -> bool {
self.nodes.contains_key(&n)
}
/// Add an edge connecting `a` and `b` to the graph, with associated
/// data `weight`. For a directed graph, the edge is directed from `a`
/// to `b`.
///
/// Inserts nodes `a` and/or `b` if they aren't already part of the graph.
///
/// Return `None` if the edge did not previously exist, otherwise,
/// the associated data is updated and the old value is returned
/// as `Some(old_weight)`.
///
/// ```
/// // Create a GraphMap with directed edges, and add one edge to it
/// use petgraph::graphmap::DiGraphMap;
///
/// let mut g = DiGraphMap::new();
/// g.add_edge("x", "y", -1);
/// assert_eq!(g.node_count(), 2);
/// assert_eq!(g.edge_count(), 1);
/// assert!(g.contains_edge("x", "y"));
/// assert!(!g.contains_edge("y", "x"));
/// ```
pub fn add_edge(&mut self, a: N, b: N, weight: E) -> Option<E> {
if let old @ Some(_) = self.edges.insert(Self::edge_key(a, b), weight) {
old
} else {
// insert in the adjacency list if it's a new edge
self.nodes.entry(a)
.or_insert_with(|| Vec::with_capacity(1))
.push((b, CompactDirection::Outgoing));
if a != b {
// self loops don't have the Incoming entry
self.nodes.entry(b)
.or_insert_with(|| Vec::with_capacity(1))
.push((a, CompactDirection::Incoming));
}
None
}
}
/// Remove edge relation from a to b
///
/// Return `true` if it did exist.
fn remove_single_edge(&mut self, a: &N, b: &N, dir: Direction) -> bool {
match self.nodes.get_mut(a) {
None => false,
Some(sus) => {
if Ty::is_directed() {
match sus.iter().position(|elt| elt == &(*b, CompactDirection::from(dir))) {
Some(index) => { sus.swap_remove(index); true }
None => false,
}
} else {
match sus.iter().position(|elt| &elt.0 == b) {
Some(index) => { sus.swap_remove(index); true }
None => false,
}
}
}
}
}
/// Remove edge from `a` to `b` from the graph and return the edge weight.
///
/// Return `None` if the edge didn't exist.
///
/// ```
/// // Create a GraphMap with undirected edges, and add and remove an edge.
/// use petgraph::graphmap::UnGraphMap;
///
/// let mut g = UnGraphMap::new();
/// g.add_edge("x", "y", -1);
///
/// let edge_data = g.remove_edge("y", "x");
/// assert_eq!(edge_data, Some(-1));
/// assert_eq!(g.edge_count(), 0);
/// ```
pub fn remove_edge(&mut self, a: N, b: N) -> Option<E> {
let exist1 = self.remove_single_edge(&a, &b, Outgoing);
let exist2 = if a != b {
self.remove_single_edge(&b, &a, Incoming)
} else { exist1 };
let weight = self.edges.remove(&Self::edge_key(a, b));
debug_assert!(exist1 == exist2 && exist1 == weight.is_some());
weight
}
/// Return `true` if the edge connecting `a` with `b` is contained in the graph.
pub fn contains_edge(&self, a: N, b: N) -> bool {
self.edges.contains_key(&Self::edge_key(a, b))
}
/// Return an iterator over the nodes of the graph.
///
/// Iterator element type is `N`.
pub fn nodes(&self) -> Nodes<N> {
Nodes{iter: self.nodes.keys().cloned()}
}
/// Return an iterator of all nodes with an edge starting from `a`.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `N`.
pub fn neighbors(&self, a: N) -> Neighbors<N, Ty> {
Neighbors {
iter: match self.nodes.get(&a) {
Some(neigh) => neigh.iter(),
None => [].iter(),
},
ty: self.ty,
}
}
/// Return an iterator of all neighbors that have an edge between them and
/// `a`, in the specified direction.
/// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `N`.
pub fn neighbors_directed(&self, a: N, dir: Direction)
-> NeighborsDirected<N, Ty>
{
NeighborsDirected {
iter: match self.nodes.get(&a) {
Some(neigh) => neigh.iter(),
None => [].iter(),
},
dir: dir,
ty: self.ty,
}
}
/// Return an iterator of target nodes with an edge starting from `a`,
/// paired with their respective edge weights.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `(N, &E)`.
pub fn edges(&self, from: N) -> Edges<N, E, Ty> {
Edges {
from: from,
iter: self.neighbors(from),
edges: &self.edges,
}
}
/// Return a reference to the edge weight connecting `a` with `b`, or
/// `None` if the edge does not exist in the graph.
pub fn edge_weight(&self, a: N, b: N) -> Option<&E> {
self.edges.get(&Self::edge_key(a, b))
}
/// Return a mutable reference to the edge weight connecting `a` with `b`, or
/// `None` if the edge does not exist in the graph.
pub fn edge_weight_mut(&mut self, a: N, b: N) -> Option<&mut E> {
self.edges.get_mut(&Self::edge_key(a, b))
}
/// Return an iterator over all edges of the graph with their weight in arbitrary order.
///
/// Iterator element type is `(N, N, &E)`
pub fn all_edges(&self) -> AllEdges<N, E, Ty> {
AllEdges {
inner: self.edges.iter(),
ty: self.ty,
}
}
/// Return an iterator over all edges of the graph in arbitrary order, with a mutable reference
/// to their weight.
///
/// Iterator element type is `(N, N, &mut E)`
pub fn all_edges_mut(&mut self) -> AllEdgesMut<N, E, Ty> {
AllEdgesMut {
inner: self.edges.iter_mut(),
ty: self.ty,
}
}
/// Return a `Graph` that corresponds to this `GraphMap`.
///
/// 1. Note that node and edge indices in the `Graph` have nothing in common
/// with the `GraphMap`s node weights `N`. The node weights `N` are used as
/// node weights in the resulting `Graph`, too.
/// 2. Note that the index type is user-chosen.
///
/// Computes in **O(|V| + |E|)** time (average).
///
/// **Panics** if the number of nodes or edges does not fit with
/// the resulting graph's index type.
pub fn into_graph<Ix>(self) -> Graph<N, E, Ty, Ix>
where Ix: ::graph::IndexType,
{
// assuming two successive iterations of the same hashmap produce the same order
let mut gr = Graph::with_capacity(self.node_count(), self.edge_count());
for (&node, _) in &self.nodes {
gr.add_node(node);
}
for ((a, b), edge_weight) in self.edges {
let (ai, _, _) = self.nodes.get_full(&a).unwrap();
let (bi, _, _) = self.nodes.get_full(&b).unwrap();
gr.add_edge(node_index(ai), node_index(bi), edge_weight);
}
gr
}
}
/// Create a new `GraphMap` from an iterable of edges.
impl<N, E, Ty, Item> FromIterator<Item> for GraphMap<N, E, Ty>
where Item: IntoWeightedEdge<E, NodeId=N>,
N: NodeTrait,
Ty: EdgeType,
{
fn from_iter<I>(iterable: I) -> Self
where I: IntoIterator<Item=Item>,
{
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
let mut g = Self::with_capacity(0, low);
g.extend(iter);
g
}
}
/// Extend the graph from an iterable of edges.
///
/// Nodes are inserted automatically to match the edges.
impl<N, E, Ty, Item> Extend<Item> for GraphMap<N, E, Ty>
where Item: IntoWeightedEdge<E, NodeId=N>,
N: NodeTrait,
Ty: EdgeType,
{
fn extend<I>(&mut self, iterable: I)
where I: IntoIterator<Item=Item>,
{
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
self.edges.reserve(low);
for elt in iter {
let (source, target, weight) = elt.into_weighted_edge();
self.add_edge(source, target, weight);
}
}
}
macro_rules! iterator_wrap {
($name: ident <$($typarm:tt),*> where { $($bounds: tt)* }
item: $item: ty,
iter: $iter: ty,
) => (
pub struct $name <$($typarm),*> where $($bounds)* {
iter: $iter,
}
impl<$($typarm),*> Iterator for $name <$($typarm),*>
where $($bounds)*
{
type Item = $item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
);
}
iterator_wrap! {
Nodes <'a, N> where { N: 'a + NodeTrait }
item: N,
iter: Cloned<Keys<'a, N, Vec<(N, CompactDirection)>>>,
}
pub struct Neighbors<'a, N, Ty = Undirected>
where N: 'a,
Ty: EdgeType,
{
iter: Iter<'a, (N, CompactDirection)>,
ty: PhantomData<Ty>,
}
impl<'a, N, Ty> Iterator for Neighbors<'a, N, Ty>
where N: NodeTrait,
Ty: EdgeType
{
type Item = N;
fn next(&mut self) -> Option<N> {
if Ty::is_directed() {
(&mut self.iter)
.filter_map(|&(n, dir)| if dir == Outgoing {
Some(n)
} else { None })
.next()
} else {
self.iter.next().map(|&(n, _)| n)
}
}
}
pub struct NeighborsDirected<'a, N, Ty>
where N: 'a,
Ty: EdgeType,
{
iter: Iter<'a, (N, CompactDirection)>,
dir: Direction,
ty: PhantomData<Ty>,
}
impl<'a, N, Ty> Iterator for NeighborsDirected<'a, N, Ty>
where N: NodeTrait,
Ty: EdgeType
{
type Item = N;
fn next(&mut self) -> Option<N> {
if Ty::is_directed() {
let self_dir = self.dir;
(&mut self.iter)
.filter_map(move |&(n, dir)| if dir == self_dir {
Some(n)
} else { None })
.next()
} else {
self.iter.next().map(|&(n, _)| n)
}
}
}
pub struct Edges<'a, N, E: 'a, Ty>
where N: 'a + NodeTrait,
Ty: EdgeType
{
from: N,
edges: &'a OrderMap<(N, N), E>,
iter: Neighbors<'a, N, Ty>,
}
impl<'a, N, E, Ty> Iterator for Edges<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, N, &'a E);
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
None => None,
Some(b) => {
let a = self.from;
match self.edges.get(&GraphMap::<N, E, Ty>::edge_key(a, b)) {
None => unreachable!(),
Some(edge) => {
Some((a, b, edge))
}
}
}
}
}
}
impl<'a, N: 'a, E: 'a, Ty> IntoEdgeReferences for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type EdgeRef = (N, N, &'a E);
type EdgeReferences = AllEdges<'a, N, E, Ty>;
fn edge_references(self) -> Self::EdgeReferences {
self.all_edges()
}
}
pub struct AllEdges<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
inner: OrderMapIter<'a, (N, N), E>,
ty: PhantomData<Ty>,
}
impl<'a, N, E, Ty> Iterator for AllEdges<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, N, &'a E);
fn next(&mut self) -> Option<Self::Item>
{
match self.inner.next() {
None => None,
Some((&(a, b), v)) => Some((a, b, v))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
fn count(self) -> usize {
self.inner.count()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.inner.nth(n).map(|(&(n1, n2), weight)| (n1, n2, weight))
}
fn last(self) -> Option<Self::Item> {
self.inner.last().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
impl<'a, N, E, Ty> DoubleEndedIterator for AllEdges<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.inner.next_back().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
pub struct AllEdgesMut<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
inner: OrderMapIterMut<'a, (N, N), E>,
ty: PhantomData<Ty>,
}
impl<'a, N, E, Ty> Iterator for AllEdgesMut<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, N, &'a mut E);
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
fn count(self) -> usize {
self.inner.count()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.inner.nth(n).map(|(&(n1, n2), weight)| (n1, n2, weight))
}
fn last(self) -> Option<Self::Item> {
self.inner.last().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
impl<'a, N, E, Ty> DoubleEndedIterator for AllEdgesMut<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.inner.next_back().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
impl<'a, N: 'a, E: 'a, Ty> IntoEdges for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type Edges = Edges<'a, N, E, Ty>;
fn edges(self, a: Self::NodeId) -> Self::Edges {
self.edges(a)
}
}
/// Index `GraphMap` by node pairs to access edge weights.
impl<N, E, Ty> Index<(N, N)> for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type Output = E;
fn index(&self, index: (N, N)) -> &E
{
let index = Self::edge_key(index.0, index.1);
self.edge_weight(index.0, index.1).expect("GraphMap::index: no such edge")
}
}
/// Index `GraphMap` by node pairs to access edge weights.
impl<N, E, Ty> IndexMut<(N, N)> for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn index_mut(&mut self, index: (N, N)) -> &mut E {
let index = Self::edge_key(index.0, index.1);
self.edge_weight_mut(index.0, index.1).expect("GraphMap::index: no such edge")
}
}
/// Create a new empty `GraphMap`.
impl<N, E, Ty> Default for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn default() -> Self { GraphMap::with_capacity(0, 0) }
}
/// A reference that is hashed and compared by its pointer value.
///
/// `Ptr` is used for certain configurations of `GraphMap`,
/// in particular in the combination where the node type for
/// `GraphMap` is something of type for example `Ptr(&Cell<T>)`,
/// with the `Cell<T>` being `TypedArena` allocated.
pub struct Ptr<'b, T: 'b>(pub &'b T);
impl<'b, T> Copy for Ptr<'b, T> {}
impl<'b, T> Clone for Ptr<'b, T>
{
fn clone(&self) -> Self { *self }
}
fn ptr_eq<T>(a: *const T, b: *const T) -> bool {
a == b
}
impl<'b, T> PartialEq for Ptr<'b, T>
{
/// Ptr compares by pointer equality, i.e if they point to the same value
fn eq(&self, other: &Ptr<'b, T>) -> bool {
ptr_eq(self.0, other.0)
}
}
impl<'b, T> PartialOrd for Ptr<'b, T>
{
fn partial_cmp(&self, other: &Ptr<'b, T>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'b, T> Ord for Ptr<'b, T>
{
/// Ptr is ordered by pointer value, i.e. an arbitrary but stable and total order.
fn cmp(&self, other: &Ptr<'b, T>) -> Ordering {
let a: *const T = self.0;
let b: *const T = other.0;
a.cmp(&b)
}
}
impl<'b, T> Deref for Ptr<'b, T> {
type Target = T;
fn deref(&self) -> &T {
self.0
}
}
impl<'b, T> Eq for Ptr<'b, T> {}
impl<'b, T> Hash for Ptr<'b, T>
{
fn hash<H: hash::Hasher>(&self, st: &mut H)
{
let ptr = (self.0) as *const T;
ptr.hash(st)
}
}
impl<'b, T: fmt::Debug> fmt::Debug for Ptr<'b, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<'a, N, E: 'a, Ty> IntoNodeIdentifiers for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type NodeIdentifiers = NodeIdentifiers<'a, N, E, Ty>;
fn node_identifiers(self) -> Self::NodeIdentifiers {
NodeIdentifiers {
iter: self.nodes.iter(),
ty: self.ty,
edge_ty: PhantomData,
}
}
}
impl<N, E, Ty> NodeCount for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn node_count(&self) -> usize {
(*self).node_count()
}
}
pub struct NodeIdentifiers<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
iter: OrderMapIter<'a, N, Vec<(N, CompactDirection)>>,
ty: PhantomData<Ty>,
edge_ty: PhantomData<E>,
}
impl<'a, N, E, Ty> Iterator for NodeIdentifiers<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = N;
fn next(&mut self) -> Option<Self::Item>
{
self.iter.next().map(|(&n, _)| n)
}
}
impl<'a, N, E, Ty> IntoNodeReferences for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type NodeRef = (N, &'a N);
type NodeReferences = NodeReferences<'a, N, E, Ty>;
fn node_references(self) -> Self::NodeReferences {
NodeReferences {
iter: self.nodes.iter(),
ty: self.ty,
edge_ty: PhantomData,
}
}
}
pub struct NodeReferences<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
iter: OrderMapIter<'a, N, Vec<(N, CompactDirection)>>,
ty: PhantomData<Ty>,
edge_ty: PhantomData<E>,
}
impl<'a, N, E, Ty> Iterator for NodeReferences<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, &'a N);
fn next(&mut self) -> Option<Self::Item>
{
self.iter.next().map(|(n, _)| (*n, n))
}
}
impl<N, E, Ty> NodeIndexable for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn node_bound(&self) -> usize { self.node_count() }
fn to_index(&self, ix: Self::NodeId) -> usize {
let (i, _, _) = self.nodes.get_full(&ix).unwrap();
i
}
fn from_index(&self, ix: usize) -> Self::NodeId {
let (&key, _) = self.nodes.get_index(ix).unwrap();
key
}
}
impl<N, E, Ty> NodeCompactIndexable for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
}